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MAIN GOAL

Determine the barriers of computations in deep learning
(i.e. what is and what is not possible)

Y
Stability and Accuracy in Al
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Figure: Standard 3D MRI headscan. Scanning time = 15 min (our experiment done with data
from Cambridee Universitv Hosnital)

[Experiment and data from Bogdan Roman and Anders C. Hansen




Can we improve image reconstruction?

Figure: Left: Standard full sampling. Right: One type of compressed sensing approaches to
esolution enhancine. Scanning time for both = 15 min

Experiment and data from Bogdan Roman and Anders C. Hansen




Can we improve image reconstruction?

Figure: Two different compressed sensing approaches to resolution enhancing. Scanning time =
15 min
[Experiment and data from Bogdan Roman and Anders C. Hansen ]




Can we improve image reconstruction?

Figure: Left: Standard full sampling. Right: The correct type of compressed sensing approaches
o resolution enhancing Scanning time for both = 15 min
Experiment and data from Bogdan Roman and Anders C. Hansen ]




Given measurements y = Ax + e, of x € My C RN, recover x.

» Here A€ R™N is a (underdetermined) matrix with m < N,
» x is the unknown signal of interest,

» and e is noise or perturbations.



Given measurements y = Ax + e, of x € My C RN, recover x.

» Here A€ R™N is a (underdetermined) matrix with m < N,
» x is the unknown signal of interest,

» and e is noise or perturbations.

Examples of sets M:
» M; = 'Set of natural images’
> M = Set of s-sparse vectors
> M; = N(A)*
» M1 = Union of subspaces



Standard algorithms

Sparse solutions of linear systems and its’ relation to
Imaging



xx|

Ax =y

We say that a vector x € CN is s-sparse, if it has at most s non-zero components.



Sparse solutions of underdetermined systems have many
applications!

» Linear regression in statistics — The LASSO
» Medical imaging - MRI, CT, microscopy ...
» Non-linear function approximation

» Error correction

» Explainable Al - LIME

» Dictionary learning and sparse coding

» Classification



Solve one of the problems:
Quadratically constrained basis pursuit (QCBP):

min ||z|[;1 subject to [[Az —y|lp <7 (P1)
zeCN
Unconstrained LASSO (U-LASSO):
min [|Az — yl[7 + Allzln (P2)
zeCN
Square-root LASSO (SR-LASSO):

min [|Az — y|l2 + Al|z|[n (P3)
zeCN

We let =;(y, A) denote the set of minimizers for (P;), given input A€ C™N y ¢ C™.



Why do we get sparse solutions?

xt v

The optimal solution
x* € argmin,cpe ||zl subject to Az =y

for different values of p.
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Regression Shrinkage and Selection via the Lasso

By ROBERT TIBSHIRANI{
University of Toronto, Canada

[Received January 1994. Revised January 1995]

SUMMARY

We propose a new method for estimation in linear models. The ‘lasso’ minimizes the
residual sum of squares subject to the sum of the absolute value of the coefficients being less
than a constant. Because of the nature of this constraint it tends to produce some
coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies
suggest that the lasso enjoys some of the favourable properties of both subset selection and
ridge regression. It produces interpretable models like subset selection and exhibits the
stability of ridge regression. There is also an interesting relationship with recent work in
adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and
can be applied in a variety of statistical models: extensions to generalized regression models
and tree-based models are briefly described.

Keywords: QUADRATIC PROGRAMMING; REGRESSION; SHRINKAGE; SUBSET SELECTION

1. INTRODUCTION

Consider the usual regression situation: we have data (x', y;), i=1, 2, . . ., N, where
X' = (x;, ..., x;)" and y; are tge regressors and response for the ith observation.
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Robust Uncertainty Principles: Exact Signal
Reconstruction From Highly Incomplete
Frequency Information

Emmanuel J. Candés, Justin Romberg, Member, IEEE, and Terence Tao

Abstract—This paper considers the model problem of recon-
structing an object from incomplete frequency samples. Consider
a discrete-time signal f € C" and a randomly chosen set of
frequencies (2. Is it possible to reconstruct f from the partial
knowledge of its Fourier coefficients on the set 2?

A typical result of this paper is as follows. Suppose that f is a
superposition of || spikes f(¢) = EYET f(7)8(t — 7) obeying
IT| < Cpa+ (log N)™* - 2]
for some constant Crr > 0. We do not know the locations of the
spikes nor their amplitudes. Then with probability at least 1 —
O(N M), f can be reconstructed exactly as the solution to the ¢,

minimization problem

N-1

min Y g(8)|, stg(w) = f(w)forallw € Q.
g t=0

In short, exact recovery may be obtained by solving a convex op-
timization problem. We give numerical values for Cy; which de-
pend on the desired probability of success. Our result may be in-
terpreted as a novel Kind of nonlinear sampling theorem. In effect,
it says that any signal made out of |T'| spikes may be recovered by
convex programming from almost every set of frequencies of size
O(|T| - 1og IN'). Moreover, this is nearly optimal in the sense that

1. INTRODUCTION

N many applications of practical interest, we often wish to

reconstruct an object (a discrete signal, a discrete image,
etc.) from incomplete Fourier samples. In a discrete setting, we
may pose the problem as follows; let [ be the Fourier trans-
form of a discrete object f(t), t = (t,....tq) € L% =
10,1, N — 1}

Flwy= 37 f(t)e ittt et (N

teZy

The problem is then to recover f from partial frequency infor-
mation, namely, from f(w), where w = (wy,...,w,) belongs
to some set  of cardinality less than N“—the size of the dis-
crete object.

In this paper, we show that we can recover [ exactly from
observations _ﬂg! on small set of frequencies provided that f
is sparse. The recovery consists of solving a straightforward
optimization problem that finds f* of minimal complexity with
ffw) = f(w),Vw € £

A. A Puzzling Numerical Experiment



(a) Original (b) Sampling map

(c) Classical recovery (d) Compressed sensing
(linear) recovery



Images are sparse in transformed domains

Image x Wix
W = Wavelets

In sparse regularization we use
% € argmin,con ||Wz||p  subject to  ||Az —y|[z <n

as our solution to the inverse problem.



Robust null space property

Notation: Let Q C {1,..., N} and let Pq € RV*N be the projection

x; 1€Q
Pox = .
0 otherwise

Definition (Robust Null Space Property)

A matrix A € C™*N satisfies the robust Null Space Property (rNSP) of order
1 < s < N with constants 0 < p <1 and~v >0 if

14 1
[ Pax|le < %HPQXHZl + Y| Ax| 2,

for all x € CN and any Q C {1,..., N} with |Q| <s.




Theorem 1
Let Ac C™N with m < N and let W € CN*N be unitary. Suppose that AW~ has

the rNSP of order s with constants 0 < p <1 and~ > 0. Let y = Ax+ e and let

0 <\ < G /(v/s5GC). Then every minimizer 2 € CN of the problem
min A[|Wz[|p +[|Az — y||2 (P3)
zeCN

satisfies

n Wx C
1% — x|l < 26 "S(ﬁ ) 4 <\/§1>\ + C2> el 2,

where C; and C, are the constants in (10), and

os(z)p = inf{||z — t||p : t is a s-sparse vector}

denotes the distance to a s-sparse vector.



[ » Adcock, B., & Hansen, A. C., ‘Compressive Imaging: Structure, Sampling,
Learning', Cambridge University Press, 2021 (to appear).
https://www.compressiveimagingbook.com

» Foucart, S., & Rauhut, H., ‘A Mathematical Introduction to Compressive
Sensing', birkhauser, 2013.



https://www.compressiveimagingbook.com

Al replacing standard algorithms in inverse problems



The basic inverse problem — Image denoising

Clear image x € CN is contaminated by unknown noise e, and we are given access to
measurements of the form
y=x+te,

The task is to reconstruct x from the noisy measurements y.



The Basics of Deep Learning in Denoising

Given a crappy images y € RY, train a neural network ¢ € N'A'y [ 4 to get a good
images

x = d(y).

In practice, one tries to learn the noise and use

x=y—¢(y).



The Basics of Deep Learning in Denoising

Denoising experiment with deep learning

Original Noisy version Denoised with Neur. Net.




>> I = phantom(512); theta_1 = [0:1:179];
>> y = radon(I, theta_1);
>> imshow(I); imagesc(y)

The image under the Radon
transform (sinogram)

Logan-Shepp Phantom




DL in Inverse Problems: 1st Step

[0:3:179];
iradon(y,theta_3);

>> I = phantom(512); theta_3
>> y = radon(I, theta_3); II
>> imshow(I); imagesc(II)

Reconstruction with the filtered
back projection using 60 lines

Logan-Shepp Phantom




Crazy idea: The filtered back projection gives a noisy image.

Why don't we try deep learning to denoise the image. In particular, we train a
neural network ¢ such that

x ~ iradon(radon(x)) — ¢(iradon(radon(x))



DL in Inverse Problems: 1st Step

Deep Convolutional Neural Network for

Inverse Problems in Imaging

Kyong Hwan Jin, Michael T. McCann, Member, IEEE, Emmanuel Froustey,
Michael Unser, Fellow, IEEE

Abstract

In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for
solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard ap-
proach to ill-posed inverse problems in the past few decades. These methods produce excellent results,
but can be challenging to deploy in practice due to factors including the high computational cost of
the forward and adjoint operators and the difficulty of hyper parameter selection. The starting point
of our work is the observation that unrolled iterative methods have the form of a CNN (filtering
followed by point-wise non-linearity) when the normal operator (H*H, the adjoint of H times H)
of the forward model is a convolution. Based on this observation, we propose using direct inversion
followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates
the physical model of the system, but leads to artifacts when the problem is ill-posed: the CNN combines
multiresolution decomposition and residual leaming in order to learn to remove these artifacts while
preserving image structure. We demonstrate the performance of the proposed network in sparse-view



Computerised Tomography (CT) experiment with deep learning

Original Recon-FBP (50 lines) Recon-NeurNet (50 lines)




Can neural networks for image reconstruction be unstable?



The Instability Test

Given a neural network W : C™ — CN that is able to reconstruct images from, for
example, MRI (Fourier) data

mxN
Ydata = AscanXimagea Ascan € C

\U(Ydata) = Ximage>
find a perturbation x5 with ||xs]| < &, where 6 > 0 is small, such that
w(ydata + AX5) = Ximage + Xartefact

or
w(}’data + Axs ) = Ximage T Xfalsetumor-



How do we compute worst-case perturbations?

To find a worst case perturbation for a neural network W: C™ — CN we seek to
maximize

Q(r) = [W(A(x + r)) = W(AX)IIz = Allr7

using a gradient based optimization method.



Network from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, 'A deep cascade of convolutional neural networks for MR
image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647-658.

Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., 'On instabilities of deep learning in image reconstruction and the
potential costs of Al'. Proc. Natl. Acad. Sci. USA, 2020..
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image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647-658.

Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., 'On instabilities of deep learning in image reconstruction and the
potential costs of Al'. Proc. Natl. Acad. Sci. USA, 2020..




Network from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, 'A deep cascade of convolutional neural networks for MR
image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647-658.

Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., 'On instabilities of deep learning in image reconstruction and the
potential costs of Al'. Proc. Natl. Acad. Sci. USA, 2020..




Network from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, 'A deep cascade of convolutional neural networks for MR
image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647-658.

Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., 'On instabilities of deep learning in image reconstruction and the
potential costs of Al'. Proc. Natl. Acad. Sci. USA, 2020..




SoA from Ax SoA from A(x + r3)

Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., 'On instabilities of deep learning in image reconstruction and the
potential costs of Al'. Proc. Natl. Acad. Sci. USA, 2020..
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Al generated hallucinations — Instabilities

X+r




Testing on standard methods

State-of-the-art from Ax State-of-the-art from A(x + r)




Network architecture from: Hammernik, K., Klatzer, T., Kobler, E., Recht, M. P., Sodickson, D. K., Pock, T., & Knoll, F., 'Learning a variational
network for reconstruction of accelerated MRI data’. Magnetic resonance in medicine, 79(6), 3055-3071.

Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., 'On instabilities of deep learning in image reconstruction and the
potential costs of Al'. Proc. Natl. Acad. Sci. USA, 2020..




Network architecture from: Hammernik, K., Klatzer, T., Kobler, E., Recht, M. P., Sodickson, D. K., Pock, T., & Knoll, F., 'Learning a variational
network for reconstruction of accelerated MRI data’. Magnetic resonance in medicine, 79(6), 3055-3071.

Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., 'On instabilities of deep learning in image reconstruction and the
potential costs of Al'. Proc. Natl. Acad. Sci. USA, 2020..




State-of-the-art from Ax State-of-the-art from A(x + r)

Figures from: Antun, V., Renna, F., Poon , & Hansen, A. C., 'On instabilities of deep learning in image reconstruction and the
potential costs of Al'. Proc. Natl. Acad. Sci. USA, 2020.




We are not only striving for stable methods, but also
accurate methodes.



Accelerating MR Imaging with Al — fastMRI

FACEBOOK Al ﬁumﬁm blic - Submission Guic - s v A Login
L

fastMRI

Accelerating MR Imaging with Al

Latest News

& Updates 10-05-2020
Using e Tt learni
pereanaine A seesered s scans © O
Read More
Whatis fastMRl is a collaborative To enable the broader research
research project between community to participate in

faStM RI? Facebook Al Research (FAIR) this important project, NYU
and NYU Langone Health. The Langone Health has released
aim is to investigate the use of  fully anonymized raw data and
Al to make MRI scans up to 10 image datasets. Visit our
times faster. github repository, which



False negatives — 4 x Speedup

Philips & LUMC MSDC-RNN holykspace
Avg rank: 2.286 Avg rank: 2.286 Avg rank: 2.714

AM
Avg rank: 2.714

(a) Top row: Results for one slice from an acquisition without fat suppression. This case shows subtle pathology in the ROI
indicated by a white rectangle in the ground truth image. Bottom row: One slice from an acquisition with fat suppression.

(b) Zoomed view of the ROI that shows a subchondral osteophyte (highlighted by a white arrow in the ground truth

Thoi baloc isiblo o L

Figure from: Knoll, Florian, et al. ‘Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019
fastMRI challenge’. Magnetic Resonance in Medicine (2020).




False negatives — 8 x Speedup

Philips & LUMC holykspace AM Almsterdam
Avg rank: 1.286 Avg rank: 2.571 Avg rank: 3.000 Avg rank: 3.143

(a) Top row: Results for one slice from an acquisition without fat suppression. This case shows shows moderate artifact from a
metal implant. Bottom row: One slice from an acquisition with fat suppression. This case shows shows a meniscal tear in the ROI
indicated by a white rectangle in the ground truth image.

(b) Zoomed view of the ROI that shows a meniscal tear (highlighted by a white arrow in the ground truth reconstruction). This

Figure from: Knoll, Florian, et al. ‘Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019
fastMRI challenge’. Magnetic Resonance in Medicine (2020).




The Accuracy Test

Given a neural network W : C™ — CN that is able to reconstruct images from, for
example, MRI (Fourier) data

mxN
Ydata = AscanXimagea Ascan € C

\U(Ydata) = Ximage>

Check if the network can reconstruct unseen detail Xgetail With ||Xdetail|]| < 0, where
6 > 0 is small, such that

\U(Ydata + AXdetail) = Ximage 1T Xdetails

NB: To make the test fair, we make the detail just large enough for a standard method
to capture it.



Al generated hallucinations — Lack of accuracy

(Image + detail) x + r

Cropped version




Al generated hallucinations — Lack of accuracy

Network rec. W(A(x + r)) (cropped) State-of-the-art: ®(A(x + r)) (cropped)

Network from: K. H. Jin, M. T. McCann, E. Froustey and M. Unser, 'Deep convolutional neural network for inverse problems in imaging', |IEEE
Transactions on Image Processing, vol. 26, no. 9, pp. 4509-4522, 2017.




(Image+detail) x + r

(cropped version)

Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., 'On instabilities of deep learning in image reconstruction and the
potential costs of Al'. Proc. Natl. Acad. Sci. USA, 2020..




Al generated hallucinations — Lack of accuracy
V(A(x+r)) SoA from A(x + r)

Network from: G. Yang, S. Yu, H. Dong, G. Slabaugh, P. L. Dragotti, X. Ye, F. Liu, S. Arridge, J. Keegan, Y. Guo and D. Firmin, DAGAN: Deep
de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction, IEEE Transactions on Medical Imaging, 2017.

Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., 'On instabilities of deep learning in image reconstruction and the
potential costs of Al'. Proc. Natl. Acad. Sci. USA, 2020..




(Cropped version)

(Image+detail) x + r

Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., 'On instabilities of deep learning in image reconstruction and the
potential costs of Al'. Proc. Natl. Acad. Sci. USA, 2020..




V(A(x +r)) SoA from A(x + r)

Network from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, 'A deep cascade of convolutional neural networks for MR
image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647-658.

Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., 'On instabilities of deep learning in image reconstruction and the
potential costs of Al'. Proc. Natl. Acad. Sci. USA, 2020..




Why does the Al halucinate?

There is a trade-off between stability and accuracy.



Why do we see instabilites?

The troublesome kernel: why deep learning for
inverse problems is typically unstable

Nina M. Gottschling*  Vegard Antunf  Ben Adcock!  Anders C. Hansen®
January 7, 2020

Abstract

There is overwhelming empirical evidence that Deep Learning (DL) leads to unstable
methods in applications ranging from image classification and computer vision to voice
recognition and automated diagnosis in medicine. Recently, a similar instability phe-
nomenon has been discovered when DL is used to solve certain problems in computational
science, namely, inverse problems in imaging. In this paper we present a comprehensive
mathematical analysis explaining the many facets of the instability phenomenon in DL for
inverse problems. Our main results not only explain why this phenomenon occurs, they also
shed light as to why finding a cure for instabilities is so difficult in practice. Additionally,
these theorems show that instabilities are typically not rare events — rather, they can occur
even when the measure are subject to completely random noise — and consequently
how easy it can be to destablis ain trained neural networks. We also examine the
delicate balance between reconstruction performance and stability, and in particular, how
DL methods may outperform state-of-the-art sparse regularization methods, but at the cost
of instability. Finally, we demonstrate a counterintuitive phenomenon: training a neural
network may generically not yield an optimal reconstruction method for an inverse problem.

Keywords: Deep learning, stability, inverse problems, imaging, sparse regularization

Mathematics Subject Classification (2010): 65R32, 94A08, 68T05, 65M12



Overperformance yields instabilities

‘Theorem 2 (Universal Instability Theorem)

Let Ac C™N where m < N, and let W : C™ — CN be a continuous map. Suppose
there are x,x' € CN and n > 0 such that

|W(Ax) — x|| <, and [W(AX)—X| <n, (1)
and
|[Ax — AX'|| < 7. (2)

We then have the following:

(i) (Instability with respect to worst-case perturbations) Then the local
e-Lipschitz constant at y = Ax satisfies

V(z) -V 1
L5(V,y) ==  sup ”(z)_—(y)” >=(Ix=x1N-2n), Ve>n (3)
o<llz—yll<e Nz =Yl £




Overperformance yields instabilities

Theorem 2 (Universal Instability Theorem)

Let Ae C™N where m < N, and let W : C™ — CN be a continuous map. Suppose
there are x,x' € CN and n > 0 such that

|W(Ax) — x|| <n, and [W(AX)—X| <n, (4)
and
[Ax — AX|| < 7. (5)
We then have the following:

(i) (False negatives).There is a z € CN with ||z|| > ||x — X’
llell < n such that

|, an e € C™ with

[W(A(x +2) +e) — x|l <n (6)




Overperformance yields instabilities

N

Theorem 2 (Universal Instability Theorem)

Let Ae C™N where m < N, and let W : C™ — CN be a continuous map. Suppose
there are x,x' € CN and n > 0 such that

|W(Ax) — x|| <n, and [W(AX)—X| <n, (7)
and
[Ax — AX|| < 7. (8)
We then have the following:

(i) (False positives).There is a z € CN with ||z|| > ||x — X’
llell < n such that

|, an e € C™ with

[W(Ax +€) = (x+2)[ <n (9)




If a reconstruction method becomes ‘too accurate’, it will
become unstable.

However, if a reconstruction method becomes ‘too stable’,
it can not be very accurate.



Kernel awareness: The cardinal sin of recovering two elements x and x’, whose
difference x — x’ lies close to the kernel of A.

Many popular defence techniques provide no guarantees against
overperformance:

» Enforcing consistency
» Training with random sampling patterns
» Adding random noise

» Adversarial training/augmenting the training set

For details see:
Gottschling, N. M., Antun, V., Adcock, B., & Hansen, A. C. (2020). The troublesome kernel:

why deep learning for inverse problems is typically unstable. arXiv preprint arXiv:2001.01258.
https://arxiv.org/abs/2001.01258



https://arxiv.org/abs/2001.01258

Kernel awareness is built into compressive sensing theory

Theorem 3

Suppose the matrix A € C™*N satisfies the robust null space property (rNSP) or
order s, with constants 0 < p < 1 and v > 0. Then for all s-sparse vectors x,z € CV,

G
Iz =xllp < S lIA(z = x)ll

where

G = @. (10)




Problem: Approximate function f: M C RY — {0, 1}

Approach: Sample the graph {(x, f(x)) : x € M} and use this information to
compute an approximation f: M — {0,1}

Question in imaging:
> Will a map f: C™ — CN satisfying ||F(Ax') — x;|| < & for i =1,...,r, be optimal?
> Does there exist a map 7: C™ — CN, statisfying ||f(Ax") — x;|| < 6 for
i=1,...,r7



Convenient to describe the inverse problem in terms of a triple {A, M1, M>}, given by

a sampling map A € C™N where m < N,
a domain My C CN, where (M3, d1) is a metric space,
the range My = A(M1) C C™, where (M2, db) is also a metric space.

The inverse problem is now as follows:

Given measurements y = Ax of x € M, recover x.



» A multivalued mapping is written with double

f
arrows as sup inf d(z, y)

zeX VEY

©: My=CVN

» We use the Hausdorff metric on the set of
bounded subsets of M,

dH(Z,X) = max{ sup inf dy(z,x), sup inf di(z,x)},
xeX z€Z zeZ xeX

With slight abuse of notation we will denote a
singleton {x} C M; by x.

Sup mf d(zx,y)
yey zeX



What do we try to learn? The optimal map

Definition 4 (Optimal map)
Let d; be a metric on CN, M; c CN, A e C™N and M, = A(M31). The optimality
constant of {A, M1} is

Copt(A, M1) = inf sup df(p(Ax), x). 11
p(AM) = inf | sup dfi(o(Ax). ) (1)

A map p: My = CV is optimal if it attains the infimum in (11)




Theorem 2

Let the metrics di and d» be on CN and C™ be induced by norms. Let A € CcmxN
with rank(A) > 1, where m < N, K € {2,...,00}, § < 1/5 and B C CN be the
closed unit ball (with respect to di). Then the following holds:
(i) (Training may not yield optimal maps). There exist uncountably many
My C B, such that for each My there exist uncountably many sets
T C My x My with |T| = K, where My = A(M;), satisfying the following.
Any map V : My — M (potentially multivalued V : My = M, ) satisfying

di(W(y),x) <6,  Y(y,x)eT, (12)

is not an optimal map. If K is finite, one can choose |M;| = K + 1.



Paradox Il: We do not know the optimal map

(Theorem 3

Let the metrics di and d» be on CN and C™ be induced by norms. Let A€ C™*N

with rank(A) > 1, where m < N, K € {2,...,00}, § <1/5 and B C CN be the

closed unit ball (with respect to di). Then the following holds:

(i) (The map sought by training may not exist). There exist uncountably many
domains My C B with |[M1| = K such that, with My = A(M3), there does not
exist a map V : My — Mj (nor a multivalued map V : My = M) for which

di'(W(y),x) <6, Y(y,x) € Ma x M.




Stable and accurate reconstruction is only possible under
certain conditions



Can we compute neural networks that solve (P;)?

min x|l subject to [[Ax —yll2<n (P

XE
min A||x||p + ||Ax — )/“?2 (P»)
xeCN
min Allx||1 + ||Ax — y| 2 (Ps)
xeCN

Interested in the minimising vectors (denoted =).



» Avoid bizarre, unnatural & pathological mappings: (P;) well-understood & well-used!
» Simpler solution map than inverse problem =- stronger impossibility results.
» Sparse regularisation is often used as a benchmark method.

» DL has also been used to speed up sparse regularisation and tackle (P;).
(see section on LISTA and unrolling later)



(i) There does exist a neural network that approximates the function, however, there
does not exist an algorithm that can construct the neural network.

(iii) There does exist a neural network that approximates the function, and an algorithm
to construct it. However, the algorithm will need prohibitively many samples.

The following theorems showcase (ii) and (iii).



A e C™N (modality), S = {yx}f_; c C™ (samples), R < oo

Question: Given a collection Q of (A, S), does there exist a neural network
approximating = (solution map of (P;)), and can it be trained by an algorithm?

In practice, the matrix A is not known exactly or cannot be stored to infinite precision.
Assume access to: {yx ,}R_; and A, (rational approximations, e.g. floats) such that
[yin =yl <277, |JAp— A <277, VneN.

And {xin}5_; such that infuc=(a, y, ) lIXkn — x| <277, VneN.

Training set associated with (A,S) € Q is

tas = {(Vk.n, An,xkn) |k=1,...,R, and n € N}.



Good news - a neural network exists

(Theorem (Neural networks exist for =)
For (P;) and any family Q of (A,S), there exists a mapping

K:tas — vas (a neural network)

such that @ s(y) solves (P;) for each y € S. In other words, IC maps the training
_data to NNs that solve the optimisation problem (P;) for each (A,S) € Q.

Proof.

Easy - apply universal approximation/interpolation theorems.



A e C™N (modality), S = {yx}f_; c C™ (samples), R < oo

Question: Given a collection Q of (A, S), does there exist a neural network
approximating = (solution map of (P;)), and can it be trained by an algorithm?

In practice, the matrix A is not known exactly or cannot be stored to infinite precision.
Assume access to: {yx ,}R_; and A, (rational approximations, e.g. floats) such that
[yin =yl <277, |JAp— A <277, VneN.

And {xin}5_; such that infuc=(a, y, ) lIXkn — x| <277, VneN.

Training set associated with (A,S) € Q is

tas = {(Vk.n, An,xkn) |k=1,...,R, and n € N}.



Bad news - can’t necessarily approximate such a neural network

(i)

(iii)

rTheorem 4

For (P;), N> 2 and m < N. Let K > 2 be a positive integer, L € N. Then there exists a
well-conditioned class (condition numbers < 1) Q of elements (A, S) s.t. (0 fixed in what follows):

=N

There does not exist any algorithm that, given a training set va s, produces a neural network

¢A,$ with

in i —x*||p <107K :
min _dnf Noas() =<7l <1077, ¥(A,5) € Q (13)

Furthermore, for any p > 1/2, no probabilistic algorithm can produce a neural network ¢a s
such that (13) holds with probability at least p.
There exists an algorithm that produces a neural network ¢a s such that
. _F < —(K-1) .
ryneaé( - elg(fA,y) HQSA»S(Y) X ”/2 <10 ) V(Aa S) €N

N—m

However, for any such algorithm (even probabilistic), M € N and p € [0, Niiem

), there exists a
training set va,s such that for ally € S,
]P’( in(fA )||¢A’5(y) — x| > 10" or size of training data needed > M) > p.
x*e€=(A,y
There exists an algorithm using only L training data from each 1a s that produces a neural
network ¢a s(y) such that

inf —x"p <107 V(A S)eq
max . dnf,  Ieasy) =Xl < » V(AS) €




Nice classes 2 where one can prove NNs with great approximation qualities exist. But:
» No algorithm, even randomised can train (or compute) such a NN accurate to K
digits with probability greater than 1/2.

P> There exists a deterministic algorithm that computes a NN with K — 1 correct digits,
but any such (even randomised) algorithm needs arbitrarily many training data.

P There exists a deterministic algorithm that computes a NN with K — 2 correct
digits using no more than L training samples.

Existence vs computation (universal approximation/interpolation theorems not enough).

Conclusion: Theorems on existence of neural networks may have little to do with the
neural networks produced in practice.



Understanding the theorem statement Il: well-conditioned

> Classical matrix condition number: Cond(AA*) = ||AA*||||(AA*)~ L.

» Of mapping;:
distance between outputs

lim - .
perturbation size |0 distance between inputs

» Feasibility: For (P1),
size of problem

distance to infeasibility

[Useful book: Biirgisser P., Cucker F., 2013. Condition : The geometry of numerical a/gorithms.]




» For first statement: Any model (Turing machine, analog computers, etc.).

» For second and third statement: Turing machines (digital computers).

Result independent of neural network architecture - a universal barrier.

Use the Solvability Complexity Index (SCI) - tools that classify problems measuring
their intrinsic difficulty and proving optimality of algorithms.




Key question: What is possible in scientific computation?

» Combine techniques from numerical analysis, functional analysis and approximation
theory = new algorithms.

» Classify problems in a computational hierarchy measuring their intrinsic difficulty
and the optimality of algorithms =- prove that algorithms realise the boundaries of
what computers can achieve.

Colbrook, M.J., Roman, B. and Hansen, A.C., 2019. How to compute spectra with error
control. Physical review letters, 122(25), p.250201.

Colbrook, M.J., Horning, A. and Townsend, A. Computing spectral measures of self-adjoint
operators. SIAM Review, to appear.

Hansen, A., 2011. On the solvability complexity index, the n-pseudospectrum and
approximations of spectra of operators. Journal of the American Mathematical Society, 24(1).

Ben-Artzi, J., Colbrook, M.J., Hansen, A.C., Nevanlinna, O. and Seidel, M., 2020. Computing
Spectra - On the Solvability Complexity Index Hierarchy and Towers of Algorithms. arXiv
preprint arXiv:1508.03280.




Centred and standardised (columns of the matrix A below are normalised) Lasso problem
in — I ||2 Allx]|
min AsDsx + Allx]|1.
BN L) Y2 1

Take m=3,N =2, A =1/10, and

1 1
\/51 ’ \/51 3x2 T 3
20 0

where Dy is the unique diagonal matrix s.t. columns of A;Ds each have norm /m.

Use MATLAB's lasso solver.



Numerical example: fails in MATLAB

Live demo...



Default settings

‘RelTol’ = €mach

‘RelTol’ = €mach

. v —1
MaxIter = € nach

0 Error RunTime Warn Error RunTime Warn Error RunTime Warn
27T 11-100 < 0.01s 0 1-100®* < 0.01s 0 1-10°1° < 0.01s 0
27 0.68 < 0.01s 0 2.10°16 0.02s 0 2.10°16 0.02s 0
215 1.17 < 0.01s 0 1.17 0.33s 1 1-10711 1381.5s 0
2-20 1.17 < 0.01s 0 1.17 0.33s 1 no output > 12h 0
2724 1.17 < 0.01s 0 1.17 0.34s 1 no output > 12h 0
272 1.17 < 0.01s 0 1.17 0.34s 1 no output > 12h 0
228 1.17 < 0.01s 0 1.17 < 0.01s 0 1.17 < 0.01s 0
2-30 1.17 < 0.01s 0 1.17 < 0.01s 0 1.17 < 0.01s 0

Most of the time, no warning is issued despite nonsensical outputs.




— < 9—n
dist(Wa, (). 52(4.9) | dist(@a, (). Za(Ay) | T IN=TT a0k |
0.2999690 0.2597827 n=10 107 | K=1
0.3000000 0.2598050 n=20 107 | K=1
0.3000000 0.2598052 n=30 107t | K=1
0.0030000 0.0025980 n=10 1073 | K=3
0.0030000 0.0025980 n=20 1073 | K=3
0.0030000 0.0025980 n=30 1073 | K=3
0.0000030 0.0000015 n=10 107 | K=6
0.0000030 0.0000015 n=20 10°° | K=6
0.0000030 0.0000015 n=230 10° | K=6

Table: (Impossibility of computing the existing neural network to arbitary accuracy). A
constructed from discrete cosine transform, R = 8000, N = 20, m = 19, solutions are 6-sparse.
We demonstrate the impossibility statement (i) on FIRENETs ®4,, and trained LISTA networks
W4,. The table shows the shortest /2 distance between the output from the networks, and the
true minimizer of the problem (Ps), with w; = 1 and A = 1, for different values of n and K.




Similar phase transitions can be built for (P;) in arbitrary dimensions.



Algorithm unrolling:
[terative algorithms for (P;) = deep neural networks

Monga, V., Li, Y. and Eldar, Y.C., 2019. Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing. arXiv preprint arXiv:1912.10557.




Recall (P>):
argmin,con Fa(x, y) = Allx|lp + | Ax — ylIR.

Assume all vectors are real. Popular iterative method is the Iterative Shrinkage and
Thresholding Algorithm (ISTA):

D) gy <X<n> - LA (A - y)> .

Daubechies, |., Defrise, M. and De Mol, C., 2004. An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics,
57(11), pp.1413-1457.
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Learned iterative shrinkage and thresholding algorithm (LISTA)

Idea: This looks like a neural
network. Let's try learning!

Learn the linear maps.

Learn 0 for

Hp(x) = (Ix]

0) sign(x

NB: We can apply the stability
test through back-propagation.

Learning Fast Approximations of Sparse Coding

Karol Gregor and Yann LeCun

{KGREGOR, YANN}@CS.NYU.EDU

Courant Institute, New York University, 715 Broadway, New York, NY 10003, USA

Abstract

In Sparse Coding (SC), input vectors are re-
constructed using a sparse linear combination
of basis vectors. SC has become a popu-
lar method for extracting features from data.
For a given input, SC minimizes a quadratic
reconstruction error with an L penalty term
on the code. The process is often too slow for
applications such as real-time pattern recog-
nition. We proposed two versions of a very
fast algorithm that produces approximate es-
timates of the sparse code that can be used to
compute good visual features, or to initialize
exact iterative algorithms. The main idea is
to train a non-linear, feed-forward predictor
with a specific architecture and a fixed depth
to produce the best possible approximation
of the sparse code. A version of the method,
which can be seen as a trainable version of
Li and Osher’s coordinate descent method, is
shown to produce approximate solutions with
10 times less computation than Li and Os-
her’s for the same approximation error. Un-
like previous proposals for sparse code pre-
dictors, the system allows a kind of approxi-
mate “explaining away” to take place during
inference. The resulting predictor is differ-
entiable and can be included into globally-
trained recognition systems.

have been proposed to learn the dictionary. There have
been applications of sparse coding in many fields in-
cluding visual neuroscience (Olshausen & Field, 1996:
Hoyer, 2004; Lee et al., 2007) and image restora-
tion (Elad & Aharon, 2006; Ranzato et al., 2007b;
Mairal et al., 2008). Recently, these methods have
been the focus of a considerable amount of re-
search for extracting visual features for object recogni-
tion (Ranzato et al., 2007a; Kavukcuoglu et al., 2008;
Lee ef al., 2009 Yang et al., 2009; Jarrett ct al., 2009
Yu et al., 2009). A major problem with sparse cod-
ing for applications such as object recognition is that
the inference algorithm is somewhat expensive, pro-
hibiting real-time applications. Given an input image
the inference algorithm must compute a sparse vector
for each and every patch in the image (or for all lo-
cal collections of low-level features, if sparse coding is
used as a second stage of transformation (Yang et al.,
2009)).  Consequently, a large amount of research
has been devoted to seeking efficient optimiza-
tion algomlum for sparse coding (Daubechies et al.,

2004, 2006; Wu & Lange, 2008; Li & Osher,
Manal et al, 2009; Beck & Teboulle, 2009;
al., 2008; Vmw,ar'h & Unser, 2007).

; Lee

200
Hale et

The main contribution of this paper is a highly effi-
cient learning-based method that computes good ap-
proximations of optimal sparse codes in a fixed amount
of time. uming that the basis vectors of a sparse
coder been trained and are being kept fixed,
the main mp(. of the method i to trin o paramcter-

mom.linear “encader” function ta needict the an.




LISTA

Results for dictionary for 10 x 10 sparse image patches.

error
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Unrolling

m=========-e-u---- End-to-end Training = -===========,
Output

:] Unrolling Input —»‘—‘_» .-+ — Output

T ?

“hoocooooo
~Eoocoooco

EEEEY =

Input

- Interpretable Layers

Fig. 1. A high-level overview of algorithm unrolling: given an iterative algorithm (left), a corresponding deep network (right) can be generated by cascading
its iterations h. The iteration step h (left) is executed a number of times, resulting in the network layers hl b2, ... (right). Each iteration h depends on
algorithm parameters 6, which are transferred into network parameters §1, 62, . . . . Instead of determining these parameters through cross-validation or analytical
derivations, we learn §*,02, ... from training datasets through end-to-end training. In this way, the resulting network could achieve better performance than
the original iterative algorithm. In addition, the network layers naturally inherit interpretability from the iteration procedure. The learnable parameters are
colored in blue.

Figure: Figure 1 of [Monga, Li, Eldar 2019.].

NB: In imaging, typical to use convolutional neural networks (CNNs).



Reference Year Application domain Topics Underlying Iterative Algorithms
Hershey et al. [30] 2014 Speech Processing Signal channel source separation Non-negative matrix factorization
Wang et al. [26] 2015  Computational imaging  Image super-resolution Coupled sparse coding with iterative shrink-
age and thresholding
Zheng et al. [31] 2015  Vision and Recognition ~ Semantic image segmentation Confiilional random field with mean-field it-
eration
Schuler et al. [32] 2016  Computational imaging  Blind image deblurring Alternating minimization
Chen et al. [16] 2017  Computational imaging  Image denoising, JPEG deblocking Nonlinear diffusion
Jin et al. [27] 2017 Medical Imaging Sparse-view X-ray computed tomography Tterative shrinkage and thresholding
Liu et al. [33] 2018  Vision and Recognition ~ Semantic image segmentation Con'ditiona] random field with mean-field it-
eration
Solomon et al. [34] 2018 Medical imaging Clutter suppression Generalized ISTA for robust principal compo-
nent analysis
Ding et al. [35] 2018  Computational imaging ~ Rain removal Alternating direction method of multipliers
Wang et al. [36] 2018 Speech processing Source separation Multiple input spectrogram inversion
Adler et al. [37] 2018 Medical Imaging Computational tomography Proximal dual hybrid gradient
Wu et al. [38] 2018 Medical Imaging Lung nodule detection Proximal dual hybrid gradient
Yang et al. [14] 2019 Medical imaging Medical resonance imaging, compressive  Alternating direction method of multipliers
imaging
Hosseini et al. [39] 2019 Medical imaging Medical resonance imaging Proximal gradient descent
Li er al. [40] 2019  Computational imaging  Blind image deblurring Half quadratic splitting
Zhang et al. [41] 2019 Smart power grids Power system state estimation and forecasting ~ Double-loop prox-linear iterations
Zhang et al. [42] 2019  Computational imaging ~ Blind image denoising, JPEG deblocking Moving endpoint control problem
Lohit et al. [43] 2019 Remote sensing Multi-spectral image fusion Projected gradient descent
Yoffe et al. [44] 2020 Medical Imaging Super resolution microscopy Sparsity-based super-resolution microscopy

from correlation information [45]

Figure: Table 1 of [Monga, Li, Eldar 2019.].
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Fast NN approximations for sparse regularisation.
E.g. Modern computational platforms optimised towards the relevant operations
and also seek to reduce the number of iterations/layers.

Sometimes can carry over theory and prove convergence results and
generalisation properties. (Example - FIRENETS to follow)

Can we combine best of both hand crafted priors and learning?
Can we understand what the NN is doing? E.g. Does this help us spot limitations?

Can be very easy to train - less parameters, use iterative method as a warm start,...



» Training a fixed number of layers can incur instability issues mentioned above.
P> Generalisation can be worse than classical iterative algorithms.
P> Learning can prevent convergence analysis of iterative methods carrying over.
E.g. Current theoretical guarantees for LISTA involve parameters computed as solutions of
intractably large optimisation problems and that are not used in practice. Moreover, not
clear whether the needed assumptions on A hold in practice.

Current challenges: Accuracy stability trade-off and theoretical guarantees.



We have now laid down all the groundwork for:

» Overcoming barriers: Structured sampling and achieving kernel awareness

> FIRENETS - neural networks based on unrolled and restarted primal-dual
algorithms that are stable and have exponential convergence!

» Applications in imaging.

» Numerical examples.

DAY | DAY II Day Il
Gravity of Al Inverse Problems Achieving Kernel Awareness
Image Classification Instabilities & Kernel Awareness FIRENETSs

Need for Foundations
Al for Image Reconstruction

Intriguing Barriers
Algorithm Unrolling

Imaging Applications
Numerical Examples




