
01c - Introduction - scikit-learn

January 15, 2017

1 scikit-learn

scikit-learn is the most prominent Python library for machine learning:

• Contains many state-of-the-art machine learning algorithms
• Offers comprehensive documentation about each algorithm.
• Widely used, and a wealth of tutorials and code snippets are available online.
• scikit-learn works well with numpy, scipy, pandas, matplotlib,...

1.1 Algorithms

See the Reference
Supervised learning:

• Linear models (Ridge, Lasso, Elastic Net, ...)
• Support Vector Machines
• Tree-based methods (Classification/Regression Trees, Random Forests,...)
• Nearest neighbors
• Neural networks
• Gaussian Processes
• Feature selection

Unsupervised learning:

• Clustering (KMeans, ...)
• Matrix Decomposition (PCA, ...)
• Manifold Learning (Embeddings)
• Density estimation
• Outlier detection

Model selection and evaluation:

• Cross-validation
• Grid-search
• Lots of metrics

1

http://scikit-learn.org/stable/documentation
http://scikit-learn.org/stable/user_guide.html
http://scikit-learn.org/dev/modules/classes.html

1.1.1 Data import

Multiple options:

• A few toy datasets are included in sklearn.datasets

• You can import data files (CSV) with pandas or numpy
• You can import 1000s of machine learning datasets from OpenML

1.2 Example: classification

Classify types of Iris flowers (setosa, versicolor, or virginica) based on the flower sepals and petal
leave sizes. Iris

In [9]: from preamble import * # Imports to make code nicer

%matplotlib inline

HTML('''<style>.CodeMirror{min-width:100% !important;}</style>''') # For slides

Out[9]: <IPython.core.display.HTML object>

Note: scikitlearn with return a Bunch object (similar to a dict)

In [3]: from sklearn.datasets import load_iris

iris_dataset = load_iris()

print("Keys of iris_dataset: {}".format(iris_dataset.keys()))

print(iris_dataset['DESCR'][:193] + "\n...")

Keys of iris_dataset: dict_keys(['target', 'DESCR', 'data', 'feature_names', 'target_names'])

Iris Plants Database

====================

Notes

Data Set Characteristics:

:Number of Instances: 150 (50 in each of three classes)

:Number of Attributes: 4 numeric, predictive att

...

The targets (classes) and features are stored as lists, the data as an ndarray

In [4]: print("Target names: {}".format(iris_dataset['target_names']))

print("Feature names: {}".format(iris_dataset['feature_names']))

print("Shape of data: {}".format(iris_dataset['data'].shape))

print("First five columns of data:\n{}".format(iris_dataset['data'][:5]))

Target names: ['setosa' 'versicolor' 'virginica']

Feature names: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']

Shape of data: (150, 4)

First five columns of data:

2

https://www.math.umd.edu/~petersd/666/html/iris_with_labels.jpg

[[5.1 3.5 1.4 0.2]

[4.9 3. 1.4 0.2]

[4.7 3.2 1.3 0.2]

[4.6 3.1 1.5 0.2]

[5. 3.6 1.4 0.2]]

The targets are stored separately as an ndarray, with indices pointing to the features

In [20]: print("Feature names: {}".format(iris_dataset['feature_names']))

print("Target:\n{}".format(iris_dataset['target']))

Target:

[0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 2 2 2 2 2 2 2 2 2 2 2

2 2

2 2]

1.2.1 Measuring Success: Training and testing data

To know whether a classification model is any good, we need to test it on unseen data. Therefore,
we need to split our data in training and test data.
train_test_split will split the data randomly in 75% training and 25% test data.

In [7]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(

iris_dataset['data'], iris_dataset['target'], random_state=0)

print("X_train shape: {}".format(X_train.shape))

print("y_train shape: {}".format(y_train.shape))

print("X_test shape: {}".format(X_test.shape))

print("y_test shape: {}".format(y_test.shape))

X_train shape: (112, 4)

y_train shape: (112,)

X_test shape: (38, 4)

y_test shape: (38,)

Note: there are several problems with this approach that we will discuss later:

• Why 75%? Are there better ways to split?
• What if one random split yields significantly different models than another?
• What if all examples of one class all end up in the training/test set?

3

1.2.2 First things first: Look at your data

Let’s use pandas to visualize our data.

In [10]: # Build a DataFrame with the training examples and feature names

iris_dataframe = pd.DataFrame(X_train, columns=iris_dataset.feature_names)

create a scatter matrix from the dataframe, color by class (y_train)

grr = pd.scatter_matrix(iris_dataframe, c=y_train, figsize=(15, 15), marker='o',

hist_kwds={'bins': 20}, s=60, alpha=.8, cmap=mglearn.cm3)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

se
p
a
l
le

n
g
th

 (
cm

)

2.0

2.5

3.0

3.5

4.0

se
p
a
l
w

id
th

 (
cm

)

1

2

3

4

5

6

7

p
e
ta

l
le

n
g
th

 (
cm

)

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

sepal length (cm)

0.5

1.0

1.5

2.0

2.5

p
e
ta

l
w

id
th

 (
cm

)

2
.0

2
.5

3
.0

3
.5

4
.0

sepal width (cm)

1 2 3 4 5 6 7

petal length (cm) 0
.5

1
.0

1
.5

2
.0

2
.5

petal width (cm)

1.2.3 Building your first model

All scikitlearn classifiers follow the same interface

4

In []: class SupervisedEstimator(...):

def __init__(self, hyperparam, ...):

def fit(self, X, y): # Fit the training data (build a model)

... # given data X and targets y

return self

def predict(self, X): # Use the trained model to make predictions

... # on unseen data X

return y_pred

def score(self, X, y): # Evaluate the model: predict and compare to true labels y

...

return score

1.2.4 K nearest nearest neighbors

• Simplest ’learning’ algorithm
• Just stores the training set (in a special data structure)
• To make a prediction for a new data point, find the k points in the training set that are closest

to the new point.
• Return the class that is most prevalent among the k training points

– Can also return a probability for each class given the distribution

kNN
kNN is included in sklearn.neighbors, let’s build our first model

In [13]: from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=1)

knn.fit(X_train, y_train)

Out[13]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',

metric_params=None, n_jobs=1, n_neighbors=1, p=2,

weights='uniform')

1.2.5 Making predictions

Let’s create a new example and ask the kNN model to classify it

In [14]: X_new = np.array([[5, 2.9, 1, 0.2]])

prediction = knn.predict(X_new)

print("Prediction: {}".format(prediction))

print("Predicted target name: {}".format(

iris_dataset['target_names'][prediction]))

Prediction: [0]

Predicted target name: ['setosa']

5

http://bdewilde.github.io/assets/images/2012-10-26-knn-concept.png

1.2.6 Evaluating the model

Feeding all test examples to the model yields all predictions

In [29]: y_pred = knn.predict(X_test)

print("Test set predictions:\n {}".format(y_pred))

Test set predictions:

[2 1 0 2 0 2 0 1 1 1 2 1 1 1 1 0 1 1 0 0 2 1 0 0 2 0 0 1 1 0 2 1 0 2 2 1 0

2]

We can now just count what percentage was correct

In [30]: print("Test set score: {:.2f}".format(np.mean(y_pred == y_test)))

Test set score: 0.97

The score function does the same thing (by default)

In [31]: print("Test set score: {:.2f}".format(knn.score(X_test, y_test)))

Test set score: 0.97

1.3 Summary

This is all you need to train and evaluate a model

In [32]: X_train, X_test, y_train, y_test = train_test_split(

iris_dataset['data'], iris_dataset['target'], random_state=0)

knn = KNeighborsClassifier(n_neighbors=1)

knn.fit(X_train, y_train)

print("Test set score: {:.2f}".format(knn.score(X_test, y_test)))

Test set score: 0.97

1.4 The road ahead

This is NOT how we actually build and evaluate machine learning models There are many more
things to take into account:

• How to build optimal train/test splits?
• Is the percentage of correct predictions actually a good evaluator?
• Which other algorithms can I try to build models?
• How do we tune the hyperparameters (e.g. the k of kNN)?
• What if the data has missing values, outliers, noise,...?
• Which features can we actually use to build models?
• Will future examples be anything like our current data?

In []:

6

	scikit-learn
	Algorithms
	Data import

	Example: classification
	Measuring Success: Training and testing data
	First things first: Look at your data
	Building your first model
	K nearest nearest neighbors
	Making predictions
	Evaluating the model

	Summary
	The road ahead

