
01a - Introduction - Python

January 15, 2017

1 Python for data analysis

For those who are new to using Python for scientific work, we first provide a short introduction
to Python and the most useful packages for data analysis.

In [1]: from preamble import * # Ignore, this is just to make code cleaner

HTML('''<style>.CodeMirror{min-width:100% !important;}</style>''') # For slides

Out[1]: <IPython.core.display.HTML object>

1.1 Python

Disclaimer: We can only cover some of the basics here. If you are completely new to Python, we
recommend to take an introductory online course, such as the DataCamp Intro to Python for Data
Science.

1.1.1 Hello world

• Printing is doen with the print() function.
• Everything after # is considered a comment.
• You don’t need to end commands with ’;’.

In [2]: # This is a comment

print("Hello world")

print(5 / 8)

5/8 # This only prints in IPython notebooks and shells.

Hello world

0.625

Out[2]: 0.625

Note: In these notebooks we’ll use Python interactively to avoid having to type print() every time.

1

https://www.datacamp.com/courses/intro-to-python-for-data-science
https://www.datacamp.com/courses/intro-to-python-for-data-science

1.1.2 Basic data types

Python has all the basic data types and operations: int, float, str, bool, None.
Variables are dynamically typed: you need to give them a value upon creation, and they will have
the data type of that value. If you redeclare the same variable, if will have the data type of the new
value.
You can use type() to get a variable’s type.

In [3]: s = 5

type(s)

s > 3 # Booleans: True or False

s = "The answer is "

type(s)

Out[3]: int

Out[3]: True

Out[3]: str

Python is also strongly typed: it won’t implicitly change a data type, but throw a TypeError
instead. You will have to convert data types explictly, e.g. using str() or int().
Exception: Arithmetic operations will convert to the most general type.

In [4]: 1.0 + 2 # float + int -> float

s + str(42) # string + string

s + 42 # Bad: string + int

Out[4]: 3.0

Out[4]: 'The answer is 42'

1.1.3 Complex types

The main complex data types are lists, tuples, sets, and dictionaries (dicts).

In [5]: l = [1,2,3,4,5,6] # list

t = (1,2,3,4,5,6) # tuple: like a list, but immutable

s = set((1,2,3,4,5,6)) # set: unordered, you need to use add() to add new elements

d = {2: "a", # dict: has key - value pairs

3: "b",

"foo": "c",

"bar": "d"}

l # Note how each of these is printed

t

s

d

Out[5]: [1, 2, 3, 4, 5, 6]

2

https://docs.python.org/3/library/stdtypes.htm

Out[5]: (1, 2, 3, 4, 5, 6)

Out[5]: {1, 2, 3, 4, 5, 6}

Out[5]: {'foo': 'c', 2: 'a', 3: 'b', 'bar': 'd'}

You can use indices to return a value (except for sets, they are unordered)

In [6]: l

l[2]

t

t[2]

d

d[2]

d["foo"]

Out[6]: [1, 2, 3, 4, 5, 6]

Out[6]: 3

Out[6]: (1, 2, 3, 4, 5, 6)

Out[6]: 3

Out[6]: {'foo': 'c', 2: 'a', 3: 'b', 'bar': 'd'}

Out[6]: 'a'

Out[6]: 'c'

You can assign new values to elements, except for tuples

In [7]: l

l[2] = 7 # Lists are mutable

l

t[2] = 7 # Tuples are not

Out[7]: [1, 2, 3, 4, 5, 6]

Out[7]: [1, 2, 7, 4, 5, 6]

Python allows convenient tuple packing / unpacking

In [8]: b = ("Bob", 19, "CS") # tuple packing

(name, age, studies) = b # tuple unpacking

name

age

studies

Out[8]: 'Bob'

Out[8]: 19

Out[8]: 'CS'

3

1.1.4 Strings

Strings are quite powerful.
They can be used as lists, e.g. retrieve a character by index.
They can be formatted with the format operator (%), e.g. %s for strings, %d for decimal integers,
%f for floats.

In [9]: s = "The %s is %d" % ('answer', 42)

s

s[0]

s[4:10]

'%.2f' % (3.14159265) # defines number of decimal places in a float

Out[9]: 'The answer is 42'

Out[9]: 'T'

Out[9]: 'answer'

Out[9]: '3.14'

They also have a format() function for more complex formatting

In [10]: l = [1,2,3,4,5,6]

"{}".format(l)

"%s" % l # This is identical

"{first} {last}".format(**{'first': 'Hodor', 'last': 'Hodor!'})

Out[10]: '[1, 2, 3, 4, 5, 6]'

Out[10]: '[1, 2, 3, 4, 5, 6]'

Out[10]: 'Hodor Hodor!'

1.1.5 For loops, If statements

For-loops and if-then-else statements are written like this.
Indentation defines the scope, not brackets.

In [11]: l = [1,2,3]

d = {"foo": "c", "bar": "d"}

for i in l:

print(i)

for k, v in d.items(): # Note how key-value pairs are extracted

print("%s : %s" % (k,v))

if len(l) > 3:

print('Long list')

else:

print('Short list')

4

https://www.tutorialspoint.com/python/python_strings.htm
https://pyformat.info/

1

2

3

foo : c

bar : d

Short list

1.1.6 Functions

Functions are defined and called like this:

In [12]: def myfunc(a, b):

return a + b

myfunc(2, 3)

Out[12]: 5

Function arguments (parameters) can be: * variable-length (indicated with *) * a dictionary
of keyword arguments (indicated with **). * given a default value, in which case they are not
required (but have to come last)

In [13]: def func(*argv, **kwarg):

print("func argv: %s" % str(argv))

print("func kwarg: %s" % str(kwarg))

func(2, 3, a=4, b=5)

def func(a=2):

print(a * a)

func(3)

func()

func argv: (2, 3)

func kwarg: {'a': 4, 'b': 5}

9

4

Functions can have any number of outputs.

In [14]: def func(*argv):

return sum(argv[0:2]), sum(argv[2:4])

sum1, sum2 = func(2, 3, 4, 5)

sum1, sum2

5

def squares(limit):

r = 0

ret = []

while r < limit:

ret.append(r**2)

r += 1

return ret

for i in squares(4):

print(i)

Out[14]: (5, 9)

0

1

4

9

Functions can be passed as arguments to other functions

In [15]: def greet(name):

return "Hello " + name

def call_func(func):

other_name = "John"

return func(other_name)

call_func(greet)

Out[15]: 'Hello John'

Functions can return other functions

In [16]: def compose_greet_func():

def get_message():

return "Hello there!"

return get_message

greet = compose_greet_func()

greet()

Out[16]: 'Hello there!'

6

1.1.7 Classes

Classes are defined like this

In [17]: class TestClass(object): # TestClass inherits from object.

myvar = ""

def __init__(self, myString): # optional constructor, returns nothing

self.myvar = myString # 'self' is used to store instance properties

def say(self, what): # you need to add self as the first argument

return self.myvar + str(what)

a = TestClass("The new answer is ")

a.myvar # You can retrieve all properties of self

a.say(42)

Out[17]: 'The new answer is '

Out[17]: 'The new answer is 42'

Static functions need the @staticmethod decorator

In [18]: class TestClass(object):

myvar = ""

def __init__(self, myString):

self.myvar = myString

def say(self, what): # you need to add self as the first argument

return self.myvar + str(what)

@staticmethod

def sayStatic(what): # or declare the function static

return "The answer is " + str(what)

a = TestClass("The new answer is ")

a.say(42)

a.sayStatic(42)

Out[18]: 'The new answer is 42'

Out[18]: 'The answer is 42'

1.1.8 Functional Python

You can write complex procedures in a few elegant lines of code using built-in functions and
libraries such as functools, itertools, operator.

7

https://docs.python.org/2/library/functions.html#map

In [19]: def square(num):

return num ** 2

map(function, iterable) applies a given function to every element of a list

list(map(square, [1,2,3,4]))

a lambda function a is function created on the fly

list(map(lambda x: x**2, [1,2,3,4]))

list(map(lambda x: x if x>2 else 0, [1,2,3,4]))

reduce(function, iterable) applies a function with two arguments cumulatively to every element of a list

from functools import reduce

reduce(lambda x,y: x+y, [1,2,3,4])

Out[19]: [1, 4, 9, 16]

Out[19]: [1, 4, 9, 16]

Out[19]: [0, 0, 3, 4]

Out[19]: 10

In [20]: # filter(function, iterable)) extracts every element for which the function returns true

list(filter(lambda x: x>2, [1,2,3,4]))

zip([iterable,...]) returns tuples of corresponding elements of multiple lists

list(zip([1,2,3,4],[5,6,7,8,9]))

Out[20]: [3, 4]

Out[20]: [(1, 5), (2, 6), (3, 7), (4, 8)]

list comprehensions can create lists as follows:

[statement for var in iterable if condition]

generators do the same, but are lazy: they don’t create the list until it is needed:

(statement for var in list if condition)

In [21]: a = [2, 3, 4, 5]

lc = [x for x in a if x >= 4] # List comprehension. Square brackets

lg = (x for x in a if x >= 4) # Generator. Round brackets

a.extend([6,7,8,9])

for i in lc:

print("%i " % i, end="") # end tells the print function not to end with a newline

print("\n")

for i in lg:

print("%i " % i, end="")

8

4 5

4 5 6 7 8 9

9

	Python for data analysis
	Python
	Hello world
	Basic data types
	Complex types
	Strings
	For loops, If statements
	Functions
	Classes
	Functional Python

