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SCIA 2017
20th Scandinavian Conference on Image Analysis 12-14 June, 2017, Tromsø, Norway

SCIA 2017    12-14 JUNE

The 20th conference in the long tradition 
of  Scandinavian Conferences on Image 
Analysis will take place in Tromsø, 
Norway on June 12-14, 2017.

Conference Topics

The conference invites paper submissions
presenting original high quality work
within the following topics:
• 3D vision
• Color and multispectral image analysis
• Computational imaging and graphics
• Faces and gestures
• Feature extraction and segmentation
• Human-centered computing
• Matching, registration and alignment
• Medical and biomedical image analysis
• Motion analysis
• Object and scene recognition
• Machine learning and pattern recognition 
• Remote sensing image analysis
• Robot vision
• Video and multimedia analysis
• Vision systems and applications

 
More info: www.scia2017.org

Important dates:

Submission of full papers:
January 14, 2017

Proposals for tutorials/workshops:
January 14, 2017

Notification of acceptance:
March 10, 2017

Camera-ready paper:
March 24, 2017

Registration for paper presenters:
March 24, 2017

Paper Submission

The submissions will be reviewed by 
three anonymous reviewers. Papers will 
be accepted for oral or poster 
presentations.   

Tutorials and Workshops

There will be tutorials and workshops in 
addition to the main program. We invite 
proposals for the tutorials and workshops 
in topics related to the main conference.

Proceedings published in Springer 
Lecture Notes in Computer Science

Photos: www.visittromso.no



Agenda 

•  An example 
 
•  Basic idea of kernel methods 

–  Support vector machine 
–  Kernel PCA 

•  Spectral clustering – graph view & embedding view 

•  Kernel entropy component analysis 
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Slide inspirations 

•  N. Cristianini: Kernel methods for pattern analysis 
•  V. Zografos and K. Nordberg: Introduction to spectral clustering 
•  A. Singh: Spectral clustering, Carnegie Mellon 
•  D. Hamad and P. Biela: Introduction to spectral clustering  
•  M. Hein and U. Luxburg: Short introduction to spectral clustering 
•  J. Gao: Lecture on spectral methods, SUNY Buffalo  
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Detecting atypical flights

« When considering a population of flights, an 
atypical flight is a flight which is in a sense different 
from the majority of the other flights ».

 Atypical flights may present operational or safety issues and thus need 
to be studied by an FDM expert!
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Example study

 We have studied 721 flights from Porto to Orly 26, from Transavia France, same 
aircraft, from approach till touch down (10000 feet to 0).

 14 parameters, in first pass we studied the mean of all parameters
 Position (latitude, longitude)
 Altitudes, heading,
 Roll, Pitch
 Accelerations (angular and along axes)
 Speeds (vertical and longitudinal)
 N1.
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A word on the mathematics

 We have used our own detection method:
 Based on Kernel Entropy Component Analysis, a recent (2010) 

dimensionality reduction technique,
 Strong theoretical guarantees from nonparametric statistics,
 Better results than state of the art One-Class SVM,
 Very robust even with highly « polluted » dataset.
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R.	Jenssen,	Kernel	entropy	component	analysis,	IEEE	Trans.	Pa3ern	Analysis	and	Machine	Intelligence,	2010	
R.	Jenssen,	Entropy-relevant	dimensions	in	kernel	feature	space,	IEEE	Signal	Processing	Magazine,	2013	
R.	Jenssen	et	al.,	Kernel	maximum	entropy	data	transforma=on,	NIPS	2007	
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Example of atypical flights

 Atypical flight 2: pvalue = 0.0004, altitude plot
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Example of atypical flights

 Atypical flight 2: pvalue = 0.0004, trajectory plot
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Example of atypical flights

 Atypical flight 2: pvalue = 0.0004

 Classical analysis:
 No event detected with the classical analysis.

 Diagnostic:
 Meteo: thunder; cumulonimbus clouds, towering cumulus clouds observed 
 Meteorological constraints: the pilot had to lower his altitude to avoid the 

cumulonimbus cloud.
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Results

 Of the 721 flights, 35 are detected: each flight is given a pvalue:
 « A pvalue is the probability that, under normal conditions, a flight at least 

as extreme could occur by chance alone »

 A flight with a pvalue<0.01 is considered very likely to be an atypical flight,
 A flight with a pvalue<0.001 is considered extremely likely to be an atypical 

flight.
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k(x,z)	

f(x) =
NX

i=1

↵ik(xi,x)

ML	

Func=on	for	
•  Classifica=on	
•  Predic=on	
•  Embedding	

K

Data	

Kernel	matrix	
(Affinity	matrix)	
(Covariance	matrix)	
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Kernel	methods:	
Support	vector	machine	(SVM)	
Kernel	PCA		++	

Graphs:	Cuts,	random	walks	

Informa/on	
theore/c:	
Kernel	ECA	

Bayesian:	
Gaussian	processes	



Kernel methods: SVM 

•  One of the most used classifiers over the last 10-15 years 
•  Convex optimization problem 
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Machine Learning, 20, 273-297 (1995)© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Support-Vector Networks

CORINNA CORTES 
corinna@neural.att.com

VLADIMIR VAPNIK 
vlad@neural.att.com

AT&T Bell Labs., Holmdel, NJ 07733, USA

Editor: Lorenza Saitta

Abstract. The support-vector network is a new learning machine for two-group classification problems. The
machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-
dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the
decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector
network was previously implemented for the restricted case where the training data can be separated without
errors. We here extend this result to non-separable training data.High generalization ability of support-vector networks utilizing polynomial input transformations is demon-
strated. We also compare the performance of the support-vector network to various classical learning algorithms
that all took part in a benchmark study of Optical Character Recognition.
Keywords: pattern recognition, efficient learning algorithms, neural networks, radial basis function classifiers,
polynomial classifiers.

1. Introduction

More than 60 years ago R.A. Fisher (Fisher, 1936) suggested the first algorithm for patternrecognition. He considered a model of two normal distributed populations, N(m1 , EI)and N(m2 , E2) of n dimensional vectors x with mean vectors m1 and m2 and co-variancematrices E1 and E2, and showed that the optimal (Bayesian) solution is a quadratic decisionfunction:

In the case where E1 = E2 = E the quadratic decision function (1) degenerates to a linearfunction:

To estimate the quadratic decision function one has to determine "("+3) free parameters. Toestimate the linear function only n free parameters have to be determined. In the case wherethe number of observations is small (say less than 10n2) estimating o(n2) parameters is notreliable. Fisher therefore recommended, even in the case of EI ^ £2, to use the lineardiscriminator function (2) with £ of the form:

where T is some constant1. Fisher also recommended a linear decision function for thecase where the two distributions are not normal. Algorithms for pattern recognition



SVM 

•  SVM: Create a classifier that puts a linear decision boundary “midway” 
between the classes! 

w	
yi	=	1	

yi	=	-1	

wT	x3	+	b	=	1	

wT	x5	+	b	>	1	

2	/	||	w	||			(max	margin)!	
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SVM 

•  Want to solve: 

•  This is a constrained optimization problem à Need to know Lagrange 
optimization theory!  

such	that	
	
for	yi	=	1:			
	
	
for	yi	=	-1:				

w

>
xi + b � 1

w

>
xi + b  �1

min
w,b

kwk2
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R.	Jenssen,	M.	Kloi,	A.	Zien,	S.	Sonnenburg	and	K.-R	Muller,	“A	sca3er-based	prototype	framework	and	mul=-class	
extension	of	support	vector	machines,”	PLoS	ONE,	2012.	



SVM 

•  Lagrange multipliers only active for constraints corresponding to data 
points “on the margin”: Support vectors         (SV) 

•  At solution: 

•  Insert into primal, get dual 

Wow!	Inner-product	

w =
X

xi2SV

�iyixi

max

�

0

@
NX

i=1

�i �
1

2

NX

i=1

NX

j=1

�i�jyiyjx
>
i xj

1

A

Quadprog	

MACHINE LEARNING 
GROUP 



SVM 

•  Inner-product dependency is key. 

•  Certain functions can realize 

•  Doing this enables the SVM to be trained in feature space yielding a 
nonlinear classifier since the mapping is nonlinear. 

 
•  How to classify unknown x? Check: 

w

>
x+ b =

X

xi2SV

�iyik(xi,x) + b
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k(xi,xj) = h (xi), (xj)i



Kernel matrix 

•  What functions k(.,.) can be used? 

•  Any function that makes 

i	

j	

K

Posi/ve	semidefinite	

k(xi,xj)
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Kernel matrix 

•  What functions k(.,.) can be used? 

•  Any function that makes 

i	

j	

K

Posi/ve	semidefinite	

k(xi,xj)How	to	check	it?	
	
	

Kei = �iei
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Kernel function 

•  Kernels are functions that return inner products between the images of 
data points in some space.  

•  By replacing inner products with kernels in linear algorithms, we obtain 
very flexible representations  

•  Choosing k is equivalent to choosing the embedding map 

•  Very often 

k(xi,xj) = exp

✓
� ||xi � xj ||2

2�2

◆

Note:	Similarity	measure,	affinity	
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Kernel methods 

Nonlinear 
•  Kernel SVM 
•  Kernel Ridge regression 
•  Kernel Canonical correlation 

analysis 
•  Kernel Fisher discriminant 

analysis 
•  Kernel K-means 
•  Kernel PCA 
•  Etc (inner-product) 

More important than nonlinearity 
•  Kernels can be defined on 

general data types 
•  Classical algorithms can then 

work on non-vectorial data! 
•  Sequences 
•  Trees 
•  Graphs 
•  Kernels over pdfs 
•  Etc  
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Kernel methods 

•  Now quite standard and many libraries exist 
•  LibSVM 
•  Kernlab 
•  Shogun 
•  Weka 
•  Matlab 

–  Statistics and Machine Learning Toolbox 
–  Neural Networks Toolbox 

 

MACHINE LEARNING 
GROUP 



Machine learning in Python 
h3p://scikit-learn.org	
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NR (Norwegian Computing Center) project:  
Detection of seals in aerial images 
Courtesy Arnt-Børre Salberg 

To	es=mate	the	popula=on	of	harp	and	
hooded	seals,	the	Ins=tute	of	Marine	
Research	counts	the	number	of	seals	
pups	regularly.	

Aerial	photos	are	aquired,	and	the	animals	
are	counted.	
	
Currently	the	process	is	manually	and	very	
=me-consuming.	
	
Goal	
Develop	an	algorithm	that	automa=cally	
counts	the	number	of	harp	and	hooded	
seals	in	aerial	images.	



Detection of seals using CNNs and SVMs  
Two step approach: 
1.  Detection of potential objects. These 

objects define the set of candidate 
detections available to the classifier. 

2.  Feature extraction. This is based on a 
deep CNN that extracts fixed-length 
feature vector corresponding to the image 
patch that covers each potential object. 

3.  Classification of potential objects. The 
classifier is based on a SVM classifier that 
classifies the feature vectors into the 
desired classes. 



Detection of seals using CNNs and SVMs 
Detection of potential objects 
Potential objects were detected using the constrained energy 
minimization (CEM) classification methodology. 



Detection of seals using CNNs and SVMs 
Feature extraction 
•  A 97x97 sub-image covering each detection is extracted.  
•  This is then rescaled to 256x256 and sent into the CNN (ImageNet 

2012 winner network). 
•  The 4096 element CNN feature vector of each sub-image is stored. 

Adult	

White	

Noise	



Detection of seals using CNNs and SVMs 

Classification 
•  Classes: Adult, pup and 

non-seal 
•  A SVM is trained on the 

4096 element feature 
vectors using R library 

 
Total Accuracy > 95% 
(20-fold cross-validation on 
training data) 



Going spectral! Kernel PCA 

x5
u1

u2

u1

Ru = �u

u

>
1 x5

Correla=on/Covariance	matrix	

UNSUPERVISED	!!	
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Scholkopf,	Smola,	Muller,		
Neural	Computa=on,	1998	



Kernel PCA 

x5
u1

u2

u

>
1 x5 =

p
�1e1(5) !	

u1

Ke = �e

Inner-product	matrix	

MACHINE LEARNING 
GROUP 



Kernel PCA 

x5
u1

u2

u

>
1 x5 =

p
�1e1(5)

u1

Proju1
x5

Wow!	
	
	X = [x1 . . .xN ] Proju1

X =

p
�1e1
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Kernel PCA 

Empirical	kernel	map!		
Creates	a	new	representa=on	
New	data	set	of	possibly	lower	dimensionality	

Proju1...u3
x5

e>1
...
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Kernel PCA 

Frey	faces	example	
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Kernel PCA: Looking ahead 

Frey	faces	example	

	
You	can	do	whatever	you	want	on	these	

embedded	data!		
E.g.	Clustering!	 	 	 	 	 	 		
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Kernel PCA: Looking ahead 

Frey	faces	example	

	
You	can	do	whatever	you	want	on	these	

embedded	data!		
E.g.	Clustering!	 	 	 	 	 	 		

	
	 	

Cau=on!	It	is	not	Kernel	PCA’s	job	to	
preserve	group	structure	in	the	new	

representa=on… 	 	 	 	 	 		
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Kernel PCA: Looking ahead 

Frey	faces	example	

	
You	can	do	whatever	you	want	on	these	

embedded	data!		
E.g.	Clustering!	 	 	 	 	 	 		

	
	 	

Cau=on!	It	is	not	(Kernel)	PCA’s	job	to	
preserve	group	structure	in	the	new	

representa=on… 	 	 	 	 	 		
	
	 	

There	are	other	ways	to	embed	data!	 	
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CLUSTERING	

Func=on	
op=miza=on	

Par==onal	

Hierarchical	

Divisive	Agglomera=ve	

Compe==ve	
learning	

Graph	
theore=c	

Mixture	
models	

Mode	seeking	
Density	

Minimum	
spanning	tree	

Spectral	
clustering	

Informa=on	
theore=c	Square	error	

Gmm	
Latent	Dirichlet	

K-means	
K-medoids	

Normalized	cut	

SOM	 Mean	shii	
DBSCAN	

Informa=on	bo3leneck	
KECA	

Major	themes	in	
Jain	2010	
	
Not	at	all	in		
Jain	et	al.,1999	
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Spectral clustering 

•  Treats clustering as a graph partitioning problem 

•  Makes no assumptions on the form of clusters 

•  Cluster points using eigenvalues and eigenvectors of matrices derived 
from data 

•  Embed or map data to a low-dimensional space and do the clustering 
there (e.g. by k-means) 	

	
Dominant	direc=on	in	modern	clustering!	
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Y.	Han,	M.	Filippone,	Mini-batch	spectral	clustering,	2016	
C.	Boutsidis	et	al.,	Spectral	clustering	via	the	power	method	–	provably,	ICML	2015	
E.	Izquierdo-Verdiguier,	R.	Jenssen	et	al.,	Spectral	clustering	with	the	probabilis=c	cluster	kernel,	Neurocompu=ng,	2015	



Graphs 

•  Natural graph structure very  
     common 

–  Web pages, links (PageRank)  
–  Protein structures 
–  Citation graphs 

•  Other data sets can be easily transformed into similarity, or affinity, 
graphs 
–  Affinity encode local structure in data 

 
•  Represents data by pairwise relationships  

•  A positive and symmetric matrix is equivalent to a graph 
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To give a hint 
Superpixel Segmentation using Linear Spectral Clustering

Zhengqin Li Jiansheng ChenDepartment of Electronic Engineering, Tsinghua University, Beijing, Chinali-zq12@mails.tsinghua.edu.cn jschenthu@mail.tsinghua.edu.cn

Abstract
We present in this paper a superpixel segmentation algo-rithm called Linear Spectral Clustering (LSC), which pro-duces compact and uniform superpixels with low computa-tional costs. Basically, a normalized cuts formulation ofthe superpixel segmentation is adopted based on a simi-larity metric that measures the color similarity and spaceproximity between image pixels. However, instead of usingthe traditional eigen-based algorithm, we approximate thesimilarity metric using a kernel function leading to an ex-plicitly mapping of pixel values and coordinates into a highdimensional feature space. We revisit the conclusion thatby appropriately weighting each point in this feature space,the objective functions of weighted K-means and normal-ized cuts share the same optimum point. As such, it is possi-ble to optimize the cost function of normalized cuts by iter-atively applying simple K-means clustering in the proposedfeature space. LSC is of linear computational complexityand high memory efficiency and is able to preserve globalproperties of images. Experimental results show that LSCperforms equally well or better than state of the art super-pixel segmentation algorithms in terms of several commonlyused evaluation metrics in image segmentation.

1. Introduction
Superpixel segmentation is an increasingly popular im-age preprocessing technique used in many computer visionapplications such as image segmentation [17], image pars-ing [19], object tracking [22], and 3D reconstruction [9]. Itprovides a concise image representation by grouping pixelsinto perceptually meaningful small patches that adhere wellto object boundaries. Comparing to the pixel-rigid imagerepresentation, superpixel is more consistent with humanvisual cognition and contains less redundancy. Moreover,compact and uniform superpixel segmentation can serve asthe spatial support for vision feature extraction [12].Many different superpixel segmentation algorithms havebeen proposed to meet the needs of various applications[17][8][5][21][11]. It is widely understood that the follow-

Figure 1. Images [13] segmented into 1000/500/200 superpixelsusing the proposed LSC algorithm.
ing properties of superpixel segmentation are generally de-sirable. First, superpixels should adhere well to the naturalimage boundaries and each superpixel should not overlapwith multiple objects. Second, as a preprocessing techniquefor improving efficiency of computer vision tasks, super-pixel segmentation should be of low complexity itself. Lastbut not the least, global image information which is impor-tant for human vision cognition should be considered ap-propriately. It is critical for a segmentation process to uti-lize the perceptually important non-local clues to group un-related image pixels into semantically meaningful regions.Nevertheless, considering global relationship among pixelsusually lead to substantial increases in computational com-plexity. A typical example is the eigen-based solution tothe normalized cuts (Ncuts) based superpixel segmentationalgorithm proposed in [17]. As a result, most practical su-perpixel segmentation algorithms, such as [5][21][11], aremainly based on the analysis of local image informationonly. These methods may fail to correctly segment imageregions with high intensity variability [8].To address this issue, we propose a superpixel segmen-tation algorithm, Linear Spectral Clustering (LSC), whichnot only captures perceptually important global image prop-erties, but also runs in linear complexity with high memoryefficiency. In LSC, we map each image pixel to a pointin a ten dimensional feature space in which weighted K-means is applied for segmentation. Non-local informationis implicitly preserved due to the equivalence between theweighted K-means clustering in this ten dimensional featurespace and normalized cuts in the original pixel space. Sim-ple weighted K-means clustering in the feature space can be

1

Mouysset, S. et al                               Segmentation of cDNA Microarray Images using Parallel Spectral Clustering 
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Microarray technology generates large amounts of expression level of genes to 

be analyzed simultaneously. This analysis implies microarray image segmenta-

tion to extract the quantitative information from spots. Spectral clustering is one 

of the most relevant unsupervised methods able to gather data without a priori 

information on shapes or locality. We propose and test on microarray images a 

parallel strategy for the Spectral Clustering method based on domain decomposi-

tion with a criterion to determine the number of clusters. 

 
 

 
  

1 Introduction 

Image segmentation in microarray analysis is a 

crucial step to extract quantitative information from 

the spots [RUEDA, 2009], [USLAN, 2010], [CHEN, 

2011]. Clustering methods are used to separate the 

pixels that belong to the spot from the pixels of the 

background and noise. Among these, some methods 

imply some restrictive assumptions on the shapes of 

the spots [YANG, 2001], [RUEDA, 2005]. Due to the 

fact that the most of spots in a microarray image have 

irregular-shapes, the clustering based-method should 

be adaptive to arbitrary shape of spots such as fuzzy 

clustering [GLEZ-PENA, 2009], but it should also 

not depend on many input parameters. To address 

these requirements, the spectral methods, and in par-

ticular the spectral clustering algorithm introduced by 

Ng-Jordan-Weiss [NG, 2002], are useful to partition 

subsets of data with no a priori on the shapes. Spec-

tral clustering exploits eigenvectors of a Gaussian 

affinity matrix in order to define a low dimensional 

space in which data points can be easily clustered. 

But when very large data sets are considered, the 

extraction of the dominant eigenvectors becomes the 

most computational task in the algorithm. To address 

this bottleneck, several approaches about parallel 

Spectral Clustering [SONG, 2008], [FOWLKES, 

2004], were recently suggested, mainly focused on 

linear algebra techniques to reduce computational 

costs. In this paper, by exploiting the geometrical 

structure of microarray images, a parallel strategy 

based on domain decomposition is investigated. 

Moreover, we propose solutions to overcome the two 

main problems from the divide and conquer strategy: 

the difficulty to choose a Gaussian affinity parameter 

and the number of clusters k which remains unknown 

and may drastically vary from one subdomain to the 

other. 
 

2 Spectral Clustering for 

cDNA microarray images 

Let first introduce some notations and recall the Ng-

Jordan-Weiss algorithm [NG, 2002] and then adapt 

the spectral clustering for image segmentation.
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A multi-similarity spectral 
clustering method for community 
detection in dynamic networks
Xuanmei Qin1, Weidi Dai2, Pengfei Jiao2, Wenjun Wang2 & Ning Yuan3

Community structure is one of the fundamental characteristics of complex networks. Many methods 
have been proposed for community detection. However, most of these methods are designed for static 
networks and are not suitable for dynamic networks that evolve over time. Recently, the evolutionary 
clustering framework was proposed for clustering dynamic data, and it can also be used for community 
detection in dynamic networks. In this paper, a multi-similarity spectral (MSSC) method is proposed as 
an improvement to the former evolutionary clustering method. To detect the community structure in 
dynamic networks, our method considers the different similarity metrics of networks. First, multiple 
similarity matrices are constructed for each snapshot of dynamic networks. Then, a dynamic co-training 
algorithm is proposed by bootstrapping the clustering of different similarity measures. Compared with a 
number of baseline models, the experimental results show that the proposed MSSC method has better 
performance on some widely used synthetic and real-world datasets with ground-truth community 
structure that change over time.

Complex networks have been studied in many domains, such as genomic networks, social networks, communica-
tion networks and co-author networks1. The community structure has revealed important structure in these com-
plex networks2–6. A great deal of research has been devoted to detecting communities in complex networks, such 
as graph partitioning7,8, hierarchical clustering9, modularity optimization10, spectral clustering11,12, label propa-
gation, game theory and information diffusion13, a detailed review is available in the literature14. However, most 
existing methods are designed for static networks, and not suitable for real-world data networks with dynamic 
characteristics. For example, the interactions among users in the blogosphere or circles of friends are not station-
ary because some interactions disappear, and some new ones appear each day.

Recently, some methods have been proposed to find community structures and their temporal evolution in 
dynamic networks. An intuitive idea is to divide the network into discrete time steps and to use static methods to 
the snapshot networks15–22. The so-called two-stages methods, analyse the community extraction and the com-
munity evolution in two separated stages. In other words, the communities are extracted at a given snapshot while 
ignoring the changing trends among and within communities of the dynamic networks. These two-stage methods 
are extremely noise-sensitive and produce unstable clustering results. For example, nodes or links disappear or 
emerge in the subsequent snapshot, which is impossible to detect using the two-stage methods. A better choice 
is to consider multiple time steps as a whole and the evolutionary clustering algorithm is proposed23, which can 
detect communities of the current snapshot by joining with the community structure of the previous snapshot.

In fact, evolutionary clustering algorithm enables one to detect current communities using community struc-
tures from the previous steps by introducing an item called the temporal smoothness. The general framework for 
evolutionary clustering was first formulated by Chakrabarti et al.23. In this framework, they proposed heuristic 
solutions to evolutionary hierarchical clustering and k-means clustering. The framework FacetNet, which was 
proposed by Lin et al.24, relies on non-negative matrix factorization. A density-based clustering method, which 
was proposed by Kim and Han25, and uses a cost embedding technique and optimal modularity, can efficiently 
find temporally smoothed local clusters of high quality.

The existing evolutionary clustering methods that are most similar to MSSC are the PCQ (preserving cluster 
quality) and PCM (preserving cluster membership) methods26. PCQ and PCM are two proposed frameworks that 
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Spectral clustering – graph view 

•  Given data points                      and pairwise affinities  

•  Build similarity graph 

•  Clustering by finding a cut through the graph 
–  Define cut cost function 
–  Solve it (find groups) 

x1 . . .xN

kij = k(xi,xj)

node	i	

node	j	
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Spectral clustering – embedding view 

•  Given data points                     and pairwise affinities  

•  Find a low-dimensional embedding 

•  Project data points to new space 

•  Cluster using favorite algorithm!  

x1 . . .xN

kij = k(xi,xj)

Data	space	

Low-dimensional	space	
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Graph basics 

Adjacency matrix W 

•  NxN symmetric and binary 
•  Rows and columns represent vertices and entries represent presence of 

edges in the graph  

w(i,j)	=	1			if	i,j	are	connected	
w(i,j)	=	0			if	i,j	are	not	connected	

0	 1	 0	 0	 0	 1	 1	 0	 1	

1	 0	 1	 1	 1	 0	 0	 0	 0	

0	 1	 0	 1	 1	 0	 0	 0	 0	

0	 1	 1	 0	 1	 0	 0	 0	 0	

0	 1	 1	 1	 0	 0	 0	 0	 0	

1	 0	 1	 0	 0	 0	 1	 1	 0	

1	 0	 0	 0	 0	 1	 0	 1	 1	

0	 0	 0	 0	 0	 1	 1	 0	 0	

1	 0	 0	 0	 0	 0	 1	 0	 0	
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Graph basics 

Affinity matrix K 

•  NxN symmetric and positive 
•  Weighted adjacency matrix 

a(i,j)	=	k(i,j)			if	i,j	are	connected!	
a(i,j)	=	0			if	i,j	are	not	connected	

0	 1	 0	 0	 0	 1	 1	 0	 1	

1	 0	 1	 1	 1	 0	 0	 0	 0	

0	 1	 0	 1	 1	 0	 0	 0	 0	

0	 1	 1	 0	 1	 0	 0	 0	 0	

0	 1	 1	 1	 0	 0	 0	 0	 0	

1	 0	 1	 0	 0	 0	 1	 1	 0	

1	 0	 0	 0	 0	 1	 0	 1	 1	

0	 0	 0	 0	 0	 1	 1	 0	 0	

1	 0	 0	 0	 0	 0	 1	 0	 0	

.*	



Graph basics 

Affinity matrix K 

•  NxN symmetric and positive 
•  Weighted adjacency matrix 

a(i,j)	=	k(i,j)			if	i,j	are	connected!	
a(i,j)	=	0			if	i,j	are	not	connected	

0	 1	 0	 0	 0	 1	 1	 0	 1	

1	 0	 1	 1	 1	 0	 0	 0	 0	

0	 1	 0	 1	 1	 0	 0	 0	 0	

0	 1	 1	 0	 1	 0	 0	 0	 0	

0	 1	 1	 1	 0	 0	 0	 0	 0	

1	 0	 1	 0	 0	 0	 1	 1	 0	

1	 0	 0	 0	 0	 1	 0	 1	 1	

0	 0	 0	 0	 0	 1	 1	 0	 0	

1	 0	 0	 0	 0	 0	 1	 0	 0	

.*	

Fully	connected/complete	
graph	is	also	common	



Graph basics 

Degree matrix D 

•  NxN diagonal 
 

d(i,j)	=	degree(vi)			if	i=j		
degree(vi)	=	sum	ith	row	

0	 1	 0	 0	 0	 1	 1	 0	 1	

1	 0	 1	 1	 1	 0	 0	 0	 0	

0	 1	 0	 1	 1	 0	 0	 0	 0	

0	 1	 1	 0	 1	 0	 0	 0	 0	

0	 1	 1	 1	 0	 0	 0	 0	 0	

1	 0	 1	 0	 0	 0	 1	 1	 0	

1	 0	 0	 0	 0	 1	 0	 1	 1	

0	 0	 0	 0	 0	 1	 1	 0	 0	

1	 0	 0	 0	 0	 0	 1	 0	 0	

4	 0	 0	 0	 0	 0	 0	 0	 0	

0	 4	 0	 0	 0	 0	 0	 0	 0	

0	 0	 3	 0	 0	 0	 0	 0	 0	

0	 0	 0	 3	 0	 0	 0	 0	 0	

0	 0	 0	 0	 3	 0	 0	 0	 0	

0	 0	 0	 0	 0	 4	 0	 0	 0	

0	 0	 0	 0	 0	 0	 4	 0	 0	

0	 0	 0	 0	 0	 0	 0	 2	 0	

0	 0	 0	 0	 0	 0	 0	 0	 2	
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Graph basics 

Laplacian matrix L = D - K 

•  NxN symmetric and positive semi-definite (real and positive eigenvalues) 
•  The smallest eigenvalue is 0 and the corresponding eigenvector is 

constant 
•  The eigenvector corresponding to the second smallest eigenvector is 

special: Fiedler vector. It is related to graph cuts! 

	
	

Many	spectral	clustering	methods	use	the	
Laplacian	matrix	(or	a	version	of	it)	to	embed	

data	for	then	to	perform	clustering!	 	 	
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The Laplacian and graph cuts 

•  Min-cut problem: Find C1 and C2 such that the cut is minimized 

C1	

C2	CUT(C1, C2) =
X

i2C1

X

j2C2

k(i, j)

MACHINE LEARNING 
GROUP 



The Laplacian and graph cuts 

•  Does not always lead to reasonable results if the connected components 
are imbalanced 

•  Ensure that clusters are sufficiently “large” 

 à Normalized cut  
      J. Shi, J. Malik, IEEE TPAMI, 2000 

C1	

C2	

MACHINE LEARNING 
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M.	Meila,	J.	Shi,	A	random	walks	view	of	spectral	
segmenta=on,	AISTATS,	2001	
R.	Jenssen	et	al.,	The	Laplacian	PDF	distance,	NIPS	2005	
U.	Luxburg,	A	tutorial	on	spectral	clustering,	Sta=s=cs	
and	Compu=ng,	2007		



Normalized cut 

•  Normalize the cut by the volumes of the sub-graphs 

VOL(C2) =
X

j2C2

degreej

NCUT(C1, C2) =
CUT(C1, C2)

VOL(C1)
+

CUT(C1, C2)

VOL(C2)

MACHINE LEARNING 
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Normalized cut 

•  Normalize the cut by the volumes of the sub-graphs 

VOL(C2) =
X

j2C2

degreej

NCUT(C1, C2) =
CUT(C1, C2)

VOL(C1)
+

CUT(C1, C2)

VOL(C2)

Find	C1	and	C2	such	that	NCUT	is	minimized!	
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Solution (relaxed – graph view) to NCUT 

•  Strangely: 
–  Form: 

–  Compute: 

–  Second largest eigenvector:  

Lsym = D� 1
2KD� 1

2

e2

Lsymei = �iei

[0.2 0.21 0.23 � 0.34 0.25 � 0.33 � 0.4 . . . ]

positive: x1 ! C1 negative: x6 ! C2

MACHINE LEARNING 
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Graph view cont’d 

e2

e2 e2

MACHINE LEARNING 
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Graph view cont’d 

e2

e2 e2

OR	use	k	eigenvectors,	and	embed	the	data	into	a	k-dimensional	space!	
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NCUT (embedding view) 

•  Do 
–  Form: 

–  Compute: 

–  Select the k largest eigenvectors 
and store them as rows in a matrix 
Ek 

–  Let yi be the vector corresponding 
to the ith column of Ek  

–  Cluster yi for i=1,…,N with e.g. k-
means  

Lsym = D� 1
2KD� 1

2

Lsymei = �iei
e>1
...

MACHINE LEARNING 
GROUP 

A.	Ng,	M.	Jordan,	Y.	Weiss,	On	spectral	clustering,	NIPS	2002		



Example 

x1	 x2	 x3	 x4	 x6	 x6	

x1	 0	 0.8	 0.6	 0	 0.1	 0	

x2	 0.8		 0	 0.8	 0	 0	 0	

x3	 0.6		 0.8	 0	 0.2	 0	 0	

x4	 0	 0	 0.2	 0	 0.8	 0.7	

x5	 0.1	 0	 0	 0.8		 0	 0.8	

x6	 0	 0	 0	 0.7	 0.8	 0	

MACHINE LEARNING 
GROUP 1

2

3

4 6

5

0.8	

0.8	

0.6	

0.8	 0.8	

0.7	

0.1	

0.2	



Example 

x1	 x2	 x3	 x4	 x6	 x6	

x1	 0	 0.51	 0.39	 0	 0.06	 0	

x2	 0.52		 0	 0.50	 0	 0	 0	

x3	 0.39		 0.50	 0	 0.12	 0	 0	

x4	 0	 0	 0.12	 0	 0.47	 0.44	

x5	 0.06	 0	 0	 0.47		 0	 0.50	

x6	 0	 0	 0	 0.44	 0.50	 0	

-0.39	 -0.40	  -0.40	 -0.42	 -0.42	 -0.39	
-0.40	 -0.45	 -0.38	 0.37	 0.41	 0.42	

e>1

e>2

MACHINE LEARNING 
GROUP 

Lsym = D� 1
2KD� 1

2

y1 y2 y3 y4 y5 y6



Example 

-0.39	 -0.40	  -0.40	 -0.42	 -0.42	 -0.39	
-0.40	 -0.45	 -0.38	 0.37	 0.41	 0.42	

MATLAB	
Lsym=D^(-.5)*K*D^(-.5)	
[E,Delta]=eigs(Lsym,2);	
y=E’;	

MACHINE LEARNING 
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node_posi/on_model	=	manifold.LocallyLinearEmbedding(n_components=2,	eigen_solver='dense',	n_neighbors=6)	
	
embedding	=	node_posi/on_model.fit_transform(X.T).T	

MACHINE LEARNING 
GROUP 



Entropy	
	

A	measure	of	the	uncertainty,	or	informa)on,	
associated	with	a	random	variable	described	by	a	

probability	distribu=on.	

Shape	 Modes,	clusters	

HR2 = � log

Z
p2(x)dx

MACHINE LEARNING 
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Kernel Entropy Component Analysis (KECA) 

p̂(x) =
1

N

NX

i=1

k�(x� xi)

Z
p2(x)dx ⇡ 1

N2
1>

K1

Gaussian,	
Epanechnikov	++	

k�(x� 10)

Sum	all	elements	
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KECA 

K

K = EDE>

Z
p2(x)dx ⇡ 1

N2

NX

i=1

hp
�ie

>
i 1

i2

or	mapping,	of	data	based	on			

p
�ie

>
i is	a	spectral	transforma)on,	

K

KECA	measures	contribu=on	of	each	dimension	to	entropy.	
Represent	data	in	lower	dimensions	by	selec=ng	entropy-preserving	features!	

k�(x1,x9)Sum	of	elements	



KECA 

•  Select the kernel function [rule-of-thumb!] and create 
•  Eigendecompose        and compute entropy values 
•  Represent input data using (lower dimensional) features corresponding 

to high entropy values 

Z
p2(x)dx ⇡ 1

N2

NX

i=1

hp
�ie

>
i 1

i2

Entropy	values	

K
K

Selected	dimensions	depend	both	on	eigenvalue	and	on	structure	of	eigenvector!	

Different	from	“all”	
other	methods!	
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E.	Izquierdo-Verdiguier,	R.	Jenssen	et	al.,	Op=mized	kernel	entropy	components,	
IEEE	Trans.	Neural	Networks	and	Learning	Systems,	2016	
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Faces 

PCA	
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Faces 

KPCA	[Schölkopf	et	al.]	
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Faces 

Isomap	[Tenenbaum	et	al.]	
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Faces 

KECA	[1,	4,	10]	
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Faces 

•  KECA Clustering 

–  Cosine k-means 

–  Max divergence! 

–  Initialization 

KECA	
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Faces 

Smiling	
Eyes	open	

Eye	shadow	
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Faces 

PCA	+	k-means	
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Hyperspectral 

52	bands	
Chlorophyll	

Spain	(G.	Camps-Valls)	
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KECA	
PCA	
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Hyperspectral 

KPCA	 t-SNE	[van	Maaten	&	Hinton]	

Isomap	
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Hyperspectral 

KECA	
KPCA	
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Hyperspectral 

KECA	 PCA	

KPCA	 t-SNE	
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Cloud screening 

L.	Gomez-Chova,	R.	Jenssen	and	Camps-Valls,	Kernel	entropy	component	analysis	for	remote	sensing	image	clustering	
IEEE	Geoscience	and	Remote	Sensing	Society	Best	Paper	Award,	2013	

•  Morphological	features	(22)	

•  Cloud	vs.	no-cloud	

MACHINE LEARNING 
GROUP 



Cloud screening MACHINE LEARNING 
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FINAL	


