Norway - an energy nation. in 2050 ?

Intl. Workshop RES & H₂ for Export

Trondheim, 24th March 2015 **Dr. Steffen Møller-Holst** Vice President Marketing, SINTEF

> Chairman Transport FCH JU – N.ERGHY

SINTEF Technology for a better society

Outline

- Norway's position as an energy nation
- Pre-requisites for retaining this position
- Norway's potential role in an international context
- Hydrogen export as one potential pillar in the energy future

SINTEF Technology for a better society

Courtesy: RCN

Norway - an energy nation.....

Technology for a better society

SINTEF

7th largest exporter of oil
 3rd largest exporter of natural gas
 2nd highest GDP per capita

Security of supply is not an issue
Power generation, > 98 % renewable, potential for more

- Robust distribution grid for electricity
- Norway has 50% of Europe's capacity for pumped hydro

Courtesy: RCN

Norway's oil- and gas production

 Return on investment > 1 100 Bill € since 1970 a'collective'

NORWEY

- Constitutes 22 % share of total GDP
- Employs ~ 50 000+ people
- responsibility The CO₂-emission from Norwegian oil- and gas export corresponds to that of a population of 100 - 150 million
- Long experience and high level of competence in Carbon Capture and Storage (CCS) technologies

- Energy resources available compatible ^w/sustainability criteria
- Technology available to exploit and export "new" energy
- Political ambitions, capability and courage
- Adequate framework conditions
- Industrial commitment

Energy resources available compatible "/sustainability criteria

- Energy resources available compatible "/sustainability criteria
 Natural Gas "/CO₂ capture & storage (CCS) in North Sea bed
- Huge potential for (new) renewable resources
 - Ocean energy (tidal, wave)
 On- & Off-shore wind-power
 Run-off rivers

- Energy resources available compatible "/sustainability criteria
- Natural Gas ^w/CO₂ capture & storage (CCS) in North Sea bed

Courtesy: Statoil

- Large-scale storage of CO_2 on the continental shelf represents a potential solution for Norwegian CO_2 storage and large European CO_2 emission point sources.
- Capacity > 30 Giga-tons of CO₂ in North Sea
 - 8 years of Europe's CO₂ emission
 - 500 years of Norway's CO₂ emission

"Norway – still an energy nation in 2050 ?"

Huge Wind resources:

~ 14 000 TWh

~100 x Domestic annual electricity production:

Courtesy: Statoi

Courtesy: Miljødirektoratet

Onshore:

000 TWh

"Norway – still an energy nation in 2050 ?"

Wind energy

Technically feasible deployment of on-shore wind in 2015 and 2025 (MW)

Area 1
Grid limitations
45 MW installed
Grid extension 2025?
→ "Stranded" wind

SINTEF

Areas 4 & 5:
1000 MW wind planned
Cost ~ 1 300 M€
Require grid extensions ~ 500 M€

- Applications and notifications under evaluation
- Given concession/complaint filed
- Technical feasible deployment by 2015 (MW)
- Technical feasible deployment by 2025 (MW)

Huge Wind resources:

High political climate ambitions & Effective measures in transport Agreement across political parties:

- Cut GHG emissions by 30 % of by 2020 (vs 1990)
- Minimum 2/3 of the GHG reduction domestically (1/3 quota)
- Carbon neutrality within 2050 (incl. quota)
- Cut emissions for passenger cars to 85 g CO_2/km (EU target 95 g CO_2/km)
- Efficient taxation and strong incentives for zero- and low emission vehicles

Political ambitions, capability and courage

Low political understanding of the need for cross-sectorial action

- No consistency in policy making, lacking inter-ministerial alignment:
 - Industrial and energy policy measures for national value creation are weak
 - Long term effort for development of CCS technology has been put on hold
 - Recent fall in oil prices eventually leads to political concern and debate
 - Lack of understanding that Norway may play a central role internationally
 - Policy framework is fragmented between ministries (stationary vs transport)

Incentives for Wind power in Sweden>Norway February 2015: Alignment of rules for depreciations of wind-farms between Norway and Sweden (20% / year) → Increased investments in Norway (30 % better yield)

Green Certificate market, Sweden/Norway

Targeting + 26.4 TWh / year RES by 2020

- → Surplus of electricity in the Nordic countries
- Electricity prices are already falling
- → Need to increase electricity demand to stabilize market

Adequate framework conditions

Aluminium production (pilot) Investment decision February 2015 Cost 450 mill €, ~ 1/3 public support Capacity 75 000 tons/year, Q3 2017 Requires robust power supply 100MW

6000

www.thewindpower.ne

Incentives for Wind power in Sweden>Norway February 2015: Alignment of rules for depreciations of wind-farms between Norway and Sweden (20% / year) → Increased investments in Norway (30 % better yield)

Green Certificate market, Sweden/Norway

Targeting + 26.4 TWh / year RES by 2020

- → Surplus of electricity in the Nordic countries
- Electricity prices are already falling
- → Need to increase electricity demand to stabilize market

Adequate framework conditions

From: Focus on traditional industries

- Raw materials export (fish, minerals, timber)
- Slow adaptation of new industry
- Automation/lean production → high efficiency
- Low emission and safe oil & gas production

To: Industrial Innovation Clusters

- Transfer knowledge from oil and gas to new sectors of industry, incl. renewable energies
- Maritime operations, shipping, competence
- Interdisciplinary sandpit, new ideas
- Recommends large pilot plants to be built

Industrial commitment

Energy resources available compatible ^w/sustainability criteria

Technology available to exploit and export "new" energy

Political ambitions, capability and courage

Adequate framework conditions

Industrial commitment

Norway's potential role internationally

Exporter of renewable electricity based on favourable wind/hydro

- The green battery of Europe, ~ 50 % of pumped hydro capacity
 - Norway's largest dam, Blåsjø, (capacity 8 TWh)
 - Several cables to Europe in the planning
 - Fear for increasing electricity prices in Norway
 → reluctance from Norwegian stakeholders
 - Significant "stranded" renewable energy sources in remote areas \rightarrow H₂?

WHY hydrogen production

Case Raggovidda wind park, Berlevåg:

- Provides > 4000 full load hours
- Long distances to market \rightarrow H₂?
- Pre-study has revealed potential profitable business cases for H₂ production & export to Japan
- Co-production from Natural Gas may cut hydrogen cost significantly

Technology for a better society

"Stranded" Wind potential: Finnmark (on-shore): 2000 MW = 8 TWh/year Otherwise hardly exploitable! May provide H_2 fuel for 1 million Passenger Vehicles !

WHY hydrogen production in Norway?

SINTEF

WHY hydrogen production in Norway?

Liquefied gas tankers (1970→) supported by: ③ SINTEF ◎ NTNU

297

 $LNG \rightarrow LH_2 (\& CO_2)$

H₂ Liquefaction Reduction in energy consumption: 50 %

3. Status of Development

Hydrogen Potential from Overseas

The polar route will connect us soon

Nordic countries may provide H₂ to Japan

- Liquid H_2 may be shipped via the polar route.

Japan may supply FCEVs to Nordic countries

- Low emission carriers powered by boil off hydrogen.

WHY hydrogen as fuel in Norway?

Because Transport contributes by > 30% to domestic GHG emissions, and battery electric vehicles cannot cover the demand in all segments of transport

Technology for a better society

SINTEF

HEXAGON

595

WHY hydrogen export from

Technology for a better society

197

WHY hydrogen export from Norway?

Blending in H₂ in existing NG pipelines: 40 TWh/year

Dedicated H₂ pipeline for higher volumes

297

SINTEF

WHY hydrogen technologies in Norway?

Because Norway has

- vast unexploited, remote renewable energy sources (wind)
- \blacksquare > 90 years' experience with industrial scale H₂-production
- Because H₂ may

dramatically cut domestic CO₂-emissions (fuel for transport)
 supplement electricity as energy carrier (grid balancing & export)
 <u>be (co-)produced from natural gas with CCS</u>

Competent R&D institutions "/wide international network
 Engaged politicians& industry

 National value creation
 SINTEF
 Technology for a better society

