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MAIN GOAL

Determine the barriers of computations in deep learning
(i.e. what is and what is not possible)

Y
Stability and Accuracy in Al
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Given measurements y = Ax + e, of x € M7 C CN recover x.

» In imaging A € C™N is a model of the sampling modality with m < N.
» x is the unknown signal of interest,

> and e is noise or perturbations.



Solve one of the problems:
Quadratically constrained basis pursuit (QCBP):

min ||z|[;1 subject to [[Az —y|lp <7 (P1)
zeCN
Unconstrained LASSO (U-LASSO):
min [|Az — yl[7 + Allzln (P2)
zeCN
Square-root LASSO (SR-LASSO):

min [|Az — y|l2 + Al|z|[n (P3)
zeCN

We let =;(y, A) denote the set of minimizers for (P;), given input A€ C™N y ¢ C™.



Nice classes Q C {(y,A) : y € C™, A € C™N} where one can prove NNs with great
approximation qualities exist. But:

» No algorithm, even randomised can train (or compute) such a NN accurate to K
digits with probability greater than 1/2.

Existence vs computation (universal approximation /interpolation theorems not enough).

Conclusion: Theorems on existence of neural networks may have little to do with the
neural networks produced in practice.



Let f: RN — R be the function we want to minimize. Set

f* = min f(2).

z€RN
Let X be a minimizer of f. Suppose x € RN satisfy
f(x) < f"+e.

This does not imply that ||x — X|| S e.



Recap: Very crude reason why. ..

A=1, 1—




Question: Can we find ‘good’ input classes where
f(x)<f*+e = |x—X|| Se

We shall see that the answer is yes!



Robust null space property

Notation: Let Q C {1,..., N} and let Pq € RV*N be the projection

x; 1€Q
Pox = .
0 otherwise

Definition (Robust Null Space Property)

A matrix A € C™*N satisfies the robust Null Space Property (rNSP) of order
1 < s < N with constants 0 < p <1 and~v >0 if

p
IPaxle < %IIPéXII/1 + A,

for all x € CN and any Q C {1,..., N} with |Q| <s.




p-suboptimality for SR-LASSO

Definition 1 (p-suboptimality for SR-LASSO)
A vector X € CN is u-suboptimal for the problem (P3) if

A%+ 1A% = yllp < p+ min {A]|z]|x + [[Az =y 2}
zeCN




p-suboptimality + rNSP implies closeness to minimizer

.

(Theorem 2

Suppose that A € C™N has the rNSP of order s with constants 0 < p < 1 and
v>0. Let xeCN andy = Ax+e € C™ and

G
Cov/s’

where Cy, C; > 0 are constant depending only on p and ~. Then, every vector % € CN
that is pi-suboptimal for min,con A||z||p + ||Az — y|| 2 satisfies

A<

~ g C1 Cl
5= xle <2675 4 s (R4 G el

See:
Adcock, B., & Hansen, A. C., ‘Compressive Imaging: Structure, Sampling, Learning', Cambridge
University Press, 2021 (to appear). https://www.compressiveimagingbook.com



https://www.compressiveimagingbook.com

‘Theorem 3 (Universal Instability Theorem)

Let Ac C™N where m < N, and let W : C™ — CN be a continuous map. Suppose
there are x,x' € CN and 1 > 0 such that

|W(Ax) — x|| <n, and [W(AX)—X| <n, (1)

and
|[Ax — AX'|| < 7. (2)
We then have the following:

(i) (Instability with respect to worst-case perturbations) Then the local
e-Lipschitz constant at y = Ax satisfies
V(z) -V 1
Ey)= sp WODZYON Loy vesg 3)
o<llz—yll<e Nz =vl £

See: Gottschling, Antun, Adcock, and Hansen, 2020. The troublesome kernel: why deep learning for
inverse problems is typically unstable. arXiv:2001.01258.



https://arxiv.org/abs/2001.01258

rNSP — kernel awareness for sparse vectors

(Theorem 4
Suppose the matrix A € C™*N satisfies the robust null space property (rNSP) or
order s, with constants 0 < p < 1 and v > 0. Then for all s-sparse vectors x,z € CV,

G
z—=xlp < 7“/4(2 =)l

where
(3p+5)y

G =
2 -,

(4)

See:
Foucart, S., & Rauhut, H., 'A Mathematical Introduction to Compressive Sensing’, birkh3duser, 2013.




Typical compressive sensing theorem

(Theorem 5

Let Ac C™N with m < N and let W € CN*N be unitary. Suppose that AW~! has
the rNSP of order s with constants 0 < p <1 and vy > 0. Let y = Ax + e and let
0 <\ < G/(yv/sC). Then every minimizer X € CN of the problem

min A[Wz|[n + |Az — y|[2 (P3)
zeCN

satisfies

~ os(Wx C
= xle <267 1 (Gt el

where C1 and C, are the constants in (4), and

0s(z)p = inf{||z — t||p : t is a s-sparse vector}

| denotes the distance to a s-sparse vector.




Do the matrices that we use in imaging have the robust
null space property?



Examples: Fluorescence microscopy and single-pixel imaging

Object

DMD
|




Three different ordering of the Hadamard matrix Upaq € RNV,

We select a subset Q C {1,..., N}, |Q2] = m, of the rows PqUpagd.



Many sampling modalities can be modeled by the Fourier transform
Ff(w) = / f(t)e >t dt,
[0.1]?

We discretize this integral to get a linear system

2
=2

—1N-1

1 Lo
Ff(wr,wr) = vakﬁe2m(wu+w2k)/N
04

x
Il

.
I
o

where x; x = f(k/N,I/N) and w = (w1,w2) € {—N/2+1,...,N/2}?. We write this
system as
y = Uagex

where Ugg € CN**N? is the Fourier matrix. This matrix is unitary.



The matrix PoU with Q = {2 45 6,8}




Let A= PqfF and y = Ax.

-

Original x Sampling pattern Q Adjoint: A*y



» Given the linear system

» Solve

» In imaging we use for example U = Ugee U2

Original image

Uxo =y.

min A|z||p + ||PaUz — Payl||p
zeCN

dwt

Compressed image

5% of the w. coeff.
F [

Pﬁxo d= UEJ'P~X0



» Given the linear system
Uxp =y.

» Solve
min A||z||p + ||PoUz — Payl||
zeCN

where Pq is a projection and Q C {1,..., N} is subsampled with |Q| = m.
Traditional idea: If U is unitary, Q is chosen uniformly at random and

m>N-uU)-s- Lt s, N)

then with probability 1 — ¢, PqU has the robust null space property (rNSP) of order s
(with certain constants). Here

p(U) = max |U;|? € [1/N, 1]
1J

is referred to as the incoherence parameter and L(eil, s, N) is a polylogarithmic factor.



U = Uas Vi

5% subsamp-map Reconstruction

Enla]rged




» The classical idea of sparsity in sparse regularization is that there are s important
coefficients in the vector xp that we want to recover.

» The location of these coefficients is arbitrary.



The Flip Test and the rNSP

2 32 -1 32
X Qreversex

Figure from: Bastounis, A. & H. C, Anders Christian (2017). On the absence of uniform recovery in
many real-world applications of compressed sensing and the restricted isometry property and nullspace
property in levels. SIAM Journal of Imaging Sciences.




15 Truncated (max = 151.58)
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FIgU €. Wavelet coefficients and subsampling reconstructions from 10% of Fourier coefficients with distributions (1 + w% + wg)_l and

(14w} +wd)73/2

If sparsity is the right model we should be able to flip the coefficients. Let
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Rec. not flipped coeff. Rec. flipped coeff.

Conclusion: The ordering of the coefficients did matter. Moreover, this phenomenon happens
with all wavelets, curvelets, contourlets and shearlets and any reasonable subsampling scheme.

Question: Is sparsity really the right model?
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CS reconstr. CS reconstr, w/ flip Subsampling
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CS reconstr. CS reconstr, w/ flip Subsampling
coeffs. pattern
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CS reconstr. CS reconstr, w/ flip Subsampling
coeffs. pattern
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Matrix method rNSP
DFT-DWT ! HAD -DWT !

MRI

Tomography
Spectroscopy

Electron microscopy
Problem | Radio interferometry
Fluorescence microscopy
Lensless camera

Single pixel camera
Hadamard spectroscopy

R R R IR ANRNENANEN
NN N N3] 3] 3| x| %
x| | x| x| x| x| x| X[ X

Table: A table displaying various applications of compressive sensing. For each application, a
suitable matrix is suggested along with information on whether or not that matrix has the rNSP
of a sufficiently large order s.



» Given the linear system
Uxp =y.

» Solve
min A||z||p + ||PoUz — Payl||
zeCN

where Pq is a projection and Q C {1,..., N} is subsampled with |Q| = m.
Traditional idea: If U is unitary, Q is chosen uniformly at random and

m>N-uU)-s- Lt s, N)

then with probability 1 — ¢, PqU has the robust null space property (rNSP) of order s
(with certain constants). Here

p(U) = max |U;|? € [1/N, 1]
1J

is referred to as the incoherence parameter and L(eil, s, N) is a polylogarithmic factor.



DFT -DWT,* DFT - DWTy, HAD - DWTy,

Haar

"n

The three images display the absolute values of various sensing matrices. A lighter
colour represents larger absolute values. Here DFT is the Discrete Fourier Transform,
HAD the Hadamard transform and DVVT&1 the Inverse Wavelet Transform
corresponding to Daubechies wavelets with N vanishing moments.
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Sparsity in levels

Definition 6 (Sparsity in levels)
Let M= (My,....,M,) e N, where 1< M; <--- < M, =N, and
s =(s1,...,s) € Ny, where sx < My — M1 for k=1,...,r and My = 0. A vector

x € CVis (s, M)-sparse in levels if
|supp(x) N {Mx_1 +1,.... Mk }| <s,, k=1,..,r.

The total sparsity is s = s; + ... +s,. We denote the set of (s, M)-sparse vectors by
Y s m. We also define the following measure of distance of a vector x to ¥ m by

0'57M(X)/vlv = inf{||x — z||,v1v 1z E€Xsm}

Here [|z[|, = ZJN:1 wj|zj|, is the weighted /1-norm for positive weights {w;}.



Let

1.5 Truncated (max = 151.58)

12 3 45 6 7 8 9 10x10°

denote the vector of the wavelet coefficients. Let sz denote the flipped version of z
where the flipping of coefficients only happens within the levels.



Sparsity - The Flip Test in Levels

> Let
7 = Uan Uph 2k
» Solve
zn€1(icr7v A z|lp + HPQUdftUd_“}tZ — Pajll
to get %,

» Flip the coefficients of 2;' back to get Z, and let X = Ud_v&tf.



The Flip Test in levels
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The Flip Test in levels
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The weighted Robust Nullspace Property in Levels (wrNSPL)

Definition 7 (wrNSP in levels)

Let (s, M) be local sparsities and sparsity levels respectively. For weights {WJ}JN:]_
(wj > 0), we say that A € Cm™*N satisfies the weighted robust null space property in
levels (wrNSPL) of order (s, M) with constants 0 < p < 1 and v > 0 if for any (s, M)
support set €2,

plIPacx|z

||PQXH/2 < \/E = +’Y||AXH/2, for all x € (CN.




In general no NN can solve the problems (P;), j = 1,2, 3 for arbitrary input, but if
A has the rNSP or wrNSPL we can.

The assumption of sparsity and uniformly random subsampling is too general to
explain the success of sparse regularization in imaging. Additional structure is
needed!

The wrNSPL provide sufficient conditions for kernel awareness for images which are
sparse in wavelets.

By sampling in a structured way we can achieve the wrNSPL.



Fast Iterative REstarted NE Tworks
(FIRENETS)



Definition [Sparsity in levels]: Let M = (M;,...,M,) e N, where 1l < M; < --- <
M, = N, and s = (s1,...,s,) € N[, where sx < Mg — My_q1 for k =1,...,r and
Mo = 0. A vector x € CN is (s, M)-sparse in levels if

|supp(x) N {Myk—1+ 1, ..., M} <s,, k=1,..,r.

The total sparsity is s = s; + ... +s,. We denote the set of (s, M)-sparse vectors by
Y s m. We also define the following measure of distance of a vector x to > m by

osm(x)y = inf{|lx —z[[p : z € T m}-

For simplicity, assume s, > 0 and I}, weights constant in each level:

Wi = W(jy, if Mj_1+1§i§Mj.



Kernel awareness: the robust nullspace property

 Definition [weighted rNSP in levels]: Let (s, M) be local sparsities and sparsity‘
levels respectively. For weights {w;}; (w; > 0), we say that A € C™N satisfies the
weighted robust null space property in levels (weighted rNSPL) of order (s, M) with
constants 0 < p < 1 and v > 0 if for any (s, M) support set A,

P||XA°||/V1V

Ixallp < T + 1A |2, for all x e CN.




Simplified version of Theorem: We provide an algorithm such that:
Input: Sparsity parameters (s, M), weights {w;}_,, A€ C™N (with the input A
given by {A,}) satisfying the rNSPL with constants 0 < p < 1 and v > 0,
n € N and positive {9, b1, by }.
Output: A neural network ¢, with O(n) layers and the following property.

For any x € CN and y € C™ with

asm(x)y +  Ax=yllp Z90, lxllp S b1, ylle S b2
———

distance to sparse in levels vectors ~ noise of measurements

we have the following stable and exponential convergence guarantee in n

[on(y) = xllp S o+ "



Strategy: restarted & reweighted unrolling of primal-dual algorithm applied to:
(Ps)  argmineeen F5'(x, v, A) = Allx|lg, + 1Ax =yl .

As well as stability, rNSPL allows exponential convergence.

Even ignoring stability, naive unrolling of iterative methods only gives slow
convergence O(§ 4+ n~1) (and in certain regimes O(5 + n~?)).

If we do not know p or «y (constants for rNSPL), can perform log-scale grid search

for suitable parameters (increase number of layers by a factor of log(n)).
Sometimes (see below) we know p and ~y with probabilistic bounds.



¢: C" — CN st qb(y) = VT(,OT_]_(...pl(Vl(y)))), and
» Each V; is an affine map CNi-2 — CN given by Vj(x) = W;x + b;(y) where
W; € CNi*Ni-1 and the bj(y) = Rjy + ¢; € C"i are affine functions of the input y.
» Each p;: CNi — CN is one of two forms:
(i) j c{1,...,N;} s.t. pj applies f; : C — C element-wise on components with indices in /;:

fi(x), ifkel
pji(X)k = :
Xk otherwise.

(i) f;: C — C s.t. after decomposing the input vector x as (xg, X ', Y ") for scalar x,

XeCm, YeCN—1-m
X0 0
pi | X | = | filx)X |.
Y Y



fi(x0)1
X
fi(x0)1 + X

Y
fi(x)*1
X2
[fi(x0)1 + X]?
Y
0
5 [[00)1+ XP? = (01 = X?] = fi(x0)X
Y

) |



» Recall that we assume knowledge A; € Q[i]™N such that
A — A <27/, VvIeN.

» Our nonlinear activation functions will be built using square roots. We assume that
we have access to a routine “sqrty” such that [sqrty(x) — /x| < 6.

» An interpretation of 8: numerical stability, or accumulation of errors, of the forward
pass of the NN. A key point is that  doesn’t need to be small.

For brevity, will ignore these points in presentation below.



wg(x) = max{O, 1- b }X, Y1(x) = min {1, ||X1H}X
12

12

Lemma: Let M € N, 5 € Qsg and 6 € Q=g. Then there exists NNs (b%ﬂ,qb}) with
T =3s.t.

“¢%,9(X)_¢2(X)|‘/2 < 97 Hgbé(x)_wl(x)ulz S@.

x>
|X2‘2 M 0
.12
ee doix s () 0] %(E>_>( { ; })
’ X ) X max 07 1-— — oy ¢ X
PYE sartg (IIx11%)
X

Y maxo1-— 2 L,
sarty([Ix]172)



=~

Lemma: Let 5,0 € Q-g, w € ng and for X € CN consider the minimisation problem
argmin,ecn [|x[| + sllx — %% (5)
Let X5(X) be the solution of (5). Then, there exists NNs ¢s¢ (T = 2) s.t.

[05,0(%) = Xs(X)ll 12 < Ollwl]e

Proof.

Fun exercise in algorithm unrolling!

O



X, Y finite-dimensional real vectors spaces, K : X — Y linear

' K G(x) — F*
minmax(Kx, y) + G(x) = F*(y)

For convex H : Z — [0, oc], define

Iz — wll%

(I + 7OH) Y (w) = argmin, H(z) + 5
-

If easy to compute for H = G, F, then iterate updates of primal and dual variables.

Chambolle, A. and Pock, T., 2011. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of mathematical imaging and vision, 40(1), pp.120-145.




Step 2: Unrolling primal-dual iterations

122 J Math Imaging Vis (2011) 40: 120-145

Algorithm 1

e Initialization: Choose 7,0 > 0, 0 € [0, 1], (x°, y*) € X x ¥ and set ¥* = x0.

e Iterations (n > 0): Update x", y", X" as follows:
Yyl = (I +0dF")~1(y" + o KX")
O = (141967 (" — rKFy" T @

inJrl — xn+] +9(xn+l —x™")

We can use previous constructions for the proximal maps!
= unrolled primal-dual iterations

Chambolle, A. and Pock, T., 2016. On the ergodic convergence rates of a first-order primal—-dual
algorithm. Mathematical Programming, 159(1-2), pp.253-287.




Step 2: Unrolling primal-dual iterations

‘Theorem: Suppose La > 1 is an upper bound for ||A||, and that 7,0 > 0 are such that |
TULE\ < 1. Let p € N, then there exists an algorithm that constructs a sequence of neural
networks d’ﬁ)\ (each with T = O(p)) such that:

(i) qﬁg‘,)\ : C™tN — CN takes an input y € C™ and an initial guess xo € CV.

(ii) For any inputs y € C™ and xo € CV, and for any x € CV,

M @pa(ys x0)lln + 1A A(ys x0) = ¥l =Allx[ly — [AX =yl < o\ += -

Q

~
Ff(d’,ﬂ,k(yyxo):}/v)\) _Féq(x7y7)‘)

(Ps)  argmin,con F5'(x, ¥, A) = Allxll + [1Ax = yl| -



r

f::ZW(zk)sk, C— mm (2k)sk, K= ¢

k=1
2C;
rNSPL = HZl — 22||/2 < \/g()'s M(Z2)Il + 2C2||A22 —y||,2
(6)
A\/ (Mlzillp + 1Az = ylle = Mlz2llp — |1Az2 = yll2) ,
Set  G(z1,22,y) = Mlz1ll + [|[Azr — yllp — Azl — |Az2 — y |2
= F?:A(ZlvyvA) - Féq(z27ya)‘)
(2,y) = 2 aym(z)y + 2z — v
oy — .
y G \[ sM\Z)g Yl
Choosing A < G /(Gv/9),
C
—— (c(z2,) + G(z1,22,¥)) , (7)

_ <
|21 — 22|l < W

which holds for completely general z;,z, and y.



Define the following map from unrolled primal-dual iterations

. mm N N 8 _ A y Xo
HY . c™x cN —cV, Hp(y,xo)—pﬁgbp,A(ljﬁ,w).

Use previous theorem (7,0 ~ ||A| 1) to get

6 (Hra)xy) < G (Ll b= ol + 1auls).

Combine with (7) to get

C.
G (H(r20)x,y) < 55 [e(x ) + Gloxo,x )1 + Goll Al



Idea: Balance the two terms in (8) so that every p iterations we have errors decreasing

by a constant factor (up to ¢). Optimal parameters give

_ €
e~ by, e,=e 1(5 + 6n—1)7 Bn z

= 34T
énly, x0) = Hy"(y, dn-1(y, x0))

= G (dn(y,x0), X, ¥y) <en So+e "
Combining this with (6), we obtain (for xg = 0)

[6n(y) = xIle S

osm(x)p +  [[Ax—yllp
N , —_——
distance to sparse in levels vectors

+6 + e "

~~
noise of measurements

“convergence” error

O



Algorithm 1: FIRENETcomp constructs a FIRENET which corresponds to n iterations of InnerIt with
a rescaling scheme. We write the output as the map ¢,, to emphasise that FIRENETcomp defines a NN.
InnerIt performs p iterations of Chambolle and Pock’s primal-dual algorithm for square-root LASSO
(the order of updates is swapped compared to [37]). The functions ¢, and 1! are proximal maps:

1
[os ()] 7max{0 17—} 'Q)l(y):nlill{l,i}y,
|51 vl

Both of these are approximated by NNs in our proof.

Function FIRENETcomp (4, p, 7,0, A, {u'7} L1, €0,0,m)
Initiate with ¢y = O (other initial vectors can also be chosen).

(NB: € should be of the same order as [|y||;2 for inputs y € C™.)
fork=1,...,ndo

-InnerIt (p;k Q;}’k(') VA p, o, A\ {w; }j\:l)
end

return: FIRENET ¢,, : C" — CN

end

Function InnerIt (y,x0, A4, p, 7,0, A {w; }9:1 )
Set B = diag(w, ..., wy) € CN*N,
Initiate with 2° = 29, y° = 0 € C™ (the superscripts denote indices not powers).
fork=0,..,p—1do
okl — Bgo /\ ’l(mk—TA*yk))
=9 (y" + o A2 —ab) —oy)

end

o
X=30 p
return: X € CV (ergodic average of p iterates)

end




Applications in compressive imaging.



Demonstration of convergence
Image Fourier Sampling ‘Walsh Sampling
E 4 =

Figure: Images corrupted with 2% Gaussian noise and reconstructed using only 15% sampling
with n=p =5.




Demonstration of convergence

Error

Convergence, Fourier Sampling

lle; = Cllzz/HCHﬁ
—(F(e)) = F*)/|clle
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Fourier sampling regions Walsh sampling regions
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Figure: The different sampling regions used for the sampling patterns for Fourier (left, r
= 3) and Walsh (right, » = 4). The axis labels correspond to the frequencies in each band
and the annular regions are shown as the shaded greyscale regions.



Fourier sampling patterns
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The main result of this section

Theorem

Let ep € (0,1) and L = log3(N) - log(m) - log? (s - log(N)) + log(ep ). Suppose:
» (a) In the Fourier case: my 2 Mx(s,k) - L.

» (b) In the Walsh case: my = Myy(s,k) - L.
For ¢ € (0,1), let J(d,s,M, w) be collection of all y € C™ with y = Ac + e where

o Yc
lellp < 1, max{M }sa.

E el

We provide an algorithm that computes a neural network ¢ with O(log(671)) layers
s.t. with probability at least 1 — ep,

lo(y) —cllp S0, Vy=Ac+eeJ(d,sM,w).




LIS d
Mx(s, k) = Z stz lki—jl Z Sj2—2(j—Hk||/o<>)H2—\kf—j\
=1 =1 J=llklljee +1 i=1
d
Miyy(s, k) = S|kl e H2_|ki_Hk||/°°"

i=1



» Up to log-factors, measurement condition equivalent to the currently best-known
oracle estimator (where one assumes apriori knowledge of the support of the vector).

» Consider number of samples per annular region

my = E me, k=1,...,r,
lIkllj00 =k

then up to logarithmic factors and exponentially small terms, s, measurements are
needed in each region.

Take home message: Using the above machinery, we get optimal recovery in terms of
the number of samples needed and only need O(log(6—1)) many layers!!



Numerical experiments.
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Adding FIRENET layers stabilises AUTOMAP




FIRENET withstand worst-case perturbations and generalises well
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Orig. + worst-case noise Rec. from worst-case noise Rec. of detail




Orig. + worst-case noise Rec. from worst-case noise Rec. of detail




Orig. + worst-case noise Rec. from worst-case noise Rec. of detail
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Final question: How do we optimally traverse the stability & accuracy trade-off?

FIRENETSs provide a balance but are likely not the end of the story.
Answering this question will require a foundations framework for Al.

Hopefully we've inspired you to build on these results and take up the challenge!



Extra slides.



Definition [Multilevel random subsampling]: Let N = (Ny,..., N;) € N/, where
1< N <---<N=Nandm= (myg,...,m) € N’ with mg < Nx — Nj_; for
k=1,...,1,and Np = 0. For each k = 1,...,/, let Zp = {Nk_1 + 1,..., Ni} if
my = Ny — Ny_1 and if not, let 4 1,..., tx m, be chosen uniformly and independently
from the set {Nx_1+1,..., Ng} (with possible repeats), and set 7y = {tx1,..., tk,m, }-
fZ =Znm=21U---UZ we refer to Z as an (N, m)-multilevel subsampling scheme.

Definition [Multilevel subsampled unitary matrix]: A matrix A € C™N is an
(N, m)-multilevel subsampled unitary matrix if A = PzDU for a unitary matrix U €
CN*N and (N, m)-multilevel subsampling scheme Z. D is a diagonal scaling matrix:

Ny — N
Dy = | = k=L N 41 N, k=1,..,1
my

and Pz is the projection onto the linear span of the subset of the canonical basis
indexed by 7.



K = 2" for r € N, and consider d-dimensional tensors in CK>xK — (CKd, N =K
V € CVN*N: corresponds to d-dimensional discrete Fourier or Walsh transform.

Fourier case: divide frequencies {—K/2 +1,..., K/2}9 into dyadic bands. For d = 1,
By ={0,1} and By = {-2k"1 41, ..., —2k=2yu{2k=241,... .2k for k=2,...,r.

Walsh case: B; = {0,1} and B, = {271 ... .2k —1} for k=2,...,r.
d-dimensional case: B! = B, x ... x By,, k= (ki,... kq) € N9,
Observe: subsampled measurements of V/(c¢).

Sparse rep: Haar wavelet coefficients W¢, U = VV*.

Sampling: Given {mk:(kl,m,kd)}il - ky—1 Use a multilevel random sampling such that

d
my measurements are chosen from BIE ).



U= [U(kg)]||kH’Z°<r " be defined as above. Then the (k, j)th local coherence of U is

p(UR) = ‘B'E )‘ max [(U%) g/, where ’BIE ’ is the cardinality of Blgd).

Proposition: Let ep € (0,1), (s,M) be local sparsities and sparsity levels with
2 <s < N, and consider the (N, m)-multilevel subsampling scheme to form A. Let

tj = min { F(S’l\g’wq M — Mj_l} , j=1..r,
"0)

and suppose that

me 2 LY Ggu(UR), k=1,
j=1

where £/ = r - log(2m) - log?(t) - log(N) + log(ep"). Then with probability at least
1 — ep, A satisfies the weighted rNSPL of order (s, M) with constants p = 1/2,v = v/2.




Lemma: Consider the d-dimensional Fourier—Haar—wavelet matrix with blocks U*+,
then the local coherences satisfy
. - d -
,U(Uk’J) < =20 —Ilk[lree )+ H 2_‘ki_J|’
i=1
where for t € R, t; = max{0, t}. It follows that
r ) lIklljo0 d ] r ) d ]
Z%’H(Uk’J) < Z s; Hzflkiﬁl_,_ Z Sj2*2(1*||k||/00) H2*|ki*.l| = Mz (s, k).
j=1 j=1 =1 J=|IK|[ ;00 +1 i=1

Proof.

Exercise in using the discrete Fourier transform and some trigonometric identities. [



Lemma: Consider the d-dimensional Walsh—Haar—wavelet matrix with blocks U(k’j),
then the local coherences satisfy

U(kL’) H2 Iki—J| if ki <jfori=1,...,d with at least one equality, .

0 otherwise
It follows that

ZSM (9 < 541 H2 Ikl = Afyy (s, k).

i=1

Proof.

Exercise in keeping track of supports of Haar wavelet basis. Ol



