
On the barriers of AI and the trade-off
between stability and accuracy

in deep learning

Vegard Antun (Oslo, vegarant@math.uio.no)
Matthew J. Colbrook (Cambridge, m.colbrook@damtp.cam.ac.uk)

Joint work with:

Ben Adcock (SFU), Nina Gottschling (Cambridge), Anders Hansen (Cambridge),
Clarice Poon (Bath), Francesco Renna (Porto)

Geilo Winter School, January 2021

MAIN GOAL

Determine the barriers of computations in deep learning

(i.e. what is and what is not possible)

⇓
Stability and Accuracy in AI

Outline of lectures

DAY I DAY II Day III

Gravity of AI Inverse Problems Achieving Kernel Awareness
Image Classification Instabilities & Kernel Awareness FIRENETs

Need for Foundations Intriguing Barriers Imaging Applications
AI for Image Reconstruction Algorithm Unrolling Numerical Examples

Slides will be hosted at http://www.damtp.cam.ac.uk/user/mjc249/Talks.html.
Useful references for further reading in grey boxes.

Comments and suggestions welcome! (vegarant@math.uio.no, m.colbrook@damtp.cam.ac.uk)

http://www.damtp.cam.ac.uk/user/mjc249/Talks.html

Can we improve image reconstruction?

Figure: Standard 3D MRI headscan. Scanning time = 15 min (our experiment done with data
from Cambridge University Hospital).
Experiment and data from Bogdan Roman and Anders C. Hansen

Can we improve image reconstruction?

Figure: Left: Standard full sampling. Right: One type of compressed sensing approaches to
resolution enhancing. Scanning time for both = 15 min.
Experiment and data from Bogdan Roman and Anders C. Hansen

Can we improve image reconstruction?

Figure: Two different compressed sensing approaches to resolution enhancing. Scanning time =
15 min

Experiment and data from Bogdan Roman and Anders C. Hansen

Can we improve image reconstruction?

Figure: Left: Standard full sampling. Right: The correct type of compressed sensing approaches
to resolution enhancing. Scanning time for both = 15 min
Experiment and data from Bogdan Roman and Anders C. Hansen

A discrete linear inverse problem

Given measurements y = Ax + e, of x ∈M1 ⊂ RN , recover x .

I Here A ∈ Rm×N is a (underdetermined) matrix with m < N,

I x is the unknown signal of interest,

I and e is noise or perturbations.

Examples of sets M1:

I M1 = ‘Set of natural images’

I M1 = Set of s-sparse vectors

I M1 = N (A)⊥

I M1 = Union of subspaces

A discrete linear inverse problem

Given measurements y = Ax + e, of x ∈M1 ⊂ RN , recover x .

I Here A ∈ Rm×N is a (underdetermined) matrix with m < N,

I x is the unknown signal of interest,

I and e is noise or perturbations.

Examples of sets M1:

I M1 = ‘Set of natural images’

I M1 = Set of s-sparse vectors

I M1 = N (A)⊥

I M1 = Union of subspaces

Standard algorithms

–

Sparse solutions of linear systems and its’ relation to

imaging

Sparse linear systems

m

N

=

Ax = y

We say that a vector x ∈ CN is s-sparse, if it has at most s non-zero components.

Sparse solutions of underdetermined systems have many
applications!

I Linear regression in statistics – The LASSO

I Medical imaging - MRI, CT, microscopy . . .

I Non-linear function approximation

I Error correction

I Explainable AI - LIME

I Dictionary learning and sparse coding

I Classification

How do we find sparse solutions?

Solve one of the problems:
Quadratically constrained basis pursuit (QCBP):

min
z∈CN

‖z‖l1 subject to ‖Az − y‖l2 ≤ η (P1)

Unconstrained LASSO (U-LASSO):

min
z∈CN

‖Az − y‖2
l2 + λ‖z‖l1 (P2)

Square-root LASSO (SR-LASSO):

min
z∈CN

‖Az − y‖l2 + λ‖z‖l1 (P3)

We let Ξj(y ,A) denote the set of minimizers for (Pj), given input A ∈ Cm×N , y ∈ Cm.

Why do we get sparse solutions?

p = 1

�

x]

p = 2

�

x]

The optimal solution

x] ∈ argminz∈R2 ‖z‖lp subject to Az = y

for different values of p.

A puzzling experiment

(a) Original (b) Sampling map

(c) Classical recovery
(linear)

(d) Compressed sensing
recovery

Images are sparse in transformed domains

Image x Wx Wx
W = Wavelets W = ∇

In sparse regularization we use

x̂ ∈ argminz∈CN ‖Wz‖l1 subject to ‖Az − y‖l2 ≤ η

as our solution to the inverse problem.

Robust null space property

Notation: Let Ω ⊂ {1, . . . ,N} and let PΩ ∈ RN×N be the projection

PΩx =

{
xi i ∈ Ω

0 otherwise
.

Definition (Robust Null Space Property)

A matrix A ∈ Cm×N satisfies the robust Null Space Property (rNSP) of order
1 ≤ s ≤ N with constants 0 < ρ < 1 and γ > 0 if

‖PΩx‖`2 ≤ ρ√
s
‖P⊥Ω x‖`1 + γ‖Ax‖`2 ,

for all x ∈ CN and any Ω ⊆ {1, . . . ,N} with |Ω| ≤ s.

Typical compressive sensing theorem

Theorem 1
Let A ∈ Cm×N with m < N and let W ∈ CN×N be unitary. Suppose that AW−1 has
the rNSP of order s with constants 0 < ρ < 1 and γ > 0. Let y = Ax + e and let
0 < λ ≤ C1/(

√
sC2). Then every minimizer x̂ ∈ CN of the problem

min
z∈CN

λ‖Wz‖l1 + ‖Az − y‖l2 (P3)

satisfies

‖x̂ − x‖l2 ≤ 2C1
σs(Wx)l1√

s
+

(
C1√
sλ

+ C2

)
‖e‖l2 ,

where C1 and C2 are the constants in (10), and

σs(z)l1 := inf{‖z − t‖l1 : t is a s-sparse vector}

denotes the distance to a s-sparse vector.

Reading material

I Adcock, B., & Hansen, A. C., ‘Compressive Imaging: Structure, Sampling,
Learning ’, Cambridge University Press, 2021 (to appear).
https://www.compressiveimagingbook.com

I Foucart, S., & Rauhut, H., ‘A Mathematical Introduction to Compressive
Sensing ’, birkhäuser, 2013.

https://www.compressiveimagingbook.com

AI replacing standard algorithms in inverse problems

The basic inverse problem – Image denoising

Clear image x ∈ CN is contaminated by unknown noise e, and we are given access to
measurements of the form

y = x + e,

The task is to reconstruct x from the noisy measurements y .

The Basics of Deep Learning in Denoising

Given a crappy images y ∈ Rd , train a neural network φ ∈ NNN,L,d to get a good
images

x = φ(y).

In practice, one tries to learn the noise and use

x = y − φ(y).

The Basics of Deep Learning in Denoising

Denoising experiment with deep learning

Original Noisy version Denoised with Neur. Net.

DL in Inverse Problems: 1st Step

>> I = phantom(512); theta_1 = [0:1:179];

>> y = radon(I, theta_1);

>> imshow(I); imagesc(y)

Logan-Shepp Phantom
The image under the Radon

transform (sinogram)

DL in Inverse Problems: 1st Step

>> I = phantom(512); theta_3 = [0:3:179];

>> y = radon(I, theta_3); II = iradon(y,theta_3);

>> imshow(I); imagesc(II)

Logan-Shepp Phantom
Reconstruction with the filtered
back projection using 60 lines

DL in Inverse Problems: 1st Step

Crazy idea: The filtered back projection gives a noisy image.

Why don’t we try deep learning to denoise the image. In particular, we train a
neural network φ such that

x ≈ iradon(radon(x))− φ(iradon(radon(x))

DL in Inverse Problems: 1st Step

DL in Inverse Problems: 1st Step (Experiments)

Computerised Tomography (CT) experiment with deep learning

Original Recon-FBP (50 lines) Recon-NeurNet (50 lines)

Can neural networks for image reconstruction be unstable?

Determining instabilities in inverse problems

The Instability Test

Given a neural network Ψ : Cm → CN that is able to reconstruct images from, for
example, MRI (Fourier) data

ydata = Ascanximage, Ascan ∈ Cm×N

Ψ(ydata) = ximage,

find a perturbation xδ with ‖xδ‖ ≤ δ, where δ > 0 is small, such that

Ψ(ydata + Axδ) = ximage + xartefact,

or
Ψ(ydata + Axδ) = ximage + xfalsetumor.

How do we compute worst-case perturbations?

To find a worst case perturbation for a neural network Ψ: Cm → CN we seek to
maximize

Q(r) := ‖Ψ(A(x + r))−Ψ(Ax)‖2
l2 − λ‖r‖2

l2

using a gradient based optimization method.

AI generated hallucinations – Instabilities

|x | |Ψ(Ax)|

Network from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, ’A deep cascade of convolutional neural networks for MR
image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647–658.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..

AI generated hallucinations – Instabilities

|x + r1| |Ψ(A(x + r1))|

Network from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, ’A deep cascade of convolutional neural networks for MR
image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647–658.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..

AI generated hallucinations – Instabilities

|x + r2| |Ψ(A(x + r2))|

Network from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, ’A deep cascade of convolutional neural networks for MR
image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647–658.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..

AI generated hallucinations – Instabilities

|x + r3| |Ψ(A(x + r3))|

Network from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, ’A deep cascade of convolutional neural networks for MR
image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647–658.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..

Reconstruction using state-of-the-art standard methods

SoA from Ax SoA from A(x + r3)

Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..

AI generated hallucinations – Random noise
|x + v1| |x + v1| Φ(A(x + v1)) Φ(A(x + v2))

(Full image) (Cropped) (Cropped) (Cropped)

Ψ(A(x + v1)) Ψ(A(x + v2)) Ψ(A(x + v3)) Φ(A(x + v3))
(Cropped) (Cropped) (Cropped) (Cropped)

Worst of 100 Worst of 20 Worst of 1

AI generated hallucinations – Instabilities

x Ψ(Ax))

AI generated hallucinations – Instabilities

x + r Ψ(A(x + r))

Testing on standard methods

State-of-the-art from Ax State-of-the-art from A(x + r)

AI generated hallucinations – Instabilities

x Ψ(Ax)

Network architecture from: Hammernik, K., Klatzer, T., Kobler, E., Recht, M. P., Sodickson, D. K., Pock, T., & Knoll, F., ’Learning a variational
network for reconstruction of accelerated MRI data’. Magnetic resonance in medicine, 79(6), 3055-3071.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..

AI generated hallucinations – Instabilities

x + r Ψ(A(x + r))

Network architecture from: Hammernik, K., Klatzer, T., Kobler, E., Recht, M. P., Sodickson, D. K., Pock, T., & Knoll, F., ’Learning a variational
network for reconstruction of accelerated MRI data’. Magnetic resonance in medicine, 79(6), 3055-3071.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..

Testing on standard methods

State-of-the-art from Ax State-of-the-art from A(x + r)

Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..

We are not only striving for stable methods, but also

accurate methods.

Accelerating MR Imaging with AI – fastMRI

False negatives – 4 x Speedup

Figure from: Knoll, Florian, et al. ‘Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019
fastMRI challenge’. Magnetic Resonance in Medicine (2020).

False negatives – 8 x Speedup

Figure from: Knoll, Florian, et al. ‘Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019
fastMRI challenge’. Magnetic Resonance in Medicine (2020).

Determining instabilities in inverse problems

The Accuracy Test

Given a neural network Ψ : Cm → CN that is able to reconstruct images from, for
example, MRI (Fourier) data

ydata = Ascanximage, Ascan ∈ Cm×N

Ψ(ydata) = ximage,

Check if the network can reconstruct unseen detail xdetail with ‖xdetail‖ ≤ δ, where
δ > 0 is small, such that

Ψ(ydata + Axdetail) = ximage + xdetail,

NB: To make the test fair, we make the detail just large enough for a standard method
to capture it.

AI generated hallucinations – Lack of accuracy

(Image + detail) x + r Cropped version

AI generated hallucinations – Lack of accuracy

Network rec. Ψ(A(x + r)) (cropped) State-of-the-art: Φ(A(x + r)) (cropped)

Network from: K. H. Jin, M. T. McCann, E. Froustey and M. Unser, ’Deep convolutional neural network for inverse problems in imaging ’, IEEE
Transactions on Image Processing, vol. 26, no. 9, pp. 4509–4522, 2017.

AI generated hallucinations – Lack of accuracy

(Image+detail) x + r (cropped version)

Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..

AI generated hallucinations – Lack of accuracy

Ψ(A(x + r)) SoA from A(x + r)

Network from: G. Yang, S. Yu, H. Dong, G. Slabaugh, P. L. Dragotti, X. Ye, F. Liu, S. Arridge, J. Keegan, Y. Guo and D. Firmin, DAGAN: Deep
de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction, IEEE Transactions on Medical Imaging, 2017.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..

AI generated hallucinations – Lack of accuracy

(Image+detail) x + r (Cropped version)

Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..

AI generated hallucinations – Lack of accuracy

Ψ(A(x + r)) SoA from A(x + r)

Network from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, ’A deep cascade of convolutional neural networks for MR
image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647–658.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..

Why does the AI halucinate?

There is a trade-off between stability and accuracy.

Why do we see instabilites?

Overperformance yields instabilities

Theorem 2 (Universal Instability Theorem)

Let A ∈ Cm×N , where m < N, and let Ψ : Cm → CN be a continuous map. Suppose
there are x , x ′ ∈ CN and η > 0 such that

‖Ψ(Ax)− x‖ < η, and ‖Ψ(Ax ′)− x ′‖ < η, (1)

and
‖Ax − Ax ′‖ < η. (2)

We then have the following:
(i) (Instability with respect to worst-case perturbations) Then the local

ε-Lipschitz constant at y = Ax satisfies

Lε(Ψ, y) := sup
0<‖z−y‖≤ε

‖Ψ(z)−Ψ(y)‖
‖z − y‖ ≥ 1

ε

(
‖x − x ′‖ − 2η

)
, ∀ε ≥ η. (3)

Overperformance yields instabilities

Theorem 2 (Universal Instability Theorem)

Let A ∈ Cm×N , where m < N, and let Ψ : Cm → CN be a continuous map. Suppose
there are x , x ′ ∈ CN and η > 0 such that

‖Ψ(Ax)− x‖ < η, and ‖Ψ(Ax ′)− x ′‖ < η, (4)

and
‖Ax − Ax ′‖ < η. (5)

We then have the following:
(ii) (False negatives).There is a z ∈ CN with ‖z‖ ≥ ‖x − x ′‖, an e ∈ Cm with
‖e‖ ≤ η such that

‖Ψ(A(x + z) + e)− x‖ ≤ η (6)

Overperformance yields instabilities

Theorem 2 (Universal Instability Theorem)

Let A ∈ Cm×N , where m < N, and let Ψ : Cm → CN be a continuous map. Suppose
there are x , x ′ ∈ CN and η > 0 such that

‖Ψ(Ax)− x‖ < η, and ‖Ψ(Ax ′)− x ′‖ < η, (7)

and
‖Ax − Ax ′‖ < η. (8)

We then have the following:
(ii) (False positives).There is a z ∈ CN with ‖z‖ ≥ ‖x − x ′‖, an e ∈ Cm with
‖e‖ ≤ η such that

‖Ψ(Ax + e)− (x + z)‖ ≤ η (9)

Paradox I:

If a reconstruction method becomes ‘too accurate’, it will

become unstable.

However, if a reconstruction method becomes ‘too stable’,

it can not be very accurate.

Kernel awareness is needed to protect against overperformance

Kernel awareness: The cardinal sin of recovering two elements x and x ′, whose
difference x − x ′ lies close to the kernel of A.

Many popular defence techniques provide no guarantees against
overperformance:

I Enforcing consistency

I Training with random sampling patterns

I Adding random noise

I Adversarial training/augmenting the training set

For details see:
Gottschling, N. M., Antun, V., Adcock, B., & Hansen, A. C. (2020). The troublesome kernel:
why deep learning for inverse problems is typically unstable. arXiv preprint arXiv:2001.01258.
https://arxiv.org/abs/2001.01258

https://arxiv.org/abs/2001.01258

Kernel awareness is built into compressive sensing theory

Theorem 3
Suppose the matrix A ∈ Cm×N satisfies the robust null space property (rNSP) or
order s, with constants 0 < ρ < 1 and γ > 0. Then for all s-sparse vectors x , z ∈ CN ,

‖z − x‖l2 ≤
C2

2
‖A(z − x)‖l2

where

C2 =
(3ρ+ 5)γ

1− ρ . (10)

Recap: Classification problems

Problem: Approximate function f : M⊂ Rd → {0, 1}

Approach: Sample the graph {(x , f (x)) : x ∈M} and use this information to
compute an approximation f̃ : M→ {0, 1}

Question in imaging:

I Will a map f̃ : Cm → CN satisfying ‖f̃ (Ax i)− xi‖ ≤ δ for i = 1, . . . , r , be optimal?

I Does there exist a map f̃ : Cm → CN , statisfying ‖f̃ (Ax i)− xi‖ ≤ δ for
i = 1, . . . , r?

Inverse problems in imaging

Convenient to describe the inverse problem in terms of a triple {A,M1,M2}, given by

a sampling map A ∈ Cm×N , where m < N,

a domain M1 ⊂ CN , where (M1, d1) is a metric space,

the range M2 = A(M1) ⊂ Cm, where (M2, d2) is also a metric space.

The inverse problem is now as follows:

Given measurements y = Ax of x ∈M1, recover x .

Notation

I A multivalued mapping is written with double
arrows as

ϕ :M2 ⇒ CN

I We use the Hausdorff metric on the set of
bounded subsets of M1,

dH
1 (Z ,X) = max{ sup

x∈X
inf
z∈Z

d1(z , x), sup
z∈Z

inf
x∈X

d1(z , x) },

With slight abuse of notation we will denote a
singleton {x} ⊂ M1 by x .

What do we try to learn? The optimal map

Definition 4 (Optimal map)

Let d1 be a metric on CN , M1 ⊂ CN , A ∈ Cm×N and M2 = A(M1). The optimality
constant of {A,M1} is

copt(A,M1) = inf
ϕ:M2⇒CN

sup
x∈M1

dH
1 (ϕ(Ax), x). (11)

A map ϕ : M2 ⇒ CN is optimal if it attains the infimum in (11)

Paradox II: We do not know the optimal map

Theorem 2
Let the metrics d1 and d2 be on CN and Cm be induced by norms. Let A ∈ Cm×N

with rank(A) ≥ 1, where m < N, K ∈ {2, . . . ,∞}, δ ≤ 1/5 and B ⊂ CN be the
closed unit ball (with respect to d1). Then the following holds:

(i) (Training may not yield optimal maps). There exist uncountably many
M1 ⊂ B, such that for each M1 there exist uncountably many sets
T ⊂M2 ×M1 with |T | = K, where M2 = A(M1), satisfying the following.
Any map Ψ :M2 →M1 (potentially multivalued Ψ :M2 ⇒M1) satisfying

dH
1 (Ψ(y), x) ≤ δ, ∀(y , x) ∈ T , (12)

is not an optimal map. If K is finite, one can choose |M1| = K + 1.

Paradox II: We do not know the optimal map

Theorem 3
Let the metrics d1 and d2 be on CN and Cm be induced by norms. Let A ∈ Cm×N

with rank(A) ≥ 1, where m < N, K ∈ {2, . . . ,∞}, δ ≤ 1/5 and B ⊂ CN be the
closed unit ball (with respect to d1). Then the following holds:
(ii) (The map sought by training may not exist). There exist uncountably many

domains M1 ⊂ B with |M1| = K such that, with M2 = A(M1), there does not
exist a map Ψ :M2 →M1 (nor a multivalued map Ψ :M2 ⇒M1) for which

dH
1 (Ψ(y), x) ≤ δ, ∀(y , x) ∈M2 ×M1.

Stable and accurate reconstruction is only possible under

certain conditions

Can we compute neural networks that solve (Pj)?

min
x∈CN
‖x‖l1 subject to ‖Ax − y‖l2 ≤ η (P1)

min
x∈CN

λ‖x‖l1 + ‖Ax − y‖2
l2 (P2)

min
x∈CN

λ‖x‖l1 + ‖Ax − y‖l2 (P3)

Interested in the minimising vectors (denoted Ξ).

Why the problems (Pj)?

I Avoid bizarre, unnatural & pathological mappings: (Pj) well-understood & well-used!

I Simpler solution map than inverse problem ⇒ stronger impossibility results.

I Sparse regularisation is often used as a benchmark method.

I DL has also been used to speed up sparse regularisation and tackle (Pj).
(see section on LISTA and unrolling later)

Recall - what could go wrong?

(i) There does not exist a neural network that approximates the function we are
interested in.

(ii) There does exist a neural network that approximates the function, however, there
does not exist an algorithm that can construct the neural network.

(iii) There does exist a neural network that approximates the function, and an algorithm
to construct it. However, the algorithm will need prohibitively many samples.

The following theorems showcase (ii) and (iii).

The set-up

A ∈ Cm×N (modality), S = {yk}Rk=1 ⊂ Cm (samples), R <∞
Question: Given a collection Ω of (A,S), does there exist a neural network
approximating Ξ (solution map of (Pj)), and can it be trained by an algorithm?

In practice, the matrix A is not known exactly or cannot be stored to infinite precision.

Assume access to: {yk,n}Rk=1 and An (rational approximations, e.g. floats) such that

‖yk,n − yk‖ ≤ 2−n, ‖An − A‖ ≤ 2−n, ∀n ∈ N.

And {xk,n}Rk=1 such that infx∗∈Ξ(An,yk,n) ‖xk,n − x∗‖ ≤ 2−n, ∀n ∈ N.

Training set associated with (A,S) ∈ Ω is

ιA,S := {(yk,n,An, xk,n) | k = 1, . . . ,R, and n ∈ N} .

Good news - a neural network exists

Theorem (Neural networks exist for Ξ)

For (Pj) and any family Ω of (A,S), there exists a mapping

K : ιA,S → ϕA,S (a neural network)

such that ϕA,S(y) solves (Pj) for each y ∈ S. In other words, K maps the training
data to NNs that solve the optimisation problem (Pj) for each (A,S) ∈ Ω.

Proof.
Easy - apply universal approximation/interpolation theorems.

The set-up

A ∈ Cm×N (modality), S = {yk}Rk=1 ⊂ Cm (samples), R <∞
Question: Given a collection Ω of (A,S), does there exist a neural network
approximating Ξ (solution map of (Pj)), and can it be trained by an algorithm?

In practice, the matrix A is not known exactly or cannot be stored to infinite precision.

Assume access to: {yk,n}Rk=1 and An (rational approximations, e.g. floats) such that

‖yk,n − yk‖ ≤ 2−n, ‖An − A‖ ≤ 2−n, ∀n ∈ N.

And {xk,n}Rk=1 such that infx∗∈Ξ(An,yk,n) ‖xk,n − x∗‖ ≤ 2−n, ∀n ∈ N.

Training set associated with (A,S) ∈ Ω is

ιA,S := {(yk,n,An, xk,n) | k = 1, . . . ,R, and n ∈ N} .

Bad news - can’t necessarily approximate such a neural network

Theorem 4
For (Pj), N ≥ 2 and m < N. Let K > 2 be a positive integer, L ∈ N. Then there exists a
well-conditioned class (condition numbers ≤ 1) Ω of elements (A,S) s.t. (Ω fixed in what follows):

(i) There does not exist any algorithm that, given a training set ιA,S , produces a neural network
φA,S with

min
y∈S

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 ≤ 10−K , ∀ (A,S) ∈ Ω. (13)

Furthermore, for any p > 1/2, no probabilistic algorithm can produce a neural network φA,S
such that (13) holds with probability at least p.

(ii) There exists an algorithm that produces a neural network φA,S such that

max
y∈S

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 ≤ 10−(K−1), ∀ (A,S) ∈ Ω.

However, for any such algorithm (even probabilistic), M ∈ N and p ∈
[
0, N−m

N+1−m

)
, there exists a

training set ιA,S such that for all y ∈ S,

P
(

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 > 101−K or size of training data needed > M
)
> p.

(iii) There exists an algorithm using only L training data from each ιA,S that produces a neural
network φA,S(y) such that

max
y∈S

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 ≤ 10−(K−2), ∀ (A,S) ∈ Ω.

Understanding the theorem statement I: In words...

Nice classes Ω where one can prove NNs with great approximation qualities exist. But:

I No algorithm, even randomised can train (or compute) such a NN accurate to K
digits with probability greater than 1/2.

I There exists a deterministic algorithm that computes a NN with K −1 correct digits,
but any such (even randomised) algorithm needs arbitrarily many training data.

I There exists a deterministic algorithm that computes a NN with K − 2 correct
digits using no more than L training samples.

Existence vs computation (universal approximation/interpolation theorems not enough).

Conclusion: Theorems on existence of neural networks may have little to do with the
neural networks produced in practice.

Understanding the theorem statement II: well-conditioned

I Classical matrix condition number: Cond(AA∗) = ‖AA∗‖‖(AA∗)−1‖.
I Of mapping:

lim
perturbation size ↓0

distance between outputs

distance between inputs

I Feasibility: For (P1),
size of problem

distance to infeasibility

Useful book: Bürgisser P., Cucker F., 2013. Condition : The geometry of numerical algorithms.

Understanding the theorem statement III: what’s an algorithm?

I For first statement: Any model (Turing machine, analog computers, etc.).

I For second and third statement: Turing machines (digital computers).

Result independent of neural network architecture - a universal barrier.

Use the Solvability Complexity Index (SCI) - tools that classify problems measuring
their intrinsic difficulty and proving optimality of algorithms.

The SCI hierarchy

Key question: What is possible in scientific computation?

I Combine techniques from numerical analysis, functional analysis and approximation
theory ⇒ new algorithms.

I Classify problems in a computational hierarchy measuring their intrinsic difficulty
and the optimality of algorithms ⇒ prove that algorithms realise the boundaries of
what computers can achieve.

I Colbrook, M.J., Roman, B. and Hansen, A.C., 2019. How to compute spectra with error
control. Physical review letters, 122(25), p.250201.

I Colbrook, M.J., Horning, A. and Townsend, A. Computing spectral measures of self-adjoint
operators. SIAM Review, to appear.

I Hansen, A., 2011. On the solvability complexity index, the n-pseudospectrum and
approximations of spectra of operators. Journal of the American Mathematical Society, 24(1).

I Ben-Artzi, J., Colbrook, M.J., Hansen, A.C., Nevanlinna, O. and Seidel, M., 2020. Computing
Spectra - On the Solvability Complexity Index Hierarchy and Towers of Algorithms. arXiv
preprint arXiv:1508.03280.

Numerical example: fails in MATLAB

Centred and standardised (columns of the matrix A below are normalised) Lasso problem

min
x∈RN

1

m
‖AδDδx − y‖2

2 + λ‖x‖1.

Take m = 3,N = 2, λ = 1/10, and

Aδ =




1√
2
− δ 1√

2

− 1√
2
− δ − 1√

2

2δ 0


 ∈ R3×2, y =

(
1/
√

2 −1/
√

2 0
)T ∈ R3,

where Dδ is the unique diagonal matrix s.t. columns of AδDδ each have norm
√
m.

Use MATLAB’s lasso solver.

Numerical example: fails in MATLAB

Live demo...

Numerical example: fails in MATLAB

Default settings ‘RelTol’ = εmach ‘RelTol’ = εmach

‘MaxIter’ = ε−1
mach

δ Error RunTime Warn Error RunTime Warn Error RunTime Warn

2−1 1 · 10−16 < 0.01s 0 1 · 10−16 < 0.01s 0 1 · 10−16 < 0.01s 0
2−7 0.68 < 0.01s 0 2 · 10−16 0.02s 0 2 · 10−16 0.02s 0
2−15 1.17 < 0.01s 0 1.17 0.33s 1 1 · 10−11 1381.5s 0
2−20 1.17 < 0.01s 0 1.17 0.33s 1 no output > 12h 0
2−24 1.17 < 0.01s 0 1.17 0.34s 1 no output > 12h 0
2−26 1.17 < 0.01s 0 1.17 0.34s 1 no output > 12h 0
2−28 1.17 < 0.01s 0 1.17 < 0.01s 0 1.17 < 0.01s 0
2−30 1.17 < 0.01s 0 1.17 < 0.01s 0 1.17 < 0.01s 0

Most of the time, no warning is issued despite nonsensical outputs.

Numerical example: fails with training methods

dist(ΨAn(yn),Ξ3(A, y)) dist(ΦAn(yn),Ξ3(A, y))
‖An − A‖ ≤ 2−n

‖yn − y‖l2 ≤ 2−n 10−K ΩK

0.2999690 0.2597827 n = 10 10−1 K = 1
0.3000000 0.2598050 n = 20 10−1 K = 1
0.3000000 0.2598052 n = 30 10−1 K = 1
0.0030000 0.0025980 n = 10 10−3 K = 3
0.0030000 0.0025980 n = 20 10−3 K = 3
0.0030000 0.0025980 n = 30 10−3 K = 3
0.0000030 0.0000015 n = 10 10−6 K = 6
0.0000030 0.0000015 n = 20 10−6 K = 6
0.0000030 0.0000015 n = 30 10−6 K = 6

Table: (Impossibility of computing the existing neural network to arbitary accuracy). A
constructed from discrete cosine transform, R = 8000, N = 20, m = 19, solutions are 6-sparse.
We demonstrate the impossibility statement (i) on FIRENETs ΦAn , and trained LISTA networks
ΨAn . The table shows the shortest l2 distance between the output from the networks, and the
true minimizer of the problem (P3), with wl = 1 and λ = 1, for different values of n and K .

The basic mechanism

Similar phase transitions can be built for (Pj) in arbitrary dimensions.

Algorithm unrolling:

Iterative algorithms for (Pj) ⇒ deep neural networks

Monga, V., Li, Y. and Eldar, Y.C., 2019. Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing. arXiv preprint arXiv:1912.10557.

Iterative algorithms

Recall (P2):
argminx∈CN F2(x , y) := λ‖x‖l1 + ‖Ax − y‖2

l2 .

Assume all vectors are real. Popular iterative method is the Iterative Shrinkage and
Thresholding Algorithm (ISTA):

x (n+1) = Hθ

(
x (n) − 1

L
A∗(Ax (n) − y)

)
.

Daubechies, I., Defrise, M. and De Mol, C., 2004. An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics,
57(11), pp.1413-1457.

Iterative algorithms

-2 -1 0 1 2

-1

-0.5

0

0.5

1

H1(x) = (|x | − 1)+ sign(x)

Learned iterative shrinkage and thresholding algorithm (LISTA)

Idea: This looks like a neural
network. Let’s try learning!

Learn the linear maps.

Learn θ for

Hθ(x) = (|x | − θ)+ sign(x)

NB: We can apply the stability
test through back-propagation.

Learning Fast Approximations of Sparse Coding

Karol Gregor and Yann LeCun {kgregor,yann}@cs.nyu.edu

Courant Institute, New York University, 715 Broadway, New York, NY 10003, USA

Abstract

In Sparse Coding (SC), input vectors are re-
constructed using a sparse linear combination
of basis vectors. SC has become a popu-
lar method for extracting features from data.
For a given input, SC minimizes a quadratic
reconstruction error with an L1 penalty term
on the code. The process is often too slow for
applications such as real-time pattern recog-
nition. We proposed two versions of a very
fast algorithm that produces approximate es-
timates of the sparse code that can be used to
compute good visual features, or to initialize
exact iterative algorithms. The main idea is
to train a non-linear, feed-forward predictor
with a specific architecture and a fixed depth
to produce the best possible approximation
of the sparse code. A version of the method,
which can be seen as a trainable version of
Li and Osher’s coordinate descent method, is
shown to produce approximate solutions with
10 times less computation than Li and Os-
her’s for the same approximation error. Un-
like previous proposals for sparse code pre-
dictors, the system allows a kind of approxi-
mate “explaining away” to take place during
inference. The resulting predictor is differ-
entiable and can be included into globally-
trained recognition systems.

1. Introduction

Sparse coding is the problem of reconstructing in-
put vectors using a linear combination of an over-
complete family basis vectors with sparse coeffi-
cients (Olshausen & Field, 1996; Chen et al., 2001;
Donoho & Elad, 2003). This paper introduces a very
efficient method for computing good approximations
of optimal sparse codes.

Sparse coding has become extremely popular for ex-
tracting features from raw data, particularly when the
dictionary of basis vectors is learned from unlabeled
data. Several such unsupervised learning methods

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

have been proposed to learn the dictionary. There have
been applications of sparse coding in many fields in-
cluding visual neuroscience (Olshausen & Field, 1996;
Hoyer, 2004; Lee et al., 2007) and image restora-
tion (Elad & Aharon, 2006; Ranzato et al., 2007b;
Mairal et al., 2008). Recently, these methods have
been the focus of a considerable amount of re-
search for extracting visual features for object recogni-
tion (Ranzato et al., 2007a; Kavukcuoglu et al., 2008;
Lee et al., 2009; Yang et al., 2009; Jarrett et al., 2009;
Yu et al., 2009). A major problem with sparse cod-
ing for applications such as object recognition is that
the inference algorithm is somewhat expensive, pro-
hibiting real-time applications. Given an input image
the inference algorithm must compute a sparse vector
for each and every patch in the image (or for all lo-
cal collections of low-level features, if sparse coding is
used as a second stage of transformation (Yang et al.,
2009)). Consequently, a large amount of research
has been devoted to seeking efficient optimiza-
tion algorithms for sparse coding (Daubechies et al.,
2004; Lee et al., 2006; Wu & Lange, 2008; Li & Osher,
2009; Mairal et al., 2009; Beck & Teboulle, 2009;
Hale et al., 2008; Vonesch & Unser, 2007).

The main contribution of this paper is a highly effi-
cient learning-based method that computes good ap-
proximations of optimal sparse codes in a fixed amount
of time. Assuming that the basis vectors of a sparse
coder have been trained and are being kept fixed,
the main idea of the method is to train a parameter-
ized non-linear “encoder” function to predict the op-
timal sparse code, by presenting it with examples of
input vectors paired with their corresponding optimal
sparse codes obtained through conventional optimiza-
tion methods. After training, the encoder function has
a pre-determined complexity (though it is adjustable
before training), and can be used to predict approxi-
mate sparse codes with a fixed computational cost and
a prescribed expected error.

The basic idea of using encoders for sparse code
prediction has been proposed by others. Partic-
ularly relevant to our approach is the “predictive
sparse decomposition” method (Kavukcuoglu et al.,
2008; Jarrett et al., 2009), but their predictor is very
simplistic and produces crude approximations to the
sparse codes. Our contribution is to propose a par-
ticular form and particular parameterization of the

LISTA

Results for dictionary for 10× 10 sparse image patches.
Learning Fast Approximations of Sparse Coding

FISTA H4xL

FISTA H1xL

LISTA H4xL

LISTA H1xL

0 1 2 3 5 7
iter

0.5

1

2

5

10

error

Figure 3. Code prediction error as a function of number of
iterations for FISTA (crosses) and for LISTA (dots), for
m = 100 (red) and m = 400 (blue). Note the logarithmic
scales. iter = 0 corresponds to the baseline trainable en-
coder with the shrinkage function. It takes 18 iterations of
FISTA to reach the error fo LISTA with just one iteration
for m = 100, and 35 iteration for m = 400. Hence one can
say that LISTA is roughly 20 times faster than FISTA for
approximate solutions.

80% of connections (cf = 0.2) causes a relatively small
increase in prediction error from about 1.6 to about
2.0. Removing connections also allows efficient com-
putation of the S matrix multiplication when only the
nonzero code units are used.

dim reduction H4xL

elements removal H4xL

dim reduction H1xL

elements removal H1xL

0.01 0.02 0.05 0.1 0.2 0.5 1
cf

1.5

2

2.5

3

3.5

4

error

Figure 4. Prediction error for LISTA with one iteration as
a function of fraction of operations cf required relative to
a full S matrix. The matrix is reduced using a low rang
factorization, or by removing small elements.

LCoD: The prediction results for the learned CoD
are shown in the Figure 5. Each iteration costs O(m)
operations as opposed to LISTA’s O(m2) or O(mk).
The cost of the initial operation WeX is O(nm). It
is remarkable that with only 20 iterations, which adds
a tiny additional cost to the initial calculation WeX,
and much smaller than a single iteration of FISTA or
LISTA, the error is already below 2. It takes 100 itera-
tions of CoD to reach the same error as 5 iterations of

LCoD. For a large number of iterations, LCoD loses to
CoD when the matrices are initialized randomly, but
initializing the matrices with their CoD-prescribed val-
ues improves the performance significantly (open cir-
cles).

CoD H4xL
CoD H1xL
LCoD H4xL
LCoD H1xL

0 1 2 5 10 20 50 100 200
iter

0.2

0.5

1

2

5

10

50

error

Figure 5. Code prediction errors for CoD and LCoD for
varying numbers of iterations. LCoD is about 20 times
faster than CoD for small numbers of iterations. Initial-
izing the matrices with their LCoD values before training
(open circles) improve the performance in the high itera-
tion regime, but seems to degrade it in the low iteration
regime (data not shown).

In the second set of experiments we investigated
whether the improvement in prediction error leads to
a better recognition performance using the MNIST
dataset. In the first experiment, the CoD and LCoD
methods with codes of size 784 were trained on the
whole 28× 28 = 784 pixel images. In the second one,
the CoD and LCoD methods with 256 dimensional
codes were trained on 16× 16 pixel patches extracted
from the MNIST digits. A complete feature vector
consisted of 25 concatenated such vectors, extracted
from all 16× 16 patches shifted by 3 pixels on the in-
put. The features were extracted for all digits using
CoD with exact inference, CoD with a fixed number of
iterations, and LCoD. Additionally a version of CoD
(denoted CoD’) used inference with a fixed number
of iterations during training of the filters, and used
the same number of iterations during test (same com-
plexity as LCoD). A logistic regression classifier was
trained on the features thereby obtained.

Classification errors on the test set are shown in Ta-
bles 2 and 3. While the error rate decreases with the
number of iterations for all methods, the error rate
of LCoD with 10 iterations is very close to the opti-
mal (differences in error rates of less than 0.1% are
insignificant on MNIST)1.

1cpu times assume efficient implementation of the WeX
that is not available for the argmax of (L)CoD: 1.6x speed
up for Table 2 (vector) and 5x for Table 3 (batch).

Figure: Figure 3 of Gregor and LeCun’s paper.

UnrollingTo appear in IEEE Signal Processing Magazine

Input h1
(
·; θ1

)
h2
(
·; θ2

)
· · · OutputUnrollingh(·; θ)

End-to-end Training

Interpretable Layers

Output

Input

Fig. 1. A high-level overview of algorithm unrolling: given an iterative algorithm (left), a corresponding deep network (right) can be generated by cascading
its iterations h. The iteration step h (left) is executed a number of times, resulting in the network layers h1, h2, . . . (right). Each iteration h depends on
algorithm parameters θ, which are transferred into network parameters θ1, θ2, Instead of determining these parameters through cross-validation or analytical
derivations, we learn θ1, θ2, . . . from training datasets through end-to-end training. In this way, the resulting network could achieve better performance than
the original iterative algorithm. In addition, the network layers naturally inherit interpretability from the iteration procedure. The learnable parameters are
colored in blue.

activation functions and biases in Fig. 2a for brevity. Popular
choices of activation functions include the logistic function and
the hyperbolic tangent function. In recent years, they have been
superseded by Rectified Linear Units (ReLU) [17] defined by

ReLU(x) = max{x, 0}.
The W’s and b’s are generally trainable parameters that are
learned from datasets through training, during which back-
propagation [18] is often employed for gradient computation.

Nowadays, MLPs are rarely seen in practical imaging
and vision applications. The fully-connected nature of MLPs
contributes to a rapid increase in their parameters, making
them difficult to train. To address this limitation, Fukushima
et al. [19] designed a neural network by mimicking the visual
nervous system [20]. The neuron connections are restricted
to local neighbors only and weights are shared across dif-
ferent spatial locations. The linear operations then become
convolutions (or correlations in a strict sense) and thus the
networks employing such localizing structures are generally
called Convolutional Neural Networks (CNN). A visual illus-
tration of a CNN can be seen in Fig. 2b. With significantly
reduced parameter dimensionality, training deeper networks
becomes feasible. While CNNs were first applied to digit
recognition, their translation invariance is a desirable property
in many computer vision tasks. CNNs thus have become an
extremely popular and indispensable architecture in imaging
and vision, and outperform traditional approaches by a large
margin in many domains. Today they continue to exhibit the
best performance in many applications.

In domains such as speech recognition and video process-
ing, where data is obtained sequentially, Recurrent Neural
Networks (RNN) [21] are a popular choice. RNNs explicitly
model the data dependence in different time steps in the

sequence, and scale well to sequences with varying lengths.
A visual depiction of RNNs is provided in Fig. 2c. Given
the previous hidden state sl−1 and input variable xl, the next
hidden state sl is computed as

sl = σ1
(
Wsl−1 + Uxl + b

)
,

while the output variable ol is generated by

ol = σ2
(
Vsl + b

)
.

Here U,V,W,b are trainable network parameters and σ1, σ2
are activation functions. We again omit the activation functions
and biases in Fig. 2c. In contrast to MLPs and CNNs where
the layer operations are applied recursively in a hierarchical
representation fashion, RNNs apply the recursive operations
as the time step evolves. A distinctive property of RNNs is
that the parameters U,V,W are shared across all the time
steps, rather than varying from layer to layer. Training RNNs
can thus be difficult as the gradients of the parameters may
either explode or vanish.

B. Unrolling Sparse Coding Algorithms into Deep Networks

The earliest work in algorithm unrolling dates back to Gre-
gor et al.’s paper on improving the computational efficiency of
sparse coding algorithms through end-to-end training [13]. In
particular, they discussed how to improve the efficiency of the
Iterative Shrinkage and Thresholding Algorithm (ISTA), one
of the most popular approaches in sparse coding. The crux of
this work is summarized in Fig. 3 and detailed in the box on
Learned ISTA. Each iteration of ISTA comprises one linear
operation followed by a non-linear soft-thresholding opera-
tion, which mimics the ReLU activation function. A diagram
representation of one iteration step reveals its resemblance to

3

Figure: Figure 1 of [Monga, Li, Eldar 2019.].

NB: In imaging, typical to use convolutional neural networks (CNNs).

To appear in IEEE Signal Processing Magazine

TABLE I
SUMMARY OF RECENT METHODS EMPLOYING ALGORITHM UNROLLING IN PRACTICAL SIGNAL PROCESSING AND IMAGING APPLICATIONS.

Reference Year Application domain Topics Underlying Iterative Algorithms

Hershey et al. [30] 2014 Speech Processing Signal channel source separation Non-negative matrix factorization

Wang et al. [26] 2015 Computational imaging Image super-resolution Coupled sparse coding with iterative shrink-
age and thresholding

Zheng et al. [31] 2015 Vision and Recognition Semantic image segmentation Conditional random field with mean-field it-
eration

Schuler et al. [32] 2016 Computational imaging Blind image deblurring Alternating minimization

Chen et al. [16] 2017 Computational imaging Image denoising, JPEG deblocking Nonlinear diffusion

Jin et al. [27] 2017 Medical Imaging Sparse-view X-ray computed tomography Iterative shrinkage and thresholding

Liu et al. [33] 2018 Vision and Recognition Semantic image segmentation Conditional random field with mean-field it-
eration

Solomon et al. [34] 2018 Medical imaging Clutter suppression Generalized ISTA for robust principal compo-
nent analysis

Ding et al. [35] 2018 Computational imaging Rain removal Alternating direction method of multipliers

Wang et al. [36] 2018 Speech processing Source separation Multiple input spectrogram inversion

Adler et al. [37] 2018 Medical Imaging Computational tomography Proximal dual hybrid gradient

Wu et al. [38] 2018 Medical Imaging Lung nodule detection Proximal dual hybrid gradient

Yang et al. [14] 2019 Medical imaging Medical resonance imaging, compressive
imaging

Alternating direction method of multipliers

Hosseini et al. [39] 2019 Medical imaging Medical resonance imaging Proximal gradient descent

Li et al. [40] 2019 Computational imaging Blind image deblurring Half quadratic splitting

Zhang et al. [41] 2019 Smart power grids Power system state estimation and forecasting Double-loop prox-linear iterations

Zhang et al. [42] 2019 Computational imaging Blind image denoising, JPEG deblocking Moving endpoint control problem

Lohit et al. [43] 2019 Remote sensing Multi-spectral image fusion Projected gradient descent

Yoffe et al. [44] 2020 Medical Imaging Super resolution microscopy Sparsity-based super-resolution microscopy
from correlation information [45]

Blurred Image y ∗fL ∗fL−1

· · ·

· · ·

∗f1

M1
(
·, ·; ζ1

)

g0

M3 (·, ·)

k0

g1

M2
(
·;β1

)· · ·Layer L− 1Layer LM4
(
·, ·, ·; η, fL

)

Estimated Image x̃

k1

· · ·

Layer 1

Estimated Kernel k̃

z1

kL−2

zL−2gL zL−1

kL−1

Fig. 8. Diagram illustration of DUBLID [15]. The analytical operations M1,M2,M3,M4 correspond to casting the analytic expressions in (10) and (11)
into the network. Trainable parameters are colored in blue. In particular, the parameters f l, l = 1, . . . , L denote trainable filter coefficients in the l-th layer.

8

Figure: Table 1 of [Monga, Li, Eldar 2019.].

Why unrolling?

I Fast NN approximations for sparse regularisation.
E.g. Modern computational platforms optimised towards the relevant operations
and also seek to reduce the number of iterations/layers.

I Sometimes can carry over theory and prove convergence results and
generalisation properties. (Example - FIRENETs to follow)

I Can we combine best of both hand crafted priors and learning?

I Can we understand what the NN is doing? E.g. Does this help us spot limitations?

I Can be very easy to train - less parameters, use iterative method as a warm start,...

However...

I Training a fixed number of layers can incur instability issues mentioned above.
I Generalisation can be worse than classical iterative algorithms.
I Learning can prevent convergence analysis of iterative methods carrying over.

E.g. Current theoretical guarantees for LISTA involve parameters computed as solutions of
intractably large optimisation problems and that are not used in practice. Moreover, not
clear whether the needed assumptions on A hold in practice.

Current challenges: Accuracy stability trade-off and theoretical guarantees.

Tune in next time for...

We have now laid down all the groundwork for:

I Overcoming barriers: Structured sampling and achieving kernel awareness

I FIRENETs - neural networks based on unrolled and restarted primal-dual
algorithms that are stable and have exponential convergence!

I Applications in imaging.

I Numerical examples.

DAY I DAY II Day III

Gravity of AI Inverse Problems Achieving Kernel Awareness
Image Classification Instabilities & Kernel Awareness FIRENETs

Need for Foundations Intriguing Barriers Imaging Applications
AI for Image Reconstruction Algorithm Unrolling Numerical Examples

