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Document summarization
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Quiz: Extractive Summarization

e |f you had to pick 10 sentences to summarize
a BBC report, how would you do it?

* |f you had to pick sentences with a total of 100
words to form an abstract of a scientific
paper?

e How is this different from usual abstracts?
* How would you evaluate a summary?
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Properties of a Good Summary

* |t must have high relevance
* |t must be representative or diverse.



SUBMODULAR OPTIMIZATION
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e Many natural notions of ,document coverage” are
submodular [Lin & Bilmes ‘11]
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Diminishing returns/submodularity

e We extract sentences (green) as a summary of the full document

—_— -

@ The summary on the left is a subset of the summary on the right.
e Consider adding a new (blue) sentence to each of the two summaries.

@ The marginal (incremental) benefit of adding the new (blue) sentence
to the smaller (left) summary is no more than the marginal benefit of
adding the new sentence to the larger (right) summary. é\

(_)

@ diminishing returns <> submodularity
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Set functions

e finite groundset 1/ — {1,2,...,n}

* set function F-2V 4R

* willassume F(() =0 (wlog)

e assume black box that can evaluate F(A)
forany ACV

il



!xamp|e: p|acmg Sensors

Utility F'(A) of having sensors at subset A of all
locations

A={1,2,3}: Very informative A={1,4,5}: Redundant info
High value F(A) Low value F(A)
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Marginal gain

e Given set function F:2"¥ - R

. Margi gain: Ap(s| A)=F({stUA)— F(A)

11
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small gain

L
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Equivalent characterizations
ACB

o
e Diminishing gains: for all

F(AUs)— F(A) > F(BUs)— F(B)

ABCV

e Union-Intersec

F(A) + F(B) “ B) + F(AN B)



CHALMERS

Submodularity

e submodularity arises in many areas:
combinatorics, economics, game theory,
operation research, machine learning, and
(now) natural language processing.

e submodularity has many nice properties, e.g.
submodularity is preserved under many
natural operations and transformations
(e.g.scaling, addition, convolution, etc.)
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Summarization as Submodular
Optimization

e Ground set Vis the set of all sentences

e Extractive document summarization: select a small
subset S € IVthat accurately represents the entirety
(ground set V).
e The summary is usually required to be length-limited.
— ¢;: cost (e.g., the number of words in sentence i ),
— b : the budget (e.g., the largest length allowed),
— knapsack constraint:),;cqc; < b

e Quality of summary: f(S)

o S*=argmax{f(S): S € V,)esC; < b}
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Document summarization

F(S) = R(S) + AD(S)

\

Relevance Diversity
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Relevance of a summa
F(S) = R(S) + AD(S)

Similarity between i and j
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Diversity of a summary

D@ﬁfivaa;h Py

Relevance of sentence j to doc. P
1 O @ ® :
_ @ _®
ERN DI °n ®4
) ‘ Clustering of sentences
in document

Similarity between i and j

18
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F is monotonic: \V/A, S F(A U {8}) — F(A) > ()
—

Adding sensors can only help JAN ( S ‘ A) > ()



!ar!ma!/ty constralne! maximization

¢ Given: finite set V, monotone SF F

> Want: A* C )Auch that

NP-hard!

A" = argmax F'(A)
|A|<E

20
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Greedy algorith

¢ G@Given: finite set V. monotone SF F

o Want] A* (C )such that

A" = argmax F ()
A<k

'\lP-hard!

Greedy algorithm:

Startwith 4 — @

Fori=1tok

s* «— argmax F(AU {s})
A— AU{s"}

How well can this simple heuristic do? n
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Temperature data
from sensor network

Information gain

1 2 3 4 5
Number of sensors placed

Greedy empirically close to optimal. Why?

22
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One reason submodularity is useful

Theorem [Nemhauser, Fisher & Wolsey 78]

For monotonic submodular functions,

Greedy algorithm gives constant factor approximatio

F(A

) 2 (1-1/e) F(A,)

e
~—63%0

Greedy algorithm gives near-optimal solution!

greedy

In general, need to evaluate exponentially many sets to do better!
[Nemhauser & Wolsey 78]

Also many special cases are hard (set cover, mutual information, ...) 23
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Scaling up the greedy algorithm [Minoux * 78]

In round i+1,

— have picked A, = {s,,...,S;}

— pick s.,, = argmax_ F(A, U {s})-F(A))

l.e., maximize “marginal benefit” &s | A)

&s | A)) = F(A; U {s})-F(A))

Key observation: Submodularity implies

IS] => s |A)2&s | A) =

Z &(s | Ajsa)

Marginal benefits can never increase! 2



“Lazy” greedy algorithm [Minoux ’ 78]

Lazy greedy algorithm:
= First iteration as usual Benefit &(s | A)

= Keep an ordered list of marginal
benefits & from previous iteration

= Re-evaluate & only for top
element

= If ® stays on top, use it,
otherwise re-sort

Note: Very easy to compute online bounds, lazy evaluations, etc.

[Leskovec, Krause et al. " 07]
25
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Evaluating Summaries: ROUGE

e ROUGE is a software package for automated
evaluation of summaries
(http://www.berouge.com/)

* Based co-occurrence statistics(unigram,bigram ...)

e Automatic evaluation using ROUGE, between
summary pairs correlates surprising well with
human evaluations, based on various statistical

metrics



http://www.berouge.com/)
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Empirical results [Lin & Bilmes 11}

R F

L1(S) + ARo(S) 12.18 | 12.13

L1(S) + Zi—.=1 AeR.x(S) 12.38 | 12.33

Toutanova et al. (2007) 11.89 | 11.89
Haghighi and Vanderwende (2009) 11.80 -
Celikyilmaz and Hakkani-tir (2010) 11.40 -

Best system in DUC-07 (peer 15), using web search || 12.45 | 12.29

Best F1 score on benchmark corpus DUC-07!

Can do even better using submodular structured prediction! [Lin & Bilmes ‘12]

28




COMPOSING WORD VECTORS
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Similarity of Sentences

* We need a measure w; ; of similarity of
sentences i and j.
 We have a very good measure of semantic

similarity between words — cosine siimilaity of
word vectors!

e How can we extend this to similarity of
sentences?
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Composing word vectors

N —
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Fig 2. Left panel: composition by vector combination (in this case, addition of the horses and run vectors). Right panel:
composition as function application (the verb run is not a vector but a function operating on vectors).
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Composition using Linguistic
Structures

P/ \q
SN S\
o

practical difficulties slowed  Progress

Fig. 6. Example of composition operating over parse trees.

YN A

root practical  difficulties  slowed progress
u G w X
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Comparing similarity of phrases

robbers are arrested policemen capture robbers
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Fig 3. Distributional representations of the sentences robbers are arrested (left) and policemen capture robbers (right).
Rectangles stand for vectors, possibly including those encoding functions. A more granular approach would also derive
are arrested and the inflected forms of nouns and verbs compositionally.
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Composition using LSTMs
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Document Summarization

e Use submodular optimization with ...

e ... similarity of sentences derived by
composition (in different ways) from word
vector similarities.



Document Summarization

Summaries

(Approx. 40 words)

|Multiple Kernel

Learning]

The report said Andreas Lubitz repeatedly set
the plane for an unauthorised descent earlier
that day. He had locked the flight captain out
of the cockpit. Five minutes on the
Duesseldorf-Barcelona flight 07:21:10 - Plane
told to descend to 21,000t

[TextRank]

The co-pilot of the Germanwings plane that

Original Text

ness Tech Science Magazine Entertainment & Arts Health
Pictures World selected Africa Asia Australia Europe selec
Latin America Middle East US & Canada [Germanwings
Co-pilot Lubitz 'practised rapid descent'] 21 minutes a
the section Europe [Germanwings co-pilot Andreas Lut
known to have suffered depression in the past] [Alps plane

CHALMERS

UKIERSITY OF TECHNOLOGY

LA ResEARCHGF

FINDWISE

SEARCH DRIVEN SOLUTION

crash] What drives people to murder-suicide? The victims of the
Germanwings plane crash Germanwings: Unanswered questions

Flight 4U 8525: The final 30 minutes [[The co-pilot of the

Germanwings plane that crashed in the French Alps in March

appears to have practised a rapid descent on a previous

flight, a report by French investigators says.]] [The report said
Andreas Lubitz repeatedly set the plane for an unauthorised

descent earlier that day.] Lubitz is suspected of deliberately

crashing the Airbus 320, killing all 150 people on board. [[He had

Incked the flinht cantain nut of the cocknit.l! The nlans had

http://www.cse.chalmers.se/research/databin/demonstrators.html
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