
Deep learning by convolutional networks

Michael Kampffmeyer1

Geilo Winter School, 16. Jan 2017

1michael.c.kampffmeyer@uit.no



What we will cover...

Introduction

Background

CNNs

Practical tips & software

Segmentation & object detection

Conclusion



Slide inspirations

Hugo Larochelle: Neural networks course
Christopher Olah: http://colah.github.io
Fei-Fei Li, Andrej Karpathy and Justin Johnson: cs231n slides

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Deep Learning is everywhere

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Deep Learning is everywhere

I Image processing
I Classification
I Segmentation
I Localization
I Detection

I Speech and text processing
I Translation
I Caption generation
I Word embeddings
I Sequence prediction

I Reinforcement learning
I Automatic game playing

I ... and much more

[http://image-net.org]

[Karpathy, 2015]

[https://deepmind.com]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Neural Networks

X1

X2

X3

X4

Σ

Σ

Σ

Σ

Σ

g(·)

g(·)

g(·)

g(·)

g(·)

Σ

Σ

Σ

Σ

Σ

g(·)

g(·)

g(·)

g(·)

g(·)

Σ o(·) Output

Hidden
layer

Hidden
layer

Input
layer

Output
layer

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Neurons

Pre-activation of single neuron

a(x) = b +
∑
i

wixi = b + wTx

Output of neuron

h(x) = g(a(x))

b is the bias
w are the weights
g() is the activation function

x2x1 1

N
eu

ron

Σ

g(·)

w1 bw2

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Neurons

Theorem (Universal approximation theorem)

”A single hidden layer neural network with a linear output unit can
approximate any continuous function arbitrarily well, given enough
hidden units” (Hornik, 1991)

I However, learning it is very difficult

I In practice use hierarchical representations

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Activations - Linear

I No input squashing

I Not used in practice

g(a) = a

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Activations - Sigmoid

I Squashes between 0 and 1

I Strictly increasing

I Bounded

I Always positive

I Used in AE, RNN, shallow CNNs

g(a) = sigmoid(a) =
1

1 + e−a

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Activations - Tanh

I Squashes between -1 and 1

I Strictly increasing

I Bounded

I Both positive and negative activations

I Used mainly in RNN

g(a) = tanh(a) =
ea − e−a

ea + e−a
=

e2a − 1

e2a + 1

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Activations - ReLU

I Not decreasing

I Bounded lower end

I Sparse activations (faster training)

I More robust (vanishing gradients)

I Used in CNNs

g(a) = ReLU(a) = max(a, 0)

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Stacking Neurons

A single neuron can solve linear problems

[Source: Hugo Larochelle]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Stacking Neurons

But not nonlinear problems

[Source: Hugo Larochelle]

These require transformations
Power of hierarchical representations

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Forward pass

Hidden layer (pre-activation)

a(k)(x) = b(k) + W (k)h(k−1)(x)

Hidden layer activation

h(k)(x) = g(a(k)(x))

Output layer

h(L+1)(x) = o(a(L+1)(x)) = f (x)

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Output activation
I Common multi-class classification loss function
I Want

I Estimate p(y = c |x)
I Strictly positive
I Sums to 1

I Bounded lower end

o(a) = softmax(a) =

[
e(a1)∑
c e

(ac )
· · · e(aC )∑

c e
(ac )

]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Classification loss function

Lossfunction: Measure of goodness of how well the model is
performing

In classification want to estimate

f (x)c = p(y = c|x)

Reformulated as minimization problem (minimize negative
log-likelihood)

`(f (x), y) = −
∑
c

1y=c log f (x)c = − log f (x)y

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Reminder: Gradient descent

I Minimizing loss
function by
following gradient

I Mini-batch SGD

[Source: sebastianraschka.com]

Data: Training samples
Result: Trained model
initialize parameters Θ ;
for N epochs do

for each training sample (x t , yt)
do

∆ = −∇Θ`(f (x t ; Θ), yt)−
λ∇ΘΩ(Θ) ;

Θ← Θ + α∆ ;

end

end

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Backpropagation - Intuition

Common abstraction for neural
networks: Computation graph

I e = (a + b) ∗ (b + 1)

[Source: Christopher Olah (http://colah.github.io)]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Backpropagation - Intuition

Common abstraction for neural
networks: Computation graph

I e = (a + b) ∗ (b + 1)

I a = 2 and b = 1

[Source: Christopher Olah (http://colah.github.io)]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Backpropagation - Intuition

Common abstraction for neural
networks: Computation graph

I e = (a + b) ∗ (b + 1)

I a = 2 and b = 1

Compute partial derivatives

I ∂
∂a(a + b) = ∂a

∂a + ∂b
∂a = 1

I ∂
∂c (c ∗ d) = c ∂d

∂c + d ∂c
∂c = d

[Source: Christopher Olah (http://colah.github.io)]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Backpropagation - Intuition
Common abstraction for neural
networks: Computation graph

I e = (a + b) ∗ (b + 1)

I a = 2 and b = 1

Compute partial derivatives

I ∂
∂a(a + b) = ∂a

∂a + ∂b
∂a = 1

I ∂
∂c (c ∗ d) = c ∂d

∂c + d ∂c
∂c = d

Compute ∂e
∂b

I Multivariate chain rule
I ∂e

∂b = ∂e
∂c

∂c
∂b + ∂e

∂d
∂d
∂b

I ∂e
∂b = 2 ∗ 1 + 3 ∗ 1

[Source: Christopher Olah (http://colah.github.io)]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Backpropagation - Intuition

Getting closer to a Neural Networks

I A more complex example with 9 paths

I Computing ∂Z
∂X = αδ+αε+αζ +βδ+βε+βζ + γδ+ γε+ γζ

I Does not scale to large networks

[Source: Christopher Olah (http://colah.github.io)]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Backpropagation - Intuition

Getting closer to a Neural Networks

I Backpropagation more efficient

I Computing ∂Z
∂X = (α + β + γ)(δ + ε+ ζ)

[Source: Christopher Olah (http://colah.github.io)]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Backpropagation - Intuition

I Self containing modules

I Forward propagation compute
output based on child layer(s)

I Backward propagation compute
gradient wrt. children based on
parent layer(s)

[Source: Hugo Larochelle]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Problems with deep networks

I Optimization more difficult
I Vanishing gradients (Filippo)

I Overfitting is a problem
I Better regularization

I However, many benefits

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Dropout regularization (Hinton et al. 2012)

I Training
I Drop units with dropout

probability p
I Reduces co-adaption

I Test
I Scale weights by

dropout rate (1-p)

Hidden
layer

Input
layer

Output
layer

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Batch normalization (Ioffe and Szegedy, 2015)

I Normalize pre-activation
I Training

I Normalize batch by
mean and std

I Test
I Normalize by global

mean and std

[Ioffe and Szegedy, 2015]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



CNNs

[LeCun et al. 1998]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Hierarchical features

[Source: Y. LeCun]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Convolutions

Advantage of the convolution

I Locally connected

I Translation-invariant

I Position explicitly encoded

I Independent of input size

[He, ICCV15 tutorial]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Convolutions

Convolution is defined as

g(x , y) = w(x , y) ∗ f (x , y) = g(x , y) =
a∑

s=−a

b∑
t=−b

w(s, t)f (x + s, y + t)

I Learn image filters w(x,y) to detect automatically relevant
features

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Convolutions

Convolution is defined as

g(x , y) = w(x , y) ∗ f (x , y) = g(x , y) =
a∑

s=−a

b∑
t=−b

w(s, t)f (x + s, y + t)

f = g =

w =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

24 40 52 45

64 96 112 92

112 160 176 140

108 152 164 129

1 2 1

2 4 2

1 2 1

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Convolutions

Convolution is defined as

g(x , y) = w(x , y) ∗ f (x , y) = g(x , y) =
a∑

s=−a

b∑
t=−b

w(s, t)f (x + s, y + t)

f = g =

w =

0 0 0 0 0 0

0 1 2 3 4 0

0 5 6 7 8 0

0 9 10 11 12 0

0 13 14 15 16 0

0 0 0 0 0 0

24 40 52 45

64 96 112 92

112 160 176 140

108 152 164 129

1 2 1

2 4 2

1 2 1

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Convolutions

Convolution is defined as

g(x , y) = w(x , y) ∗ f (x , y) = g(x , y) =
a∑

s=−a

b∑
t=−b

w(s, t)f (x + s, y + t)

f = g =

w =

0 0 0 0 0 0

0 1 2 3 4 0

0 5 6 7 8 0

0 9 10 11 12 0

0 13 14 15 16 0

0 0 0 0 0 0

24 40 52 45

64 96 112 92

112 160 176 140

108 152 164 129

1 2 1

2 4 2

1 2 1

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Convolutions

Convolution is defined as

g(x , y) = w(x , y) ∗ f (x , y) = g(x , y) =
a∑

s=−a

b∑
t=−b

w(s, t)f (x + s, y + t)

f = g =

w =

0 0 0 0 0 0

0 1 2 3 4 0

0 5 6 7 8 0

0 9 10 11 12 0

0 13 14 15 16 0

0 0 0 0 0 0

24 40 52 45

64 96 112 92

112 160 176 140

108 152 164 129

1 2 1

2 4 2

1 2 1

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Convolutions

Convolution is defined as

g(x , y) = w(x , y) ∗ f (x , y) = g(x , y) =
a∑

s=−a

b∑
t=−b

w(s, t)f (x + s, y + t)

f = g =

w =

0 0 0 0 0 0

0 1 2 3 4 0

0 5 6 7 8 0

0 9 10 11 12 0

0 13 14 15 16 0

0 0 0 0 0 0

24 40 52 45

64 96 112 92

112 160 176 140

108 152 164 129

1 2 1

2 4 2

1 2 1

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Convolutions

Convolution is defined as

g(x , y) = w(x , y) ∗ f (x , y) = g(x , y) =
a∑

s=−a

b∑
t=−b

w(s, t)f (x + s, y + t)

f = g =

w =

0 0 0 0 0 0

0 1 2 3 4 0

0 5 6 7 8 0

0 9 10 11 12 0

0 13 14 15 16 0

0 0 0 0 0 0

24 40 52 45

64 96 112 92

112 160 176 140

108 152 164 129

1 2 1

2 4 2

1 2 1

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Convolutions

Convolution is defined as

g(x , y) = w(x , y) ∗ f (x , y) = g(x , y) =
a∑

s=−a

b∑
t=−b

w(s, t)f (x + s, y + t)

f = g =

w =

0 0 0 0 0 0

0 1 2 3 4 0

0 5 6 7 8 0

0 9 10 11 12 0

0 13 14 15 16 0

0 0 0 0 0 0

24 40 52 45

64 96 112 92

112 160 176 140

108 152 164 129

1 2 1

2 4 2

1 2 1

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Pooling

I Mean and max pooling

I Larger receptive field

I Overlapping/Nonoverlapping

I Downsampeling feature representation

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

6 8

14 16

2 × 2 pool

stride 2

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Architecture - Layer components
CNNs consist of several layers with these components

Input

Convolution

Pooling

Nonlinierity

Feature maps

Normalization

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Increasing depth

[LeCun et al. 1998]

[Krizhevsky et al. 2012]

[Szegedy et al. 2015]

[He et al. 2015]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Increasing depth - ImageNet

[He, ICML 2016 Tutorial]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Practical tips

CNNs for small datasets:

I Data augmentation

I Transfer learning

Architecture:

I Small filters

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Data augmentation
Common augmentations:

I Flip

I Rotate

I Random crops
I Jitter

I Add noise
I Change contrast
I Move slightly along principle

components of RGB colorspace

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Transfer learning

Training CNNs on tasks without massive datasets is common
practice
Several approaches:

I Perform unsupervised training on a large unlabeled dataset,
and fine-tune with labelled data

I Pre-train on a large dataset, and fine-tune to the new data

I Pre-train on a large dataset, extract the features and classify
the new data using your favorite classifier

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Transfer learning - Medium dataset
Take a pre-trained model and fine-tune to new tasks

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Transfer learning - Small dataset
Extract the features and classify with favorite classifier

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Small filters

What size filter to choose:

I Very common 3× 3

I Larger receptive fields can be represented by small filters

[Szegedy et al., 2015]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Small filters

I More efficient

I More nonlinearity

5x5 conv Weights:
C × (5× 5× C ) = 25C 2

2× (3x3) conv Weights:
2× C × (3× 3× C ) = 18C 2

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Small filters

I Can go even smaller

I 1× 3 conv and 3× 1 conv

[Szegedy et al., 2015]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Software

Many software alternatives:

I Torch

I Caffe

I Theano

I Tensorflow

I Neon

I Keras

1.5cm

[Source: Alex Wiltschko]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Software
Caffe:

I + Fast

I + Feedforward

I + Finetuning

I + Easy to get started

I + Great model zoo

I - RNN

I - Extensibility (CUDA/C++)

Torch:

I + Extensibility

I + Model zoo

I - RNN

I - Lua

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Software

Theano:

I + Python

I + Good abstraction

I + RNN

I + Extensibility

I - Pretrained models

I - Debugging

Tensorflow:

I + Python

I + Good abstraction

I + RNN

I + Best parallelism

I - Performance

I - Flexibility

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Caffe - Finetuning example

Possible to finetune network without writing code (using C++
api):

I Step 1: Download a pre-trained model from the model zoo.
[https://github.com/BVLC/caffe/wiki/Model-Zoo]

I Step 2: Modify .prototxt and define solver.prototxt (Nice
visualization
http://ethereon.github.io/netscope/quickstart.html)

I Step 3: Run ./build/tools/caffe train -solver
vggModel/solver.prototxt -weights
vggModel/VGG CNN S.caffemodel -gpu 0

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Segmentation using CNNs

I Pixel-wise classification

I Want end-to-end learnable architecture

I Less sensitive than traditional segmentation methods

[Kampffmeyer et al. 2016]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Segmentation using CNNs - Patch based

I Patch-based approach

I Very intuitive

I Very computationally expensive

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Segmentation using CNNs - Patch based

Replace fully connected layer with convolutions [Sermanet et al.,
2013]

I More efficient

I Not dependent on image size

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Segmentation using CNNs - Fully convolutional

Learn an upsampeling from feature representation back to pixel
space [Long et al. 2015]

I Efficient

I Not dependent on image size

I End-to-end learning on whole images

I Better accuracy

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Object detection

Two main approaches

I Region Proposals

I Regression

[Ren et al., 2016]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Object detection - Region Proposals - RCNN
RCNN [Girshick et al. 2014]

I Region proposal (e.g. selective search)

I Classify regions

I Computationally expensive

I Non-maximum suppression

[Girshick et al. 2014]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Object detection - Region Proposals - Fast RCNN

Fast RCNN [Girshick, 2015]

I Use fully convolutional idea for efficiency

I Bounding box regression offsets

I Faster and better accuracy

[Girshick, 2015]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Object detection - Region Proposals - Faster RCNN

Faster RCNN [Ren et al., 2016]

I Region proposal network

I Faster and improved overall
accuracy

[Ren et al., 2016]

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion



Take away message

I CNNs are powerful models

I State of the art on many tasks

I Don’t require large datasets

Introduction Background CNNs Practical tips & software Segmentation & object detection Conclusion




	Introduction
	Background
	CNNs
	Practical tips & software
	Segmentation & object detection
	Conclusion

