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MAIN GOAL

Determine the barriers of computations in deep learning

(i.e. what is and what is not possible)

⇓
Stability and Accuracy in AI



Outline of lectures

DAY I DAY II Day III

Gravity of AI Inverse Problems Achieving Kernel Awareness
Image Classification Instabilities & Kernel Awareness FIRENETs

Need for Foundations Intriguing Barriers Imaging Applications
AI for Image Reconstruction Algorithm Unrolling Numerical Examples

Slides will be hosted at http://www.damtp.cam.ac.uk/user/mjc249/Talks.html.
Useful references for further reading in grey boxes.

Comments and suggestions welcome! (vegarant@math.uio.no, m.colbrook@damtp.cam.ac.uk)

http://www.damtp.cam.ac.uk/user/mjc249/Talks.html


Recap: Problem

Given measurements y = Ax + e, of x ∈M1 ⊂ CN , recover x .

I In imaging A ∈ Cm×N is a model of the sampling modality with m < N.

I x is the unknown signal of interest,

I and e is noise or perturbations.



Recap: How do we find sparse solutions?

Solve one of the problems:
Quadratically constrained basis pursuit (QCBP):

min
z∈CN

‖z‖l1 subject to ‖Az − y‖l2 ≤ η (P1)

Unconstrained LASSO (U-LASSO):

min
z∈CN

‖Az − y‖2
l2 + λ‖z‖l1 (P2)

Square-root LASSO (SR-LASSO):

min
z∈CN

‖Az − y‖l2 + λ‖z‖l1 (P3)

We let Ξj(y ,A) denote the set of minimizers for (Pj), given input A ∈ Cm×N , y ∈ Cm.



Recap: Computational barriers

Nice classes Ω ⊂ {(y ,A) : y ∈ Cm,A ∈ Cm×N} where one can prove NNs with great
approximation qualities exist. But:

I No algorithm, even randomised can train (or compute) such a NN accurate to K
digits with probability greater than 1/2.

Existence vs computation (universal approximation/interpolation theorems not enough).

Conclusion: Theorems on existence of neural networks may have little to do with the
neural networks produced in practice.



Recap: Very crude reason why. . .

Let f : RN → R be the function we want to minimize. Set

f ∗ = min
z∈RN

f (z).

Let x̂ be a minimizer of f . Suppose x ∈ RN satisfy

f (x) < f ∗ + ε.

This does not imply that ‖x − x̂‖ . ε.



Recap: Very crude reason why. . .

A = [1, 1 + ε]

A = [1, 1− ε]



Question: Can we find ‘good’ input classes where

f (x) < f ∗ + ε =⇒ ‖x − x̂‖ . ε

We shall see that the answer is yes!



Robust null space property

Notation: Let Ω ⊂ {1, . . . ,N} and let PΩ ∈ RN×N be the projection

PΩx =

{
xi i ∈ Ω

0 otherwise
.

Definition (Robust Null Space Property)

A matrix A ∈ Cm×N satisfies the robust Null Space Property (rNSP) of order
1 ≤ s ≤ N with constants 0 < ρ < 1 and γ > 0 if

‖PΩx‖l2 ≤
ρ√
s
‖P⊥Ω x‖l1 + γ‖Ax‖l2 ,

for all x ∈ CN and any Ω ⊆ {1, . . . ,N} with |Ω| ≤ s.



µ-suboptimality for SR-LASSO

Definition 1 (µ-suboptimality for SR-LASSO)

A vector x̃ ∈ CN is µ-suboptimal for the problem (P3) if

λ‖x̃‖l1 + ‖Ax̃ − y‖l2 ≤ µ+ min
z∈CN

{λ‖z‖l1 + ‖Az − y‖l2} .



µ-suboptimality + rNSP implies closeness to minimizer

Theorem 2
Suppose that A ∈ Cm×N has the rNSP of order s with constants 0 < ρ < 1 and
γ > 0. Let x ∈ CN and y = Ax + e ∈ Cm and

λ ≤ C1

C2
√
s
,

where C1,C2 > 0 are constant depending only on ρ and γ. Then, every vector x̃ ∈ CN

that is µ-suboptimal for minz∈CN λ‖z‖l1 + ‖Az − y‖l2 satisfies

‖x̃ − x‖l2 ≤ 2C1
σs(x)l1√

s
+

C1√
sλ
µ+

(
C1√
sλ

+ C2

)
‖e‖l2 .

See:
Adcock, B., & Hansen, A. C., ‘Compressive Imaging: Structure, Sampling, Learning ’, Cambridge
University Press, 2021 (to appear). https://www.compressiveimagingbook.com

https://www.compressiveimagingbook.com


Theorem 3 (Universal Instability Theorem)

Let A ∈ Cm×N , where m < N, and let Ψ : Cm → CN be a continuous map. Suppose
there are x , x ′ ∈ CN and η > 0 such that

‖Ψ(Ax)− x‖ < η, and ‖Ψ(Ax ′)− x ′‖ < η, (1)

and
‖Ax − Ax ′‖ < η. (2)

We then have the following:
(i) (Instability with respect to worst-case perturbations) Then the local

ε-Lipschitz constant at y = Ax satisfies

Lε(Ψ, y) := sup
0<‖z−y‖≤ε

‖Ψ(z)−Ψ(y)‖
‖z − y‖ ≥ 1

ε

(
‖x − x ′‖ − 2η

)
, ∀ε ≥ η. (3)

See: Gottschling, Antun, Adcock, and Hansen, 2020. The troublesome kernel: why deep learning for
inverse problems is typically unstable. arXiv:2001.01258.

https://arxiv.org/abs/2001.01258


rNSP =⇒ kernel awareness for sparse vectors

Theorem 4
Suppose the matrix A ∈ Cm×N satisfies the robust null space property (rNSP) or
order s, with constants 0 < ρ < 1 and γ > 0. Then for all s-sparse vectors x , z ∈ CN ,

‖z − x‖l2 ≤
C2

2
‖A(z − x)‖l2

where

C2 =
(3ρ+ 5)γ

1− ρ . (4)

See:
Foucart, S., & Rauhut, H., ‘A Mathematical Introduction to Compressive Sensing ’, birkhäuser, 2013.



Typical compressive sensing theorem

Theorem 5
Let A ∈ Cm×N with m < N and let W ∈ CN×N be unitary. Suppose that AW−1 has
the rNSP of order s with constants 0 < ρ < 1 and γ > 0. Let y = Ax + e and let
0 < λ ≤ C1/(

√
sC2). Then every minimizer x̂ ∈ CN of the problem

min
z∈CN

λ‖Wz‖l1 + ‖Az − y‖l2 (P3)

satisfies

‖x̂ − x‖l2 ≤ 2C1
σs(Wx)l1√

s
+

(
C1√
sλ

+ C2

)
‖e‖l2 ,

where C1 and C2 are the constants in (4), and

σs(z)l1 := inf{‖z − t‖l1 : t is a s-sparse vector}

denotes the distance to a s-sparse vector.



Do the matrices that we use in imaging have the robust

null space property?



Example 1: Binary imaging

Examples: Fluorescence microscopy and single-pixel imaging

Light

Object

DMD
Sensor

DMD



Example 1: Binary imaging – Walsh-Hadamard sampling

Three different ordering of the Hadamard matrix Uhad ∈ RN×N .

We select a subset Ω ⊂ {1, . . . ,N}, |Ω| = m, of the rows PΩUhad.



Example 2: Fourier Sampling – MRI

Many sampling modalities can be modeled by the Fourier transform

F f (ω) =

∫

[0,1]2

f (t)e−2πiω·t dt,

We discretize this integral to get a linear system

F f (ω1, ω2) ≈
N−1∑

k=0

N−1∑

j=0

xj ,k
1

N
e2πi(ω1j+ω2k)/N

where xj ,k = f (k/N, l/N) and ω = (ω1, ω2) ∈ {−N/2 + 1, . . . ,N/2}2. We write this
system as

y = Udftx

where Udft ∈ CN2×N2
is the Fourier matrix. This matrix is unitary.



The matrix PΩU with Ω = {2, 4, 5, 6, 8}



Example 2: Fourier Sampling – MRI

Let A = PΩF and y = Ax .

Original x Sampling pattern Ω Adjoint: A∗y



Sparse regularization in imaging

I Given the linear system
Ux0 = y .

I Solve
min
z∈CN

λ‖z‖l1 + ‖PΩUz − PΩy‖l2 (P3)

I In imaging we use for example U = UdftU
−1
dwt

Original image 5% of the w. coeff. Compressed image

d = U−1
dwtx0 P

Ω̃
x0 d̃ = U−1

dwtPΩ̃
x0



Sparse regularization in imaging

I Given the linear system
Ux0 = y .

I Solve
min
z∈CN

λ‖z‖l1 + ‖PΩUz − PΩy‖l2

where PΩ is a projection and Ω ⊂ {1, . . . ,N} is subsampled with |Ω| = m.

Traditional idea: If U is unitary, Ω is chosen uniformly at random and

m & N · µ(U) · s · L(ε−1, s,N)

then with probability 1− ε, PΩU has the robust null space property (rNSP) of order s
(with certain constants). Here

µ(U) := max
i ,j
|Ui ,j |2 ∈ [1/N, 1]

is referred to as the incoherence parameter and L(ε−1, s,N) is a polylogarithmic factor.



Uniform Random Subsampling

U = UdftV
−1
dwt.

5% subsamp-map Reconstruction Enlarged



Sparsity

I The classical idea of sparsity in sparse regularization is that there are s important
coefficients in the vector x0 that we want to recover.

I The location of these coefficients is arbitrary.



The Flip Test and the rNSP
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Figure from: Bastounis, A. & H. C, Anders Christian (2017). On the absence of uniform recovery in
many real-world applications of compressed sensing and the restricted isometry property and nullspace
property in levels. SIAM Journal of Imaging Sciences.



Sparsity - The Flip Test

1 2 3 4 5 6 7 8 9 10
0
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Truncated (max = 151.58)

Figure: Wavelet coefficients and subsampling reconstructions from 10% of Fourier coefficients with distributions (1 + ω2
1 + ω2

2 )−1 and

(1 + ω2
1 + ω2

2 )−3/2.

If sparsity is the right model we should be able to flip the coefficients. Let

zf =
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Sparsity- The Flip Test: Results

Rec. not flipped coeff. Rec. flipped coeff.

Conclusion: The ordering of the coefficients did matter. Moreover, this phenomenon happens
with all wavelets, curvelets, contourlets and shearlets and any reasonable subsampling scheme.

Question: Is sparsity really the right model?



The Flip Test and the rNSP

CS reconstr. CS reconstr, w/ flip Subsampling
coeffs. pattern

2048, 12%

UdftV
−1
dwt

Magnetic
Resonance
Imaging

2048, 97%

UdftV
−1
dwt

Magnetic
Resonance
Imaging



Sparsity - The Flip Test

CS reconstr. CS reconstr, w/ flip Subsampling
coeffs. pattern

512, 20%

UHadV
−1
dwt

Fluorescence
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1024, 12%

UHadV
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dwt

Compressive
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Hadamard
Spectroscopy



Sparsity - The Flip Test (contd.)

CS reconstr. CS reconstr, w/ flip Subsampling
coeffs. pattern

1024, 20%

UdftV
−1
dwt

Magnetic
Resonance
Imaging
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Electron
Microscopy



Sparsity - The Flip Test (contd.)

CS reconstr. CS reconstr, w/ flip Subsampling
coeffs. pattern

1024, 10%

UdftV
−1
dwt

Radio
interferometry



The Flip Test and the rNSP

Matrix method rNSP
DFT ·DWT−1 HAD ·DWT−1

Problem

MRI 3 7 7
Tomography 3 7 7
Spectroscopy 3 7 7
Electron microscopy 3 7 7
Radio interferometry 3 7 7
Fluorescence microscopy 7 3 7
Lensless camera 7 3 7
Single pixel camera 7 3 7
Hadamard spectroscopy 7 3 7

Table: A table displaying various applications of compressive sensing. For each application, a
suitable matrix is suggested along with information on whether or not that matrix has the rNSP
of a sufficiently large order s.



Sparse regularization in imaging

I Given the linear system
Ux0 = y .

I Solve
min
z∈CN

λ‖z‖l1 + ‖PΩUz − PΩy‖l2

where PΩ is a projection and Ω ⊂ {1, . . . ,N} is subsampled with |Ω| = m.

Traditional idea: If U is unitary, Ω is chosen uniformly at random and

m & N · µ(U) · s · L(ε−1, s,N)

then with probability 1− ε, PΩU has the robust null space property (rNSP) of order s
(with certain constants). Here

µ(U) := max
i ,j
|Ui ,j |2 ∈ [1/N, 1]

is referred to as the incoherence parameter and L(ε−1, s,N) is a polylogarithmic factor.



What kind of structure do we have?

DFT ·DWT−12 DFT ·DWT−110 HAD ·DWT−1Haar

The three images display the absolute values of various sensing matrices. A lighter
colour represents larger absolute values. Here DFT is the Discrete Fourier Transform,
HAD the Hadamard transform and DWT−1N the Inverse Wavelet Transform
corresponding to Daubechies wavelets with N vanishing moments.



Reading material

I Adcock, B., & Hansen, A. C., ‘Compressive Imaging: Structure, Sampling,
Learning ’, Cambridge University Press, 2021 (to appear).
https://www.compressiveimagingbook.com

I Bastounis, A., Adcock, B., & Hansen, A. C. (2017). ‘From global to local:
Getting more from compressed sensing ’. SIAM News, Oct.

I Adcock, B., Hansen, A. C., Poon, C., & Roman, B. (2017). ‘Breaking the
coherence barrier: A new theory for compressed sensing ’. In Forum of
Mathematics, Sigma (Vol. 5). Cambridge University Press.

I Adcock, B., Antun, V., & Hansen, A. C. (2019). ‘Uniform recovery in
infinite-dimensional compressed sensing and applications to structured binary
sampling ’. arXiv:1905.00126.

I Roman, B., Hansen, A., & Adcock, B. (2014). ‘On asymptotic structure in
compressed sensing ’.arXiv:1406.4178.

https://www.compressiveimagingbook.com


Sparsity in levels

Definition 6 (Sparsity in levels)

Let M = (M1, . . . ,Mr ) ∈ Nr , where 1 ≤ M1 < · · · < Mr = N, and
s = (s1, . . . , sr ) ∈ Nr

0, where sk ≤ Mk −Mk−1 for k = 1, . . . , r and M0 = 0. A vector
x ∈ CN is (s,M)-sparse in levels if

|supp(x) ∩ {Mk−1 + 1, ...,Mk}| ≤ sk , k = 1, ..., r .

The total sparsity is s = s1 + ...+ sr . We denote the set of (s,M)-sparse vectors by
Σs,M. We also define the following measure of distance of a vector x to Σs,M by

σs,M(x)l1w = inf{‖x − z‖l1w : z ∈ Σs,M}.

Here ‖z‖l1w :=
∑N

j=1 wj |zj |, is the weighted l1-norm for positive weights {wj}.



Sparsity - The Flip Test in Levels

Let

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

x105

Truncated (max = 151.58)

denote the vector of the wavelet coefficients. Let zLf denote the flipped version of z
where the flipping of coefficients only happens within the levels.



Sparsity - The Flip Test in Levels

I Let
ỹ = UdftU

−1
dwtz

L
f

I Solve
min
z∈CN

λ‖z‖l1 + ‖PΩUdftU
−1
dwtz − PΩỹ‖l2 (P3)

to get ẑLf .

I Flip the coefficients of ẑLf back to get ẑ , and let x̂ = U−1
dwtẑ .



The Flip Test in levels

CS reconstr. CS rec., w/ flip (levels) Subsampling
coeffs. pattern

2048, 12%

UdftV
−1
dwt

Magnetic
Resonance
Imaging

2048, 97%

UdftV
−1
dwt

Magnetic
Resonance
Imaging



The Flip Test in levels

CS reconstr. CS rec., w/ flip (levels) Subsampling
coeffs. pattern

2048, 12%

UHadV
−1
dwt

Fluorescence
microscopy

2048, 27.5%

UdftV
−1
dwt

Tomography



The weighted Robust Nullspace Property in Levels (wrNSPL)

Definition 7 (wrNSP in levels)

Let (s,M) be local sparsities and sparsity levels respectively. For weights {wj}Nj=1

(wj > 0), we say that A ∈ Cm×N satisfies the weighted robust null space property in
levels (wrNSPL) of order (s,M) with constants 0 < ρ < 1 and γ > 0 if for any (s,M)
support set Ω,

‖PΩx‖l2 ≤
ρ‖PΩcx‖l1w√

ξ
+ γ‖Ax‖l2 , for all x ∈ CN .



Some key points so far . . .

I In general no NN can solve the problems (Pj), j = 1, 2, 3 for arbitrary input, but if
A has the rNSP or wrNSPL we can.

I The assumption of sparsity and uniformly random subsampling is too general to
explain the success of sparse regularization in imaging. Additional structure is
needed!

I The wrNSPL provide sufficient conditions for kernel awareness for images which are
sparse in wavelets.

I By sampling in a structured way we can achieve the wrNSPL.



Fast Iterative REstarted NETworks

(FIRENETs)



The model

Definition [Sparsity in levels]: Let M = (M1, . . . ,Mr ) ∈ Nr , where 1 ≤ M1 < · · · <
Mr = N, and s = (s1, . . . , sr ) ∈ Nr

0, where sk ≤ Mk − Mk−1 for k = 1, . . . , r and
M0 = 0. A vector x ∈ CN is (s,M)-sparse in levels if

|supp(x) ∩ {Mk−1 + 1, ...,Mk}| ≤ sk , k = 1, ..., r .

The total sparsity is s = s1 + ...+ sr . We denote the set of (s,M)-sparse vectors by
Σs,M. We also define the following measure of distance of a vector x to Σs,M by

σs,M(x)l1w = inf{‖x − z‖l1w : z ∈ Σs,M}.

For simplicity, assume sk > 0 and l1w weights constant in each level:

wi = w(j), if Mj−1 + 1 ≤ i ≤ Mj .



Kernel awareness: the robust nullspace property

Definition [weighted rNSP in levels]: Let (s,M) be local sparsities and sparsity
levels respectively. For weights {wi}Ni=1 (wi > 0), we say that A ∈ Cm×N satisfies the
weighted robust null space property in levels (weighted rNSPL) of order (s,M) with
constants 0 < ρ < 1 and γ > 0 if for any (s,M) support set ∆,

‖x∆‖l2 ≤
ρ‖x∆c‖l1w√

ξ
+ γ‖Ax‖l2 , for all x ∈ CN .



The goal of this section

Simplified version of Theorem: We provide an algorithm such that:

Input: Sparsity parameters (s,M), weights {wi}Ni=1, A ∈ Cm×N (with the input A
given by {Al}) satisfying the rNSPL with constants 0 < ρ < 1 and γ > 0,
n ∈ N and positive {δ, b1, b2}.

Output: A neural network φn with O(n) layers and the following property.

For any x ∈ CN and y ∈ Cm with

σs,M(x)l1w︸ ︷︷ ︸
distance to sparse in levels vectors

+ ‖Ax − y‖l2︸ ︷︷ ︸
noise of measurements

. δ, ‖x‖l2 . b1, ‖y‖l2 . b2,

we have the following stable and exponential convergence guarantee in n

‖φn(y)− x‖l2 . δ + e−n.



Comments

I Strategy: restarted & reweighted unrolling of primal-dual algorithm applied to:

(P3) argminx∈CN FA
3 (x , y , λ) := λ‖x‖l1w + ‖Ax − y‖l2 .

I As well as stability, rNSPL allows exponential convergence.

I Even ignoring stability, naive unrolling of iterative methods only gives slow
convergence O(δ + n−1) (and in certain regimes O(δ + n−2)).

I If we do not know ρ or γ (constants for rNSPL), can perform log-scale grid search
for suitable parameters (increase number of layers by a factor of log(n)).
Sometimes (see below) we know ρ and γ with probabilistic bounds.



Precise definition of neural network

φ : Cm → CN s.t. φ(y) = VT (ρT−1(...ρ1(V1(y)))), and

I Each Vj is an affine map CNj−1 → CNj given by Vj(x) = Wjx + bj(y) where
Wj ∈ CNj×Nj−1 and the bj(y) = Rjy + cj ∈ CNj are affine functions of the input y .

I Each ρj : CNj → CNj is one of two forms:

(i) Ij ⊂ {1, ...,Nj} s.t. ρj applies fj : C→ C element-wise on components with indices in Ij :

ρj(x)k =

{
fj(xk), if k ∈ Ij

xk , otherwise.

(ii) fj : C→ C s.t. after decomposing the input vector x as (x0,X
>,Y>)> for scalar x0,

X ∈ Cmj , Y ∈ CNj−1−mj ,

ρj :



x0

X
Y


→




0
fj(x0)X

Y


 .



Precise definition of neural network



x0

X
Y


→



fj(x0)
X
Y


→




fj(x0)1
X

fj(x0)1 + X
Y




→




fj(x0)21
X 2

[fj(x0)1 + X ]2

Y




→




0
1
2

[
[fj(x0)1 + X ]2 − fj(x0)21− X 2

]
= fj(x0)X

Y


 .



Precise definition of neural network

I Recall that we assume knowledge Al ∈ Q[i ]m×N such that

‖Al − A‖ ≤ 2−l , ∀l ∈ N.

I Our nonlinear activation functions will be built using square roots. We assume that
we have access to a routine “sqrtθ” such that |sqrtθ(x)−√x | ≤ θ.

I An interpretation of θ: numerical stability, or accumulation of errors, of the forward
pass of the NN. A key point is that θ doesn’t need to be small.

For brevity, will ignore these points in presentation below.



Step 1: Preliminary constructions

ψ0
β(x) = max

{
0, 1− β

‖x‖l2

}
x , ψ1(x) = min

{
1,

1

‖x‖l2

}
x .

Lemma: Let M ∈ N, β ∈ Q>0 and θ ∈ Q>0. Then there exists NNs φ0
β,θ, φ

1
θ with

T = 3 s.t. ∥∥φ0
β,θ(x)− ψ0

β(x)
∥∥
l2
≤ θ,

∥∥φ1
θ(x)− ψ1(x)

∥∥
l2
≤ θ.

E.g. φ0
β,θ : x

L−→
(
x
x

)
NL−−→




|x1|2
|x2|2

...
|xM |2
x




L−→
(∑M

j=1 |xj |2
x

)
NL−−→




0

max

{
0, 1− β

sqrtθ(‖x‖2
l2

)

}
x




L−→ max

{
0, 1− β

sqrtθ(‖x‖2
l2

)

}
x .



Step 1: Preliminary constructions

Lemma: Let s, θ ∈ Q>0, w ∈ QN
>0 and for x̂ ∈ CN consider the minimisation problem

argminx∈CN ‖x‖l1w + s‖x − x̂‖2
l2 . (5)

Let x̃s(x̂) be the solution of (5). Then, there exists NNs φs,θ (T = 2) s.t.

‖φs,θ(x̂)− x̃s(x̂)‖l2 ≤ θ‖w‖l2 .

Proof.
Fun exercise in algorithm unrolling!



Step 2: Unrolling primal-dual iterations

X ,Y finite-dimensional real vectors spaces, K : X → Y linear

min
x∈X

max
y∈Y
〈Kx , y〉+ G (x)− F ∗(y)

For convex H : Z → [0,∞], define

(I + τ∂H)−1(w) = argminzH(z) +
‖z − w‖2

l2

2τ

If easy to compute for H = G ,F , then iterate updates of primal and dual variables.

Chambolle, A. and Pock, T., 2011. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of mathematical imaging and vision, 40(1), pp.120-145.



Step 2: Unrolling primal-dual iterations

122 J Math Imaging Vis (2011) 40: 120–145

Algorithm 1

• Initialization: Choose τ, σ > 0, θ ∈ [0,1], (x0, y0) ∈ X × Y and set x̄0 = x0.
• Iterations (n ≥ 0): Update xn, yn, x̄n as follows:

⎧
⎪⎪⎨

⎪⎪⎩

yn+1 = (I + σ∂F ∗)−1(yn + σKx̄n)

xn+1 = (I + τ∂G)−1(xn − τK∗yn+1)

x̄n+1 = xn+1 + θ(xn+1 − xn)

(7)

Then, as soon as B1 × B2 contains a saddle-point (x̂, ŷ),
defined by (2), we have

GB1×B2(x, y) ≥ (〈
ŷ,Kx

〉− F ∗(ŷ) + G(x)
)

− (〈
y,Kx̂

〉− F ∗(y) + G(x̂)
)≥ 0.

However, this is not a good measure of optimality, in partic-
ular, it might vanish for (x, y) which is not a saddle-point.
What is easy to check is that if GB1×B2(x, y) = 0 and (x, y)

lies in the interior of B1 × B2, then it is a saddle-point. In
practice, if B1 and B2 are “large enough”, the gap will mea-
sure the optimality (thanks to point (a) in the following theo-
rem), an important issue being that the constants will depend
on these (large) unknown sets. See also Remark 3 below. In
the general case we have the following result:

Theorem 1 Let L = ‖K‖ and assume problem (2) has
a saddle-point (x̂, ŷ). Choose θ = 1, τσL2 < 1, and let
(xn, x̄n, yn) be defined by (7). Then:

(a) For any n, (xn, yn) remains bounded, indeed:

‖yn − ŷ‖
2σ

2

+ ‖xn − x̂‖
2τ

2

≤ C

(‖y0 − ŷ‖
2σ

2

+ ‖x0 − x̂‖
2τ

2)
(8)

where the constant C ≤ (1 − τσL2)−1;
(b) If we let xN = (

∑N
n=1 xn)/N and yN = (

∑N
n=1 yn)/N ,

for any bounded B1 × B2 ⊂ X × Y the restricted gap
has the following bound:

GB1×B2(xN , yN) ≤ D(B1,B2)

N
, (9)

where

D(B1,B2) = sup
(x,y)∈B1×B2

‖x − x0‖
2τ

2

+ ‖y − y0‖
2σ

2

.

Moreover, the weak cluster points of (xN , yN) are
saddle-points of (2);

(c) There exists a saddle-point (x∗, y∗) such that xn → x∗
and yn → y∗.

Remark 1 Points (a) and (b) would still hold in an infi-
nite dimensional Hilbert setting, as can be checked from the
proofs.

Proof Let us first write the iterations (7) in the general form

{
yn+1 = (I + σ∂F ∗)−1(yn + σKx̄)

xn+1 = (I + τ∂G)−1(xn − τK∗ȳ).
(10)

We have

∂F ∗(yn+1) 
 yn − yn+1

σ
+ Kx̄

∂G(xn+1) 
 xn − xn+1

τ
− K∗ȳ

so that for any (x, y) ∈ X × Y ,

F ∗(y) ≥ F ∗(yn+1) +
〈
yn − yn+1

σ
,y − yn+1

〉

+ 〈
Kx̄, y − yn+1

〉

G(x) ≥ G(xn+1) +
〈
xn − xn+1

τ
, x − xn+1

〉

− 〈
K(x − xn+1), ȳ

〉
.

(11)

Summing both inequalities, it follows:

‖y − yn‖
2σ

2

+ ‖x − xn‖
2τ

2

≥
[〈

Kxn+1, y
〉
− F ∗(y) + G(xn+1)

]

−
[〈

Kx,yn+1
〉
− F ∗(yn+1) + G(x)

]

+ ‖y − yn+1‖
2σ

2

+ ‖x − xn+1‖
2τ

2

+ ‖yn − yn+1‖
2σ

2

+ ‖xn − xn+1‖
2τ

2

+
〈
K(xn+1 − x̄), yn+1 − y

〉

−
〈
K(xn+1 − x), yn+1 − ȳ

〉
. (12)

We can use previous constructions for the proximal maps!
⇒ unrolled primal-dual iterations

Chambolle, A. and Pock, T., 2016. On the ergodic convergence rates of a first-order primal–dual
algorithm. Mathematical Programming, 159(1-2), pp.253-287.



Step 2: Unrolling primal-dual iterations

Theorem: Suppose LA ≥ 1 is an upper bound for ‖A‖, and that τ, σ > 0 are such that
τσL2

A < 1. Let p ∈ N, then there exists an algorithm that constructs a sequence of neural
networks φAp,λ (each with T = O(p)) such that:

(i) φAp,λ : Cm+N → CN takes an input y ∈ Cm and an initial guess x0 ∈ CN .

(ii) For any inputs y ∈ Cm and x0 ∈ CN , and for any x ∈ CN ,

λ‖φAp,λ(y , x0)‖l1w + ‖AφAp,λ(y , x0)− y‖l2︸ ︷︷ ︸
FA

3 (φAp,λ(y ,x0),y ,λ)

−λ‖x‖l1w − ‖Ax − y‖l2︸ ︷︷ ︸
−FA

3 (x ,y ,λ)

≤ 1

p

(
‖x − x0‖2

l2

τ
+

1

σ

)
.

(P3) argminx∈CN FA
3 (x , y , λ) := λ‖x‖l1w + ‖Ax − y‖l2 .



Step 3: “Recalling” some compressed sensing results

ξ :=
r∑

k=1

w2
(k)sk , ζ := min

k=1,...,r
w2

(k)sk , κ :=
ξ

ζ
.

rNSPL⇒ ‖z1 − z2‖l2 ≤
2C1√
ξ
σs,M(z2)l1w + 2C2‖Az2 − y‖l2

+
C1

λ
√
ξ

(
λ‖z1‖l1w + ‖Az1 − y‖l2 − λ‖z2‖l1w − ‖Az2 − y‖l2

)
,

(6)

Set G (z1, z2, y) := λ‖z1‖l1w + ‖Az1 − y‖l2 − λ‖z2‖l1w − ‖Az2 − y‖l2 ,
= FA

3 (z1, y , λ)− FA
3 (z2, y , λ)

c(z , y) :=
2C1

C2
√
ξ
· σs,M(z)l1w + 2‖Az − y‖l2 .

Choosing λ ≤ C1/(C2
√
ξ),

‖z1 − z2‖l2 ≤
C1

λ
√
ξ

(c(z2, y) + G (z1, z2, y)) , (7)

which holds for completely general z1, z2 and y .



Step 4: Combine with constructed neural networks

Define the following map from unrolled primal-dual iterations

Hβ
p : Cm × CN → CN , Hβ

p (y , x0) = pβφAp,λ

(
y

pβ
,
x0

pβ

)
.

Use previous theorem (τ, σ ∼ ‖A‖−1) to get

G
(
Hβ
p (y , x0), x , y

)
≤ C3

(‖A‖
p2β
‖x − x0‖2

l2 + ‖Al‖β
)
.

Combine with (7) to get

G
(
Hβ
p (y , x0), x , y

)
≤ C4

p2β
[c(x , y) + G (x0, x , y)]2 + C5‖Al‖β. (8)



Step 5: Perform a reweight and restart

Idea: Balance the two terms in (8) so that every p iterations we have errors decreasing
by a constant factor (up to δ). Optimal parameters give

ε0 ≈ b2, εn = e−1(δ + εn−1), βn =
εn

2‖A‖ .

φn(y , x0) = Hβn
p (y , φn−1(y , x0))

⇒ G (φn(y , x0), x , y) ≤ εn . δ + e−n

Combining this with (6), we obtain (for x0 = 0)

‖φn(y)− x‖l2 . σs,M(x)l1w︸ ︷︷ ︸
distance to sparse in levels vectors

+ ‖Ax − y‖l2︸ ︷︷ ︸
noise of measurements

+δ + e−n︸︷︷︸
“convergence” error

.

�



22 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

Algorithm 1: FIRENETcomp constructs a FIRENET which corresponds to n iterations of InnerIt with
a rescaling scheme. We write the output as the map φn to emphasise that FIRENETcomp defines a NN.
InnerIt performs p iterations of Chambolle and Pock’s primal-dual algorithm for square-root LASSO
(the order of updates is swapped compared to [37]). The functions ϕs and ψ1 are proximal maps:

[ϕs(x)]j = max

{
0, 1− s

|xj |

}
xj , ψ1(y) = min

{
1,

1

‖y‖l2

}
y.

Both of these are approximated by NNs in our proof.

Function FIRENETcomp(A, p, τ, σ, λ, {wj}Nj=1, ε0, δ, n)

Initiate with φ0 ≡ 0 (other initial vectors can also be chosen).
(NB: ε0 should be of the same order as ‖y‖l2 for inputs y ∈ Cm.)
for k = 1, ..., n do

εk = e−1(δ + εk−1),
βk = εk

2‖A‖

φk(·) = pβk · InnerIt
(
·

pβk
, φk−1(·)

pβk
, A, p, σ, τ, λ, {wj}Nj=1

)

end
return: FIRENET φn : Cm → CN

end

Function InnerIt(y, x0, A, p, τ, σ, λ, {wj}Nj=1)

Set B = diag(w1, ..., wN ) ∈ CN×N .
Initiate with x0 = x0, y0 = 0 ∈ Cm (the superscripts denote indices not powers).
for k = 0, ..., p− 1 do

xk+1 = Bϕτλ(B−1(xk − τA∗yk))
yk+1 = ψ1(yk + σA(2xk+1 − xk)− σy)

end
X =

∑p
k=1

xk

p

return: X ∈ CN (ergodic average of p iterates)
end

The figure shows the expected exponential convergence, as the number of inner iterations increases, of the
objective function values as well as cj to c until the error is of the order ‖c − c∗‖l2 . This corresponds to an
initial phase of exponential convergence, where the υ−n term (with υ = e−1) is dominant in Theorem 5.5,
followed by a plateau to the minimal error ‖c − c∗‖l2 (shown as the dotted line). This plateau occurs due to
inexact measurements (the noise) and the fact that the image does not have exactly sparse wavelet coefficients.
This corresponds to the robust null space property (in levels) only being able to bound the distance ‖c− cj‖l2
up to the same order as ‖c− c∗‖l2 . In other words, we can only accelerate convergence up to this error bound.
The error plateau disappears in the limit of exactly sparse vectors and zero noise (in the limit δ ↓ 0 in Theorem
5.5), and one gains exponential convergence down to essentially machine precision. Finally, the acceleration is
of great practical interest. Rather than the several hundreds (or even thousands) of iterations that are typically
needed for solving compressed sensing optimisation problems with first-order iterative methods, we obtain
optimal accuracy in under 20 iterations. This was found for a range of different images, subsampling rates etc.
The fact that so few layers are needed, coupled with the fast transforms for implementing the affine maps in
the NNs, makes the NNs very computationally efficient and competitive speed-wise with state-of-the-art DL.

7. CONNECTIONS WITH PREVIOUS WORK

The paper touches many different areas of mathematics and AI; thus we have divided the areas into the
following subsections: (i) Computational barriers in DL, foundations and the SCI hierarchy; (ii) Instabilities
in DL; (iii) DL in inverse problems; and (iv) Compressed sensing, optimisation and unrolling of algorithms.



Applications in compressive imaging.
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Image Fourier Sampling Walsh Sampling

FIGURE 7. Left: The true image. Middle: Reconstruction from noisy Fourier measure-
ments. Right: Reconstruction from noisy Walsh measurements. Both images were recon-
structed using only a 15% sampling rate according to the sampling patterns in Figure 6 and
n = p = 5. The top row shows the full image and the bottom row shows a zoomed in section
(corresponding to the red boxes in the top row).

0 10 20 30 40 50 60

10
-4

10
-3

10
-2

10
-1

10
0

Convergence, Fourier Sampling

0 10 20 30 40 50 60

10
-4

10
-3

10
-2

10
-1

10
0

Convergence, Walsh Sampling

FIGURE 8. The convergence of the algorithm in the number of inner iterations. The dashed
line shows the relative error for the solution set of (P3). In both cases, the error between
the reconstruction and the image decreases exponentially until this bound is reached. The
objective function gap decreases exponentially slightly beyond this point, demonstrating that
the robust null space property (in levels) controls the l2-norm difference between vectors
(locally around c∗) down to the error ‖c− c∗‖l2 (see the bound (9.18) in our proof).

Figure: Images corrupted with 2% Gaussian noise and reconstructed using only 15% sampling
with n = p = 5.
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Fourier sampling regions Walsh sampling regions
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Figure: The different sampling regions used for the sampling patterns for Fourier (left, r 
= 3) and Walsh (right, r = 4). The axis labels correspond to the frequencies in each band 
and the annular regions are shown as the shaded greyscale regions.

• (b) In the Walsh case

mk & κ(s,M, w) · MW(s,k) · L. (5.10)

Then with probability at least 1−εP,A satisfies the weighted rNSPL of order (s,M) with constants ρ = 1/2 and
γ =
√

2. The conclusion of Theorem 5.5 then holds for the uniform recovery of the Haar wavelet coefficients

x = Ψc ∈ CN . (5.11)

Moreover, for any δ ∈ (0, 1), let J (δ, s,M, w) be the collection of all y ∈ Cm such that y = PIDV c + e

where

‖c‖l2 ≤ 1, max

{
σs,M(Ψc)l1w√

ξ
, ‖e‖l2

}
≤ δ. (5.12)

Then we can construct, via an algorithm, a neural network φ ∈ ND,3n+1,3 such that with probability at least
1− εP,

‖φ(y)− c‖l2 . κ1/4δ, ∀y = PIDV c+ e ∈ J (δ, s,M, w). (5.13)

The network parameters are

D = (m, 2N +m, 2(N +m), 2N +m+ 1︸ ︷︷ ︸
n times

, N),

where

n ≤
⌈
log
(
δ−1Z

)
κ1/4Z

⌉
. (5.14)

The sampling conditions (5.9) and (5.10) are optimised by minimising κ(s,M, w). Up to a constant scale,
this corresponds to the choice w(j) =

√
s/sj and

n =

⌈
log

(
δ−1 max

j=1,...,r

√
max

{
1,
Mj −Mj−1

rsj

})
r1/4 max

j=1,...,r

√
max

{
1,
Mj −Mj−1

rsj

}⌉
.

Up to log-factors, the measurement condition then becomes equivalent to that for the currently best known
oracle estimator (where one assumes apriori knowledge of the support of the vector) [4, Prop. 3.1]. In the
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The main result of this section

Theorem
Let εP ∈ (0, 1) and L = log3(N) · log(m) · log2 (s · log(N)) + log(ε−1

P ). Suppose:
I (a) In the Fourier case: mk &MF (s, k) · L.
I (b) In the Walsh case: mk &MW(s, k) · L.

For δ ∈ (0, 1), let J (δ, s,M,w) be collection of all y ∈ Cm with y = Ac + e where

‖c‖l2 ≤ 1, max

{
σs,M(Ψc)l1w√

ξ
, ‖e‖l2

}
≤ δ.

We provide an algorithm that computes a neural network φ with O(log(δ−1)) layers
s.t. with probability at least 1− εP,

‖φ(y)− c‖l2 . δ, ∀y = Ac + e ∈ J (δ, s,M,w).



MF (s, k) :=

‖k‖l∞∑

j=1

sj

d∏

i=1

2−|ki−j | +
r∑

j=‖k‖l∞+1

sj2
−2(j−‖k‖l∞ )

d∏

i=1

2−|ki−j |

MW(s, k) := s‖k‖l∞

d∏

i=1

2−|ki−‖k‖l∞ |.



Remarks

I Up to log-factors, measurement condition equivalent to the currently best-known
oracle estimator (where one assumes apriori knowledge of the support of the vector).

I Consider number of samples per annular region

mk =
∑

‖k‖l∞=k

mk, k = 1, . . . , r ,

then up to logarithmic factors and exponentially small terms, sk measurements are
needed in each region.

Take home message: Using the above machinery, we get optimal recovery in terms of
the number of samples needed and only need O(log(δ−1)) many layers!!



Numerical experiments.
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Original x |x+ r1| |x+ r2| |x+ r3|

Ψ(A(x)) Ψ(A(x+ r1)) Ψ(A(x+ r2)) Ψ(A(x+ r3))

FIGURE 1. (Unstable neural network in image reconstruction). The neural network AU-
TOMAP (Nature (2018) [153]) represents the tip if the iceberg of DL in inverse problems.
The paper promises that one can “... observe superior immunity to noise...”. Moreover,
the follow-up announcement (Nature Methods “AI transforms image reconstruction,” [136])
proclaims: “A deep-learning-based approach improves speed, accuracy and robustness of
biomedical image reconstruction”. However, the figure shows |x+ rj |, where x is the origi-
nal image and the rjs are perturbations meant to simulate worst-case effect, as well as the that
AUTOMAP reconstruction Ψ(A(x+ rj)) from the subsampled Fourier MRI data A(x+ rj)

(here A ∈ Cm×N is a subsampled Fourier transform, see §4 for details) concluding that this
network is completely unstable. Note that the condition number cond(AA∗) = 1, so the
instabilities are not caused by poor condition. As demonstrated in [14], this is a universal
phenomenon in DL for inverse problems. Experimental details are given in §4.

a program on the foundations on AI, similar to Hilbert’s program, is needed, where impossibility results are
provided in order to establish the boundaries of DL and AI.

Note that such a program is already suggested in Smale’s 18th problem, from the list of mathematical
problems for the 21st century [132], which echoes Turing’s paper from 1950 [145] on the question: what is
AI? Turing asks if a computer can think, and suggests the imitation game as a test for his question about AI.
Smale takes the question even further and asks in his 18th problem:

“What are the limits of intelligence, both artificial and human?”
— Smale’s 18th problem (from the list of mathematical problems for the 21st century [132])

The question is followed by a discussion on the problem that ends as follows: “Learning is a part of human
intelligent activity. The corresponding mathematics is suggested by the theory of repeated games, neural
nets and genetic algorithms.” Given the recent unprecedented developments in DL and NNs [98], and the
impact these developments may have on AI, it is timely to consider Smale’s 18th problem. We interpret the
words “artificial intelligence” as the current state-of-the-art AI for which DL is essential. Our results provide
foundations for Smale’s 18th problem as they imply a potentially vast classification theory for determining the
limits of what DL can achieve. Importantly, this classification theory cannot be determined by the extensive
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Original x |x+ v1| |x+ v2| |x+ v3|

Φ(A(x)) Φ(A(x+ v1)) Φ(A(x+ v2)) Φ(A(x+ v3))

FIGURE 2. (The FIRENET is stable to worst-case perturbations). Using the same
method as in Figure 1, we compute perturbations vj in the image domain, to simulate worst-
case effect for the FIRENET Φ: Cm → CN . Here x and A ∈ Cm×N are the same image
and sampling matrix as in Figure 1. Moreover, for each j = 1, 2, 3 we have ensured that
‖vj‖l2 ≥ ‖rj‖l2 , where the rj’s are the perturbations from Figure 1 (we have denoted the
perturbations for FIRENET by vj to emphasise the fact that these adversarial perturbations
are sought for the new NNs and have nothing to do with the perturbations in Figure 1). In
the top row, we see the perturbed images |x + vj |, j = 0, 1, 2, 3 (assuming v0 = 0), and
in the bottom row, we see the network’s reconstruction from the perturbed measurements
A(x+ vj). Experimental details are given in §4.

collection of non-constructive existence theorems (à la universal approximation theorems) for NNs that have
flourished over the last decades.

1.2. Summary of the main results. Our main results demonstrate that there are fundamental barriers prevent-
ing NNs, despite their existence, from being computed by algorithms. This helps shed light on the intricate
question on why current algorithms in DL produce unstable networks despite the fact that stable NNs often ex-
ist in the particular application. Indeed, our results demonstrate that there is a rich and unknown classification
theory on which types of stable NNs can be computed by algorithms. The techniques for proving the barri-
ers below stem from the Solvability Complexity Index (SCI) hierarchy – that has recently been used to settle
longstanding questions in scientific computing [21, 25–27, 51–53, 82] – and that generalises the fundamental
problems of S. Smale on existence of algorithms [31,32,129–131] and the work by C. McMullen [108,109,133]
and P. Doyle & C. McMullen [63].

(I) (Neural networks may exist, but cannot be computed, even for well-conditioned problems). The answer
to the above Question I is, in general, ‘no’, even for well-conditioned problems. Mappings that take training
data to NNs may exist, however, no algorithm that computes the NN from the training data exists. This
statement is made precise in Theorems 2.1 and 2.2, and is valid for any model of computation.

(II) (Randomised algorithms do not help in solving the issue). The answer to Question I is still ‘no’ for any
randomised algorithm. That is, as Theorem 2.2 reveals, replacing a deterministic algorithm with a randomised
algorithm will not yield the desired error with probability better than coin-flipping.
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|x+ r3| Ψ(ỹ), ỹ = A(x+ r3) Φ (ỹ,Ψ(ỹ))

FIGURE 3. (Adding a few FIRENET layers at the end of AUTOMAP makes it stable).
The FIRENET Φ: Cm × CN → CN takes as input measurements y ∈ Cm and an initial
guess for x, which we call x0 ∈ CN . We now concatenate a 25-layer (p = 5, n = 5)
FIRENET Φ and the AUTOMAP network Ψ: Cm → CN , by using the output from AU-
TOMAP as initial guess x0, i.e., we consider the neural network mapping y 7→ Φ(y,Ψ(y)).
In this experiment we consider the perturbed image x+ r3 from Figure 1 and the perturbed
measurements ỹ = A(x + r3) (here A is as in Figure 1). As can be seen from the figure,
the new network is stable with respect to AUTOMAP’s worst-case perturbation r3. Note
that in all other experiments we use the initial guess x0 = 0, and consider Φ as a mapping
Φ: Cm → CN .

The problem (4.1) seeks perturbations in the image domain since this provides an easy way to compare the
original image and deduce whether the reconstruction of the perturbed image is acceptable/unacceptable. Of
course, we could have just as easily considered perturbations in the sampling domain instead.

The non-concavity of the objective function in (4.1) means that finding a global maximiser of (4.1) is
very difficult (if not impossible), even for small values of m and N . The test aims to locate local maxima
of (4.1) by using a gradient search method. A natural method to find local maxima is gradient ascent with
momentum. This uses the gradient of Qφy (which can easily be written down) along with two parameters
γ > 0 (the momentum) and η > 0 (the learning rate) in each step towards a local maximum. Namely, r(0) is
initialised randomly and then we update the perturbation at the jth step via v(j + 1) = γv(j) + η∇rQφy (r(j))

and r(j + 1) = r(j) + v(j + 1). The final perturbation is taken after M steps, where typically we run 10-
100 steps, seeking the perturbation which causes the worst reconstructed image. Just as in the case when
training NNs using stochastic gradient descent with momentum, choosing the parameters γ and η is an art of
engineering, and the optimal choices of γ, η are based on empirical testing.

Worst-case (adversarial) perturbations for AUTOMAP and FIRENETs – Figure 1 in the introduction
shows the algorithm applied to the AUTOMAP [153] network used for MRI reconstruction with 60% subsam-
pling. The network weights are provided by the authors of [153] and had been trained on de-identified brain
images from the MGH–USC HCP dataset [65], where the image measurements y = Ax+ewere contaminated
with small Gaussian noise e. The image x seen in Figure 1 is taken from the mentioned dataset, the algorithm
is run on the AUTOMAP network to find a sequence of perturbations |r1| < |r2| < |r3|. In order to illustrate
the smallness of the perturbations, we have visualised |x+ rj | in the first row of Figure 1. As can be seen from
the second row in the figure, the network reconstruction completely deforms the image and the reconstruction
is severely unstable (similar results for other networks are demonstrated in [14]).

In contrast, we have applied the same algorithm, but now for the new NNs (FIRENETs) reported in this
paper. Figure 2 shows the algorithm applied to the constructed FIRENETs described by Theorems 5.5 and
5.10 (we have renamed the perturbations vj to emphasise the fact that these perturbations are sought for the
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|x1 + v1| |x2 + v2| |x3 + v3|

Φ(A(x1 + v1)) Φ(A(x2 + v2)) Φ(A(x3 + v3))

FIGURE 4. (FIRENET withstand worst-case perturbations and generalises well). To
show that FIRENET generalises well and are stable, we consider three different images xj ,
j = 1, 2, 3. For each image xj we compute a perturbation vj meant to simulate worst-
case effect for a FIRENET Φ with n = 5 and p = 5. The first row shows the perturbed
images xj + vj , whereas the second row shows the FIRENET reconstructions from data
A(xj + vj). Here A ∈ Cm×N is a subsampled discrte Fourier transform with m/N = 0.25

and N = 2562. The perturbations vj have magnitude ‖Avj‖l2/‖Axj‖l2 ≥ 0.05 in the
measurement domain.

new NNs and have nothing to do with the adversarial perturbations in Figure 1). We now see that despite the
search for adversarial perturbations, the reconstruction remains stable. The error in the reconstruction was
also found to be at most of the same order of the perturbation (as expected from the stability in Theorems 5.5
and 5.10). In applying the test to FIRENETs, we tested/tuned the parameters in the gradient ascent algorithm
considerably (much more so than was needed for applying the test to AUTOMAP, where finding instabilities
was straightforward) in order to find the worst reconstruction results, yet the reconstruction remained stable.
Finally, it should be mentioned that this search algorithm is just one form of test and it is likely that there
are many other tests for creating instabilities for NNs for inverse problems. This highlights the importance of
results such as Theorems 5.5 and 5.10, which guarantee stability regardless of the perturbation.

Stabilising unstable NNs with FIRENETs – Our NNs also act as a stabiliser. For example, Figure 3 shows
the adversarial example for AUTOMAP (taken from Figure 1), but now shows what happens when we take the
reconstruction from AUTOMAP as an input to our FIRENETs. Here we are using the fact that we can view
our networks as approximations of unrolled (or unfolded) and restarted iterative methods, allowing us to use
the output of AUTOMAP as the initial image for the reconstruction. We see that FIRENETs fix the output of
AUTOMAP and stabilise the reconstruction.



Stability and accuracy, and false negative

Original x Original Original + detail (x + h1)
(full size) (cropped, red frame) (cropped, blue frame)



U-net trained without noise

Orig. + worst-case noise Rec. from worst-case noise Rec. of detail



U-net trained with noise

Orig. + worst-case noise Rec. from worst-case noise Rec. of detail



FIRENET

Orig. + worst-case noise Rec. from worst-case noise Rec. of detail



Final question: How do we optimally traverse the stability & accuracy trade-off?

FIRENETs provide a balance but are likely not the end of the story.

Answering this question will require a foundations framework for AI.

Hopefully we’ve inspired you to build on these results and take up the challenge!



Extra slides.



Multilevel random subsampling

Definition [Multilevel random subsampling]: Let N = (N1, . . . ,Nl) ∈ Nl , where
1 ≤ N1 < · · · < Nl = N and m = (m1, . . . ,ml) ∈ Nl with mk ≤ Nk − Nk−1 for
k = 1, . . . , l , and N0 = 0. For each k = 1, . . . , l , let Ik = {Nk−1 + 1, . . . ,Nk} if
mk = Nk − Nk−1 and if not, let tk,1, . . . , tk,mk

be chosen uniformly and independently
from the set {Nk−1 +1, . . . ,Nk} (with possible repeats), and set Ik = {tk,1, . . . , tk,mk

}.
If I = IN,m = I1 ∪ · · · ∪ Il we refer to I as an (N,m)-multilevel subsampling scheme.

Definition [Multilevel subsampled unitary matrix]: A matrix A ∈ Cm×N is an
(N,m)-multilevel subsampled unitary matrix if A = PIDU for a unitary matrix U ∈
CN×N and (N,m)-multilevel subsampling scheme I. D is a diagonal scaling matrix:

Dii =

√
Nk − Nk−1

mk
, i = Nk−1 + 1, ...,Nk , k = 1, ..., l

and PI is the projection onto the linear span of the subset of the canonical basis
indexed by I.



The orthonormal bases

K = 2r for r ∈ N, and consider d-dimensional tensors in CK×···×K = CKd
, N = Kd .

V ∈ CN×N : corresponds to d-dimensional discrete Fourier or Walsh transform.

Fourier case: divide frequencies {−K/2 + 1, . . . ,K/2}d into dyadic bands. For d = 1,
B1 = {0, 1} and Bk = {−2k−1 + 1, . . . ,−2k−2}∪{2k−2 + 1, . . . , 2k−1} for k = 2, . . . , r .

Walsh case: B1 = {0, 1} and Bk = {2k−1, . . . , 2k − 1} for k = 2, . . . , r .

d-dimensional case: B
(d)
k = Bk1 × . . .× Bkd , k = (k1, . . . , kd) ∈ Nd .

Observe: subsampled measurements of V (c).

Sparse rep: Haar wavelet coefficients Ψc , U = VΨ∗.

Sampling: Given {mk=(k1,...,kd )}rk1,...,kd=1, use a multilevel random sampling such that

mk measurements are chosen from B
(d)
k .



Reduction to previous theorem

U =
[
U(k,j)

]‖k‖l∞≤r ,r
k=1,j=1

be defined as above. Then the (k, j)th local coherence of U is

µ(Uk,j) =
∣∣∣B(d)

k

∣∣∣max
p,q
|(Uk,j)pq|2, where

∣∣∣B(d)
k

∣∣∣ is the cardinality of B
(d)
k .

Proposition: Let εP ∈ (0, 1), (s,M) be local sparsities and sparsity levels with
2 ≤ s ≤ N, and consider the (N,m)-multilevel subsampling scheme to form A. Let

tj = min

{⌈
ξ(s,M,w)

w2
(j)

⌉
,Mj −Mj−1

}
, j = 1, ..., r ,

and suppose that

mk & L′ ·
r∑

j=1

tjµ(Uk,j), k = 1, ..., l

where L′ = r · log(2m) · log2(t) · log(N) + log(ε−1
P ). Then with probability at least

1− εP, A satisfies the weighted rNSPL of order (s,M) with constants ρ = 1/2, γ =
√

2.



Coherence bound for Fourier case

Lemma: Consider the d-dimensional Fourier–Haar–wavelet matrix with blocks Uk,j ,
then the local coherences satisfy

µ(Uk,j) . 2−2(j−‖k‖l∞ )+

d∏

i=1

2−|ki−j |,

where for t ∈ R, t+ = max{0, t}. It follows that

r∑

j=1

sjµ(Uk,j) .
‖k‖l∞∑

j=1

sj

d∏

i=1

2−|ki−j |+
r∑

j=‖k‖l∞+1

sj2
−2(j−‖k‖l∞ )

d∏

i=1

2−|ki−j | =MF (s, k).

Proof.
Exercise in using the discrete Fourier transform and some trigonometric identities.



Coherence bound for Walsh case

Lemma: Consider the d-dimensional Walsh–Haar–wavelet matrix with blocks U(k,j),
then the local coherences satisfy

µ(U(k,j)) .





d∏

i=1

2−|ki−j | if ki ≤ j for i = 1, ..., d with at least one equality,

0 otherwise

.

It follows that

r∑

j=1

sjµ(U(k,j)) . s‖k‖l∞

d∏

i=1

2−|ki−‖k‖l∞ | =MW(s, k).

Proof.
Exercise in keeping track of supports of Haar wavelet basis.


