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MAIN GOAL

Determine the barriers of computations in deep learning

(i.e. what is and what is not possible)

⇓
Stability and Accuracy in AI

Wir müssen wissen - wir werden wissen!
— David Hilbert



Some of the results found in (links included):

I Antun, Colbrook and Hansen, 2021. Can stable and accurate neural networks be computed?
- On the barriers of deep learning and Smale’s 18th problem. arXiv:2101.08286.

I Gottschling, Antun, Adcock, and Hansen, 2020. The troublesome kernel: why deep learning
for inverse problems is typically unstable. arXiv:2001.01258.

I Antun, Renna, Poon, Adcock, and Hansen, 2020. On instabilities of deep learning in image
reconstruction and the potential costs of AI. PNAS.

https://github.com/Comp-Foundations-and-Barriers-of-AI

https://arxiv.org/abs/2101.08286
https://arxiv.org/abs/2001.01258
https://www.pnas.org/content/117/48/30088.short
https://github.com/Comp-Foundations-and-Barriers-of-AI


Outline of lectures

DAY I DAY II Day III

Gravity of AI Inverse Problems Achieving Kernel Awareness
Image Classification Instabilities & Kernel Awareness FIRENETs

Need for Foundations Intriguing Barriers Imaging Applications
AI for Image Reconstruction Algorithm Unrolling Numerical Examples

Slides will be hosted at http://www.damtp.cam.ac.uk/user/mjc249/Talks.html.
Useful references for further reading in grey boxes.

Comments and suggestions welcome! (vegarant@math.uio.no, m.colbrook@damtp.cam.ac.uk)

http://www.damtp.cam.ac.uk/user/mjc249/Talks.html


Interest in deep learning unprecedented and exponentially growing

Google search (7th Jan) “deep learning” or “machine learning” yields ≈2.5 billion hits
Contrast with “computational mathematics” which has <150 million hits

Figure: Source: ‘Deep Learning to Solve Challenging Problems’ (Google AI)

To keep up last year, you would need to continually read a paper every < 5 mins!



Why is AI suddenly such a big deal?



Deep Learning is changing our lives

I AI techniques are replacing humans in problem solving.

I AI techniques are replacing established algorithms in science.



AI replacing humans

I Self-driving vehicles

I Automated diagnosis in medicine

I Automated decision processes

I Automated weapon systems

I Music composition

I Call centres

I Any security system based on face or voice recognition

I Amazon’s Alexa smart speaker

I Mathematical proofs



AI replacing (and/or enhancing) established algorithms

I Medical imaging (MRI, CT, etc)

I Microscopy

I Imaging problems in general

I Radar, sonar, etc.

I Methods for solving PDEs



The Pioneers



Citation from the Turing Award jury



Before and after 2012 - The ImageNet competition



A paradigm shift

Top 5 ILSVRC 2012 Results
1st Error: 16.4% Deep Learning
2nd Error: 26.1% Other approach
3rd Error: 26.9% Other approach
4th Error: 29.5% Other approach
5th Error: 34.4% Other approach

Top 5 ILSVRC 2017 Results
1st Error: 2.3% Deep Learning
2nd Error: 2.5% Deep Learning
3rd Error: 2.7% Deep Learning
4th Error: 3.0% Deep Learning
5th Error: 3.2% Deep Learning

Table: Results from ImageNet Large Scale Visual Recognition Competition (ILSVRC).



Protein folding: open problem since Anfinsen’s 1972 Nobel Prize

 

 



Protein folding: open problem since Anfinsen’s 1972 Nobel Prize

“This computational work represents a
stunning advance on the protein-folding
problem, a 50-year-old grand challenge in
biology. It has occurred decades before
many people in the field would have
predicted. It will be exciting to see the
many ways in which it will fundamentally
change biological research.”

— Venki Ramakrishnan
(2009 Nobel Prize in Chemistry, President

of the Royal Society 2015–2020)



AI techniques replace doctors



Automated cancer diagnosis with AI



No more integrals?! AI can solve your maths homework!

 

 

DEEP LEARNING FOR SYMBOLIC MATHEMATICS

Guillaume Lample∗
Facebook AI Research
glample@fb.com

François Charton∗
Facebook AI Research
fcharton@fb.com

ABSTRACT

Neural networks have a reputation for being better at solving statistical or approxi-
mate problems than at performing calculations or working with symbolic data. In
this paper, we show that they can be surprisingly good at more elaborated tasks
in mathematics, such as symbolic integration and solving differential equations.
We propose a syntax for representing mathematical problems, and methods for
generating large datasets that can be used to train sequence-to-sequence models.
We achieve results that outperform commercial Computer Algebra Systems such
as Matlab or Mathematica.



AI replaces standard algorithms in medical imaging

Claim: “superior immunity to noise and a reduction in reconstruction artefacts compared
with conventional handcrafted reconstruction methods”



A bold claim?!



Strong confidence in deep learning

The New Yorker (most influential magazine in the world) quotes Geoffrey
Hinton (April 2017):

“They should stop training radiologists now.”



An intriguing debate

Google’s Ali Rahimi, winner of the Test-of-Time award 2017 (NeurIPS), “Machine
learning has become alchemy. ... I would like to live in a society whose systems are built
on top of verifiable, rigorous, thorough knowledge, and not on alchemy.”



An intriguing debate
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Has artificial intelligence 
become alchemy?

A
li Rahimi, a researcher in artificial 

intelligence (AI) at Google in San 

Francisco, California, took a swipe at 

his field last December—and received 

a 40-second ovation for it. Speaking 

at an AI conference, Rahimi charged 

that machine learning algorithms, in which 

computers learn through trial and error, 

have become a form of “alchemy.” Research-

ers, he said, do not know why some algo-

rithms work and others don’t, nor do they 

have rigorous criteria for choosing one AI 

architecture over another. Now, in a paper 

presented on 30 April at the International 

Conference on Learning Representations in 

Vancouver, Canada, Rahimi and his collabo-

rators document examples of what they see 

as the alchemy problem and offer prescrip-

tions for bolstering AI’s rigor.

“There’s an anguish in the field,” Rahimi 

says. “Many of us feel like we’re operating on 

an alien technology.” 

The issue is distinct from AI’s reproduc-

ibility problem (Science, 16 February, p. 725), 

in which researchers can’t replicate each 

other’s results because of inconsistent ex-

perimental and publication practices. It also 

differs from the “black box” or “interpret-

ability” problem in machine learning: the 

difficulty of explaining how a particular AI 

has come to its conclusions (Science, 7 July 

2017, p. 22). As Rahimi puts it, “I’m trying to 

draw a distinction between a machine learn-

ing system that’s a black box and an entire 

field that’s become a black box.”

Without deep understanding of the ba-

sic tools needed to build and train new al-

gorithms, he says, researchers creating AIs 

resort to hearsay, like medieval alchemists. 

“People gravitate around cargo-cult prac-

tices,” relying on “folklore and magic spells,” 

adds François Chollet, a computer scientist 

at Google in Mountain View, California. 

For example, he says, they adopt pet meth-

ods to tune their AIs’ “learning rates”—how 

much an algorithm corrects itself after each 

mistake—without understanding why one 

is better than others. In other cases, AI re-

searchers training their algorithms are sim-

ply stumbling in the dark. For example, they 

implement what’s called “stochastic gradient 

descent” in order to optimize an algorithm’s 

parameters for the lowest possible failure 

rate. Yet despite thousands of academic pa-

pers on the subject, and countless ways of 

applying the method, the process still relies 

on trial and error.

Rahimi’s paper highlights the wasted ef-

fort and suboptimal performance that can 

result. For example, it notes that when other 

researchers stripped most of the complexity 

from a state-of-the-art language translation 

algorithm, it actually translated from Eng-

lish to German or French better and more ef-

ficiently, showing that its creators didn’t fully 

grasp what those extra parts were good for. 

Conversely, sometimes the bells and whistles 

tacked onto an algorithm are the only good 

parts, says Ferenc Huszár, a machine learn-

ing researcher at Twitter in London. In some 

cases, he says, the core of an algorithm is 

technically flawed, implying that its good re-

sults are “attributable entirely to other tricks 

applied on top.”

Rahimi offers several suggestions for 

learning which algorithms work best, and 

when. For starters, he says, researchers 

should conduct “ablation studies” like those 

done with the translation algorithm: delet-

ing parts of an algorithm one at a time to see 

the function of each component. He calls for 

“sliced analysis,” in which an algorithm’s per-

formance is analyzed in detail to see how im-

provement in some areas might have a cost 

elsewhere. And he says researchers should 

test their algorithms with many different 

conditions and settings, and should report 

performances for all of them.

Ben Recht, a computer scientist at the 

University of California, Berkeley, and co-

author of Rahimi’s alchemy keynote talk, 

says AI needs to borrow from physics, where 

researchers often shrink a problem down 

to a smaller “toy problem.” “Physicists are 

amazing at devising simple experiments to 

root out explanations for phenomena,” he 

says. Some AI researchers are already tak-

ing that approach, testing image recogni-

tion algorithms on small black-and-white 

handwritten characters before tackling large 

color photos, to better understand the algo-

rithms’ inner mechanics.

Csaba Szepesvári, a computer scientist 

at DeepMind in London, says the field also 

needs to reduce its emphasis on competitive 

testing. At present, a paper is more likely to 

be published if the reported algorithm beats 

some benchmark than if the paper sheds 

light on the software’s inner workings, he 

says. That’s how the fancy translation al-

gorithm made it through peer review. “The 

purpose of science is to generate knowledge,” 

he says. “You want to produce something 

that other people can take and build on.”

Not everyone agrees with Rahimi and 

Recht’s critique. Yann LeCun, Facebook’s 

chief AI scientist in New York City, wor-

ries that shifting too much effort away 

from bleeding-edge techniques toward core 

understanding could slow innovation and 

discourage AI’s real-world adoption. “It’s not 

alchemy, it’s engineering,” he says. “Engi-

neering is messy.”

Recht sees a place for methodical and ad-

venturous research alike. “We need both,” he 

says. “We need to understand where failure 

points come so that we can build reliable 

systems, and we have to push the frontiers 

so that we can have even more impressive 

systems down the line.” j

Matthew Hutson is a journalist based in 

New York City. 

By Matthew Hutson

Machine learning needs more rigor, scientists argue

Gradient descent relies on trial and error to optimize 

an algorithm, aiming for minima in a 3D landscape.

Published by AAAS

on January 17, 2021
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Current challenges

It seems AI is unstoppable, but there are
problems with current technologies

I Explainability

I Theoretical guarantees

I Stability (e.g. adversarial examples)

Later: Aspects of explainability and
theoretical guarantees.
Next: Case study of stability
(or, rather, lack thereof)...



Deep learning for decision problems



Deep learning for classification

Object: a classification function f : Rd → {0, 1}
What we are given: a training set T = {(x1, f (x1)), . . . , (x r , f (x r ))} ⊂ Rd × {0, 1}.
Goal: find a “good” approximation f̃ : Rd → {0, 1} to f .

Test f̃ on a classification (or a test) set C = {y1, . . . , y s}. Success is measured by

|{y j ∈ C | f (y j) = f̃ (y j)}|
s

https://towardsdatascience.com/10-papers-you-should-read-to-understand-image- classification-
in-the-deep-learning-era-4b9d792f45a7
Fawzi, A., Moosavi-Dezfooli, S.M. and Frossard, P., 2017. The robustness of deep networks: A
geometrical perspective. IEEE Signal Processing Magazine.
Shalev-Shwartz, S. and Ben-David, S., 2014. Understanding machine learning: From theory to
algorithms. Cambridge university press.

https://towardsdatascience.com/10-papers-you-should-read-to-understand-image-classification-in-the-deep-learning-era-4b9d792f45a7
https://towardsdatascience.com/10-papers-you-should-read-to-understand-image-classification-in-the-deep-learning-era-4b9d792f45a7
https://towardsdatascience.com/10-papers-you-should-read-to-understand-image-classification-in-the-deep-learning-era-4b9d792f45a7


Neural networks (NNs)

Let NNN, with N = (NL,NL−1, . . . ,N1,N0 = d) denote the set of all L-layer neural
networks. That is, all mappings φ : Rd → RNL of the form

φ(x) = VL(ρ(VL−1(ρ(. . . ρ(V1(x)))))), x ∈ Rd .

Vjy = Wjy + bj , Wj ∈ RNj×Nj−1 , bj ∈ RNj

Here ρ : R→ R is some non-linear function that acts pointwise on a vector.

NB: Other architectures are possible, e.g. skip connections, different ρ’s etc.

Reference for definition of NN:
Pinkus, A., 1999. Approximation theory of the MLP model in neural networks. Acta numerica,
8(1), 143-195.



Common choices of ρ

ρ : R→ R acts elementwise on a vector.

Sigmoid: ρ(x) = 1/(1 + e−x) ReLu: ρ(x) = max(0, x)

tanh: ρ(x) = tanh(x) Leaky ReLu: ρ(x) =

{
x x ≥ 0

αx x < 0



Approximation qualities of neural nets

Theorem (Universal Approximation Theorem)
Let ρ ∈ C (R) and assume that ρ is not a polynomial. Let K ⊂ Rd be compact, f ∈ C (K ) and
ε > 0. Then there exists a neural network (with on hidden layer) φ such that

sup
x∈K
|φ(x)− f (x)| ≤ ε.

Theorem (Universal Interpolation Theorem)
Let ρ ∈ C (R) and assume that ρ is not a polynomial. For any k distinct points {xj}kj=1 ⊂ Rd

and associated data {αj}kj=1 ⊂ R. Then there exists a neural network (with on hidden layer) φ
such that

φ(xj) = αj , j = 1, . . . , k.

Gühring, I., Kutyniok, G. and Petersen, P., 2020. Error bounds for approximations with deep
ReLU neural networks in W s,p norms. Analysis and Applications, 18(05), pp.803-859.
Pinkus, A., 1999. Approximation theory of the MLP model in neural networks. Acta numerica,
143-195.



Approximation qualities of neural nets

A zoo of so-called “universal approximation” theorems. However, this is not enough:

(a) Other methods (e.g. polynomials, splines, wavelets, etc.) have universal
approximation theorems. Why are NNs so effective? E.g., are there useful classes of
functions that are efficiently approximated by NNs but not classical methods?

(b) We want to construct or compute a good neural network. There is a subtle
difference between existence and computability (more on this later).

We will focus on point (b). For point (a) (which is largely open) see:

DeVore, R., Hanin, B. and Petrova, G., 2020. Neural Network Approximation. arXiv preprint
arXiv:2012.14501.



Training Neural Networks

Let θ ∈ Rn be the weights of a neural network φ(·, θ) ∈ NNN.

Given a classification function f : Rd → {0, 1}, a training set T = {x1, . . . , x r} ⊂ Rd , a
cost function C : RNL × RNL → R+, and seek to minimize

minimize
θ∈Rn

L(θ) :=
r∑

i=1

C (φ(x j , θ), f (x j)),

using gradient based methods

θi+1 = θi − η∇θL(θi )

This has been a HUGE empirical success!



What could go wrong?

(i) There does not exist a neural network that approximates the function we are
interested in.

(ii)

(iii)



What could go wrong?

(i) There does not exist a neural network that approximates the function we are
interested in.

(ii)

(iii)

NB: There is a mathematical theory suggesting that neural nets have all the
approximation qualities that are needed.



What could go wrong?

(i) There does not exist a neural network that approximates the function we are
interested in.

(ii) There does exist a neural network that approximates the function, however, there
does not exist an algorithm that can construct the neural network.

(iii)

NB: There is a mathematical theory suggesting that neural nets have all the
approximation qualities that are needed.



What could go wrong?

(i) There does not exist a neural network that approximates the function we are
interested in.

(ii) There does exist a neural network that approximates the function, however, there
does not exist an algorithm that can construct the neural network.

(iii) There does exist a neural network that approximates the function, and an algorithm
to construct it. However, the algorithm will need prohibitively many samples.

NB: There is a mathematical theory suggesting that neural nets have all the
approximation qualities that are needed.
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What could go wrong?

(i) There does not exist a neural network that approximates the function we are
interested in.

(ii) There does exist a neural network that approximates the function, however, there
does not exist an algorithm that can construct the neural network.

(iii) There does exist a neural network that approximates the function, and an algorithm
to construct it. However, the algorithm will need prohibitively many samples.

NB: There is a mathematical theory suggesting that neural nets have all the
approximation qualities that are needed.

We’ll see examples of (ii) and (iii) later.



AI Generated Hallucinations – Instabilities in Deep Learning



AI Generated Hallucinations in classification/decision problems



AI Generated Hallucinations in classification/decision problems



AI Generated Hallucinations – Instabilities in Deep Learning



Deep Fool

Deep Fool was established at EPFL in order to study the stability of neural networks.



Reading material

I Fawzi, A., Moosavi-Dezfooli, S. M., Frossard, P. (2017). ‘The robustness of deep
networks: A geometrical perspective’. IEEE Signal Processing Magazine, 34(6),
50-62.

I Moosavi-Dezfooli, S. M., Fawzi, A., Frossard, P. (2016). ‘Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition’, (pp. 2574-2582).

I Moosavi-Dezfooli, S. M., Fawzi, A., Fawzi, O., Frossard, P. (2017). ‘Universal
adversarial perturbations’. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 1765-1773).

I Kanbak, C., Moosavi-Dezfooli, S. M., Frossard, P. (2018). ‘Geometric robustness
of deep networks: analysis and improvement’. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 4441-4449).



Deep Fool in practice



Deep Fool: Universal perturbations



Deep Fool: Examples



Deep Fool: Examples

VGG-F CaffeNet GoogLeNet VGG-16 VGG-19 ResNet-152

VGG-F 93.7% 71.8% 48.4% 42.1% 42.1% 47.4%

CaffeNet 74.0% 93.3% 47.7% 39.9% 39.9% 48.0%

GoogLeNet 46.2% 43.8% 78.9% 39.2% 39.8% 45.5%

VGG-16 63.4% 55.8% 56.5% 78.3% 73.1% 63.4%

VGG-19 64.0% 57.2% 53.6% 73.5% 77.8% 58.0%

ResNet-152 46.3% 46.3% 50.5% 47.0% 45.5% 84.0%

Table: The rows indicate the architecture for which the universal perturbations is computed, and
the columns indicate the architecture for which the fooling rate is reported.



Structural perturbations



Structural perturbations

Structural perturbations can also cause the network to fail.



How do we compute additive adversarial perturbations?

Notation

I f : Rd → [0, 1]C - Neural network classifier.

I k̂ : Rd → {1, 2, . . . ,C}. - Predicted label.

k̂(x) = argmaxj∈{1,...,C} f (x)j .

Seeking minimal perturbation changing the prediction

r∗(x) ∈ argminr∈Rd ‖r‖ subject to k̂(x + r) 6= k̂(x)





Random Noise

1. Draw v ∼ N (0, Id) (normal distibution)

2. Solve
α∗ ∈ argminα>0 α subject to k̂(x + αv) 6= k̂(x)

3. Set r∗ = α∗v



Random Noise

‖r‖l2/‖x‖l2 = 1.47



Fast Gradient

1. Let L(s) = ‖f (x + s)− f (x)‖2l2 .

2. Let v = ∇sL

3. Solve
α∗ ∈ argminα>0 α subject to k̂(x + αv) 6= k̂(x)

4. Set r∗ = α∗v



Fast Gradient

‖r‖l2/‖x‖l2 = 0.34



Deep Fool

‖r‖l2/‖x‖l2 = 0.0052



Deep Fool – How does it work?

Binary classification:
Given a classification function f : Rd → R and an image x0 ∈ Rd we would like to solve

r∗(x0) ∈ argmin ‖r‖l2 subject to sign(f (x0 + r)) 6= sign(f (x0))

We make the classification based on sign(f (x0)).



Deep Fool for Binary Linear Classifier

Let f : Rd → R be given by f (x) = wT x + b.

f (x) < 0

f (x) > 0

r∗(x) = − f (x0)
‖w‖2

l2
w

x0

Figure: Adversarial example for a binary linear classifier

Deepfool: a simple and accurate method to fool deep neural networks (2016), S.M.
Moosavi-Dezfooli et al.



Deep Fool for Binary Classifier

We would like to solve

r∗(x0) ∈ argmin ‖r‖l2 subject to sign(f (x0 + r)) 6= sign(f (x0))

Approximate f at xi with an linear version f (xi ) +∇f (xi )
T (x − xi ).

1: Input: image x , classifer f
2: Output: Perturbation r̃
3: Initialize: x0 ← x , i ← 0, η ← 0.02, r̃ ← 0
4: while sign(f (x + (1 + η)r̃)) = sign(f (x)) do

5: ri ← − f (xi )
‖∇f (xi )‖2l2

∇f (xi )

6: xi+1 ← xi + ri
7: r̃ ← r̃ + ri
8: i ← i + 1

9: return r̃



Deep Fool for Multiclass Linear Classifier

Let

P =
C⋂

k=1

{x : fk̂(x0)(x) ≥ fk(x)}

F3

F2

F1

x0

Fk = {x : fk̂(x0)(x)− fk(x) = 0}



Is the behaviour we are seeing reasonable?

Consider a linear classifier w>x + b in Rd . Then

w>(x + ∆x) + b = w>x + w>∆x + b

Under the constraint ‖∆x‖l∞ ≤ ε we can choose ∆xi = ε sign(wi ) so the classification
changes by

ε‖w‖l1 ≈ ε d 〈|w |〉

where 〈|w |〉 is the avrage of the entries in w .

What happens for large d?

Insight from:
Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). ‘Explaining and harnessing adversarial
examples’. arXiv preprint arXiv:1412.6572.



What does deep learning learn?







What does deep learning learn?



What does deep learning learn?



What does deep learning learn?



What does deep learning learn?



Can we check what the neural networks learn?



Can we check what the neural networks learn?



The need for foundations.



Echoes of an old story

Hilbert’s vision at start of 20th century: provide secure foundations for all mathematics.

I All mathematical statements should be written in a
precise formal language, and manipulated according
to well defined rules.

I Completeness: a proof that all true mathematical
statements can be proved in the formalism.

I Consistency: a proof that no contradiction can be
obtained in the formalism of mathematics.

I Decidability: an algorithm for deciding the truth or
falsity of any mathematical statement.



Echoes of an old story

Hilbert’s 10th problem: Provide an algorithm which, for any given Diophantine
equation (polynomial equation with integer coefficients and finite number of unknowns),
can decide whether the equation has an integer-valued solution.

E.g.: xn + yn = zn (c.f. Fermat’s last theorem)



Echoes of an old story

Gödel and Turing turned Hilbert’s optimism upside down by showing how there are true
statements in mathematics that cannot be proven and that there are problems that
cannot be computed by an algorithm.

Hilbert’s 10th problem (Solution in 1970, Matiyasevich): No such algorithm exists.

Poonen, B., 2014. Undecidable problems: a sampler. Interpreting Gödel: Critical Essays.



A discussion with Fields Medalist Artur Avila

Many scientists from a broad spectrum of areas have expressed various views
and opinions about the possible future consequences of the advancement of AI,
do you have any views on this?

Being a dynamicist, my training has taught me to a large extent that there are a lot of
limitations when we make predictions. To my understanding, when it comes to AI
peoples’ hopes might be too high at the moment... It is of course correct to continue the
effort... When we learn more about a corresponding domain we are also able to better
understand its limitations. The point is to try to discover directions where the techniques
allow you to go. It is very important and at the same time difficult to know what you
cannot achieve... This is what happened in mathematics when we learned that there are
unsolvable problems and all kind of limitations to formalism. Our understanding changed
completely from Hilbert to Gödel... Maybe, with respect to AI, there are still unknown
theoretical limitations hiding in information theory or even dynamical systems.

Full interview: http://www.mthrassias.com/data/uploads/avila_discussion.pdf

http://www.mthrassias.com/data/uploads/avila_discussion.pdf


A program for the foundations of DL and AI

Smale’s 18th problem*: What are the limits of artificial intelligence?

A program determining the foundations/limitations of deep learning and AI is needed:

I Boundaries of methodologies.

I Universal/intrinsic boundaries (no algorithm can do it).

There is a key difference between existence and construction here.

Need to also incorporate two pillars of numerical analysis:

I Stability (warning to the reader: there are different types of stability)

I Accuracy

GOAL for rest of lectures: Develop some results in this direction for inverse problems.

*Steve Smale composed a list of problems for the 21st century in reply to a request of Vladimir Arnold
inspired by Hilbert’s list.



AI in inverse problems and imaging.



Mathematical setup

Given measurements y = Ax + e recover x ∈ CN .

I x ∈ CN be an unknown vector,

I A ∈ Cm×N be a matrix (m < N) describing modality (e.g. MRI), and

I y = Ax + e the noisy measurements of x .



AI generated hallucinations – Instabilities

|x | |Ψ(Ax)|

Network from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, ’A deep cascade of convolutional neural networks for MR
image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647–658.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..



AI generated hallucinations – Instabilities

|x + r | |Ψ(A(x + r))|

Network from: J. Schlemper, J. Caballero, J. V. Hajnal, A. Price and D. Rueckert, ’A deep cascade of convolutional neural networks for MR
image reconstruction’, in International conference on information processing in medical imaging, Springer, 2017, pp. 647–658.
Figures from: Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C., ’On instabilities of deep learning in image reconstruction and the
potential costs of AI ’. Proc. Natl. Acad. Sci. USA, 2020..



DL is unstable in inverse problems



The press reports on instabilities



Curt Langlotz (Director of the Center for Artificial Intelligence in Medicine and Imaging
at Stanford University) tweets:
“Confirming what many believed about deep learning image reconstruction: ‘Deep
learning typically yields unstable methods for image reconstruction from: 1) tiny
perturbations, 2) structural changes, and 3) changes in the number of samples.”’



I Given the existence of stable and accurate methods, isn’t this a paradox?

I There is a trade-off between stability and accuracy.



Recall the claim

Claim: “superior immunity to noise and a reduction in reconstruction artefacts compared
with conventional handcrafted reconstruction methods”



AUTOMAP FIRENET
|x | |x |

Ψ(Ax) Φ(Ax)



AUTOMAP FIRENET
|x + r1| |x + v1|

Ψ(A(x + r1)) Φ(A(x + v1))



AUTOMAP FIRENET
|x + r2| |x + v2|

Ψ(A(x + r2)) Φ(A(x + v2))



AUTOMAP FIRENET
|x + r3| |x + v3|

Ψ(A(x + r3)) Φ(A(x + v3))



Tune in next time for...

I AI generated hallucinations: The instability test for AI image reconstruction.

I Reasons for instability (kernel awareness).

I An intriguing impossibility result in optimisation and sparse regularisation.
(well-conditioned problems where great neural networks exist but cannot be
computed/trained)

I Algorithm unrolling.

DAY I DAY II Day III

Gravity of AI Inverse Problems Achieving Kernel Awareness
Image Classification Instabilities & Kernel Awareness FIRENETs

Need for Foundations Intriguing Barriers Imaging Applications
AI for Image Reconstruction Algorithm Unrolling Numerical Examples


