

OpenML

DEMOCRATIZING AND AUTOMATING MACHINE LEARNING

JOAQUIN VANSCHOREN, TU EINDHOVEN, 2016

Research different.

Polymaths: Solve math problems by massive **online** collaboration

Broadcast question, combine many minds to solve it

IENCEphotoL

Networked Science

Serendipity: what's hard for one person is easy for another Collaboration only scales if **all friction is eliminated**

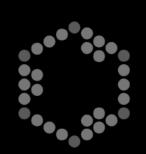
Easy, organized, access to data, code, and results

WHAT IF WE CAN EXPLORE DATA COLLABORATIVELY

WHAT IF WE CAN EXPLORE DATA COLLABORATIVELY ON WEB SCALE

WHAT IF WE CAN EXPLORE DATA COLLABORATIVELY ON WEB SCALE IN REAL TIME

Easy to use: Integrated in many ML environments
Easy to contribute: Automated sharing of data, code, results
Organized data: Reproducible, connected to data, code, people
Reward structure: Build reputation and trust
Self-learning: Learn from millions of experiments to help users



Data (ARFF) uploaded or referenced, versioned analyzed, characterized, organized online

analyzed, characterized, organized online

+ visualizations, statistics, landmarkers, error checking, queryable through website + API

symboling (target)	nominal	6 unique values 0 missing	0 <u>3</u> -3 -2		54	32	27 3
normalized-losses	numeric	51 unique values 41 missing	50 100	150	200	250	300
make	nominal	22 unique values 0 missing	$\begin{array}{c}7 8 \\ 3 \\ 7 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 3 \\ 3 \\ 3$	17 8 1	18 11 7 5	2 ¹²	12 11

✓ Show all 26 features

26 features

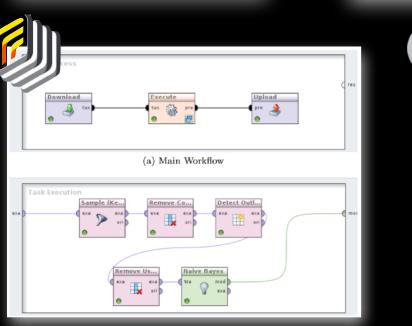
72 properties

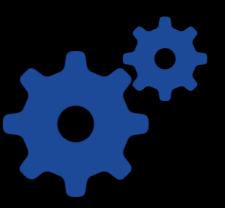
III DefaultAccuracy	0.33	The predictive a
III NumberOfClasses	7	The number of c
III NumberOfFeatures	26	The number of f
III NumberOfInstances	205	The number of i
III NumberOfMissingVal	59	Counts the total

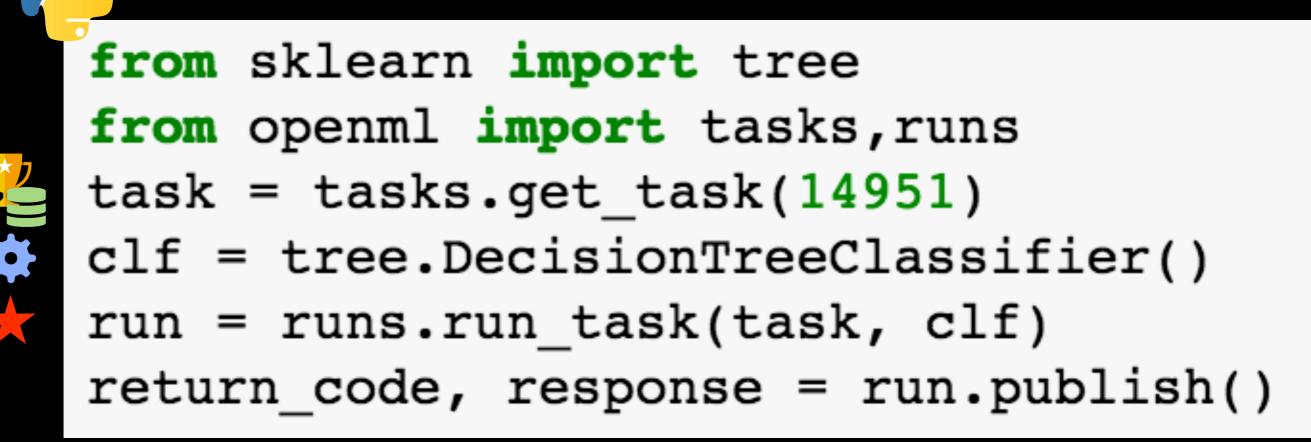
Tasks contain data, goals, procedures. Readable by tools, automates experimentation All results organized online: realtime overview

All results organized online: realtime overview

frontier Joaquin Vanschoren Perry van Wesel Jose Melo Jos Mangnus Daan Peters Tom Becht Kevin Jacobs Koen Engelen ~ Sylwester Kogowski **Olav Bunte** . Stephan Oostveen Roy van den Hurk Ky-Anh Tran Edgar Salas Thomas Tiel Groenestege Richie Brondenstein Jorn Engelbart Mathijs van Liemt Henry He Hugo Spee Stanley Clark Christoforos Boukouvalas Rogier Beckers Stefan Majoor


Flows (code) run anywhere, using your favorite tools Integrations + APIs (REST, R, Python, Java,...)


Integrations + APIs (REST, R, Python, Java,...)


from sklearn import tree
<pre>from openml import tasks,runs</pre>
<pre>task = tasks.get_task(14951)</pre>
<pre>clf = tree.DecisionTreeClassifier()</pre>
<pre>run = runs.run_task(task, clf)</pre>
<pre>return_code, response = run.publish()</pre>

library(OpenML)
library(mlr)
task = getOMLTask(10)
lrn = makeLearner("classif.rpart")
res = runTaskMlr(task, lrn)
run.id = uploadOMLRun(res)

Integrations + APIs (REST, R, Python, Java,...)

Experiments auto-uploaded, evaluated online reproducible, linked to **data, flows, authors** and **all other experiments**

Experiments auto-uploaded, evaluated online

Result files

2

Description

XML file describing the run, including user-defined evaluation measures.

•

Model readable

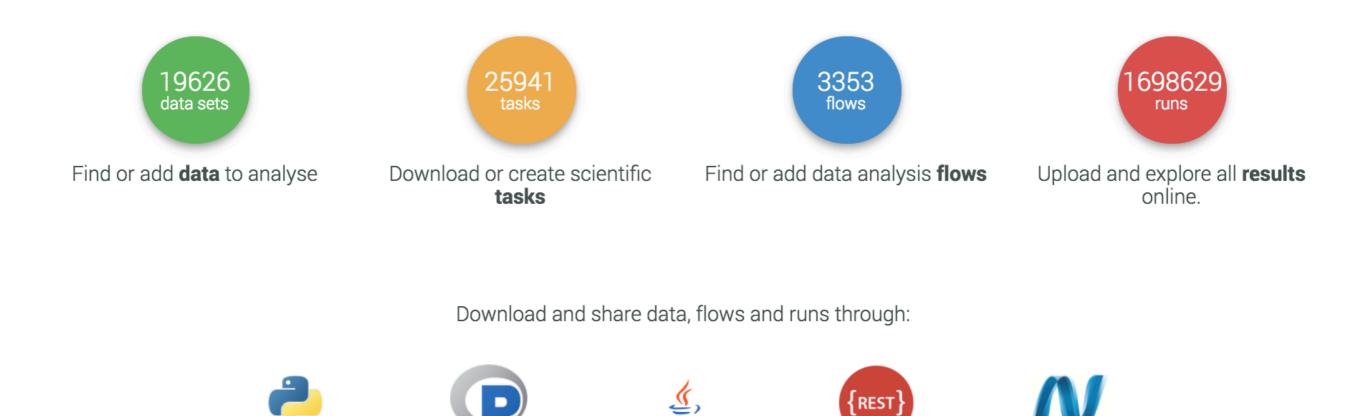
A human-readable description of the model that was built.

Model serialized

A serialized description of the model that can be read by the tool that generated it.

Predictions

ARFF file with instance-level predictions generated by the model.


Cross-validation details (10-fold Crossvalidation)

Exploring machine learning better, together

moa

mIR

learn

OpenML Community

606

1600 registered, 2500 30-day active users

Collaboration tools (in progress)

Circles Create collaborations with trusted researchers

Studies (e-papers)

Online counterpart of a paper, linkable

Reputation Auto-tracking of your activity, reach, impact

Notebooks

Easy online collaboration on data analysis scripts

Join Us! www.openml.org Join our hackathons

Thank You

