RECURRENT NEURAL NETWORKS

A QUICK OVERVIEW

Geilo 2017 —Winter School

Filippo Maria Bianchi — filippo.m.bianchi@uit.no
Machine Learning Group — Department of Physics and Technology
Universitet i Tromso

PRESENTATION OUTLINE

|. Introduction

The Recurrent Neural Network
RNN applications

The RNN model

Gated RNN (LSTM and GRU)

o U W N

Echo State Network

|.INTRODUCTION

THE RECURRENT NEURAL NETWORK

= A recurrent neural network (RNN) is a universal approximator of dynamical systems.

= |t can be trained to reproduce any target dynamics, up to a given degree of precision.

)

Reccurrent
Hidden Layer

RNN input Target output

80, e et

Evolution of RNN e
internal state ‘

time

Dynamical

system L
Y Evolution of P e 0 RS

system state

System observation

= An RNN generalizes naturally to new inputs with any lengths.
= An RNN make use of sequential information, by modelling a temporal dependencies in the inputs.
> Example:if you want to predict the next word in a sentence you need to know which words came before it
® The output of the network depends on the current input and on the value of the previous internal state.
® The internal state maintains a (vanishing) memory about history of all past inputs.

= RNNs can make use of information coming from arbitrarily long sequences, but in practice they are limited to look
back only a few time steps.

= RNN can be trained to predict a future value, of the driving input.

= A side-effect we get a generative model, which allows us to generate new elements by sampling from the output

probabilities.
teacher
g N\ i 4 N\
generative
input output -
training output

feedback

DIFFERENCES WITH CNN

m Convolution in space (CNN) VS convolution in time (RNN) .
= CNN: models relationships in space. Filter slides along x and y dimensions.

= RNN: models relationships in time.“Filter” slides along time dimension.

Temporal data

=
v
~

: time
Spatial data

2. RNIN APPLICATIONS

APPLICATION I: NATURAL
LANGUAGE PROCESSING

Given a sequence of words,
RNN predicts the probability
of next word given the
previous ones.

Input/output words are
encoded as one-hot vector.

We must provide the RNN all
the dictionary of interest
(usually, just the alphabet).

In the output layer, we want
the green numbers to be high
and red numbers to be low.

target chars:

output layer

hidden layer

input layer

input chars:

“g o
1.0 0.5
2.2 0.3
-3.0 -1.0
4.1 1.2
0.3 1.0
-0.1 » 03 | —
0.9 0.1
1 0
0 1
0 0
0 0
llh" “e

[Image: Andrej Karpathy]

et
N7 3 I

]
—_—

0.1
-0.5
-0.3

O -00

W_hh

® Once trained, the RNN can work in generative mode.
= In NLP context, a generative RNN can be used in Natural Language Generation.
= Applications:
» Generate text (human readable data) from databse of numbers and log files, not readable by human.

> What you see is what you meant. Allows users to see and manipulate the continuously rendered view (NLG output) of an
underlying formal language document (NLG input), thereby editing the formal language without learning it.

NATURAL LANGUAGE
GENERATION: SHAKESPEARE

Dataset: all the works of
Shakespeare, concatenated

them into a single (4.4MB) file.

3-layer RNN with 512 hidden
nodes on each layer.

Few hours of training.

VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,

To show the reining of the rawven and the wars

To grace my hand reproach within, and not a fair are hand,

That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and sewveral breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion

S5hall be against your honour.

[Source:Andrej Karpathy]

TEXT GENERATION:
WIKIPEDIA

Hutter Prize 100MB dataset of
raw Wikipedia.

LSTM

The link does not exist ©

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of 5Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]

(PJS) [http://www.humah.yahoo.com/guardian.

cftm/7754888780d175515963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

[Source:Andrej Karpathy]

TEXT GENERATION:
SCIENTIFIC PAPER

RNN trained on a book
(LaTeX source code of |6MB).

Multilayer LSTM

For 5, _, ,, where £,,, =0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then /' — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=8pec(R)=Uxx UxxU
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[£ %y U — V. Consider the maps M along the set of points
Schyppr and U — U is the fibre category of S in U in Section, 77 and the fact that
any [affine, see Morphisms, Lemma 77. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R') — S is smooth or an

U= U f.-‘ri XSI l{.}"i
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Oy , is a scheme where z, 2', 5" € §' such that Ox ,» — OY, _, is
separated. By Algebra, Lemma 77 we can define a map of complexes GLg/ (' /S5")
and we win. O

To prove study we see that Fly is a covering of &', and T is an object of Fy,g for
i > 0 and Fp, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M* =TI°* @gpec(r) Os,s — ix F)
is a unique morphism of algebraic stacks. Note that
Arrows = (Sch/S){" . (Sch/S) fpps

and

V =T(S,0) — (U, Spec(A))
is an open subset of X. Thus UV is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

[Source:Andrej Karpathy]

APPLICATION II: MACHINE TRANSLATION

LA

[oohoo] [od'okoo] [ofoo]

Awesome sauce
Vi Yo

[Image: Richard Socher]

Similar to language modeling.
Train 2 different RNNs.

Input RNN: trained on a source language (e.g.
German).

Output RNN: trained on a target language (e.g.
English).

The second RNN computes the output from the
hidden layer of the first RNN.

Google translator.

APPLICATION IllI: SPEECH RECOGNITION

= |nput: input sequence of acoustic P 1S - : el R i St

A0) |
= QOutput phonetic segments. o —L 1 | } H L
® Necessity of encoder/decoder to

transit from digital/analogic

domain.

m Graves, Alex, and Navdeep]aitly.
"Towards End-To-End Speech
Recognition with Recurrent Neural
Networks.* 20 | 4.

APPLICATION IV:IMAGE TAGGING

o 1.31 dog 0.26 man
. & ays RS
trained. 0.45 catch / 1.51 accordion
= CNN generates features = -0.07 among
(hidden state , 2008 in
representati 0.25 white —
P Ion)' 0.42 public
1.62 ball s
= RNN reads CNN — 0.30 area
features and produces e
output (end-to-end -0.07 wooden
training). 0.22 fence

= Aligns the generated
words with features
found in the images

m Karpathy,Andrej, and Li Fei-
Fei. "Deep visual-semantic
alignments for generating
image descriptions.", 2015.

APPLICATION V:TIME SERIES PREDICTION

® Forecast of future values in a time series, from past seen values.

= Many applications:

> Weather forcast.

» Load forecast. . Electricity Load

> Financial time series. E——
o Telephonic traffic L ESN
R N A% N AN AR SR N s oot | |

—&— TES

0.6

0.5

Load value

2]
0.4 i

Value

0.3

02

0.1 02 F

L L L L L L L
0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 700
Test Sample Time Interval

APPLICATION VI: MUSIC INFORMATION RETRIEVAL

= MIR:identification of songs/music

>

YV V VY VY

Automatic categorization.

Recommender systems.

Track separation and instrument recognition.
Music generation.

Automatic music transcription.

(@) sHazam

Automatic categorization software

Music transcription example

- H**? " *LH

o"‘ \\‘s \ \\\\ \ ~ t I ""

»»»&%#

AT

;— _b

—_—_

_—I—

[Source: Meinard Muller]

Spotlfy

Software with recommender system

3. DESCRIPTION OF RNN MODEL

ARCHITECTURE COMPONENTS

= x:input

= y:output

h: internal state (memory of the network)

W input weights

= W recurrent layer weights
= Wy output weights
=z~ 1 time-delay unit

] @ : neuron transfer function

20

STATE UPDATE AND OUTPUT GENERATION

= An RNN selectively summarize an input sequence in a fixed-size state vector via a
recursive update.

= Discrete, time-independent difference equations of RNN state and output:
hlt + 1] = fF(WIR[t] + W x[t + 1] + b,),
ylt +1] = g(W h[t + 1] + by).

= f() is the transfer function implemented by each neuron (usually the same non-linear
function for all neurons).

® () is the readout of the RNN. Usually is the identity function - all the non-linearity is
provided by the internal processing units (neurons) — or the softmax function.

21

NEURON TRANSFER FUNCTION

The activation function in a RNN is traditionally

implemented by a sigmoid.

RelLU (not very much used in RNN).

Saturation causes vanishing gradient.

Non-zero centering produces only positive outputs, which lead to
zig-zagging dynamics in the gradient updates.

Another common choice is the tanh.

Saturation causes vanishing gradient.

f(x) =

tanh(z)

1+ ™

Sigmoid

1

Greatly accelerate gradient convergence and it has low
demanding computational time.

No vanishing gradient.

Large gradient flowing through a ReLU neuron could cause the its
“death”.

High non-linearity
(saturation)

Low amount of
non-linearity

TRAINING

= Model's parameters are trained with gradient descent.

® A loss function is evaluated on the error performed by the network on the training set and, usually, also a
regularization term.

L=E(,9 + AR

Where E () is the error function, y and J are target and estimated outputs, A is the regularization parameter, R is the
regularization term.

® The derivative of the loss function, with respect to the model parameters, is backpropagated through the
network.

" Weights are adjusted until a stop criterion is met:
= Maximum number of epochs is reached.

m | oss function stop decreasing.

23

REGULARIZATION

= Introduce a bias, necessary to prevent the RNN to overfit on training data.
" |n order to generalize well to unseen data, the variance (complexity) of the model should be limited.

= Common regularization terms:

1. L, regularization of the weights: ||IW/||;. Enforce sparsity in the weights.

2. L, regularization of the weights: ||IW||,. Enforce small values for the weights.
3. Ly + L, (elastic net penalty). Combines the two previous regularizations.
4

Dropout. Done usually only on the output weights. Dropout on recurrent layer is more complicated (the weights are
constrained to be the same in each time step by the BPPT) — requires workaround.

24

RNN UNFOLDING

® |n order to train the network with @ @ @
gradient descent, the RNN must be

unfolded. WwW¢ W7 Wi
m Each replica of the network is 4 4 3
relative to a different time interval. 1 1 1
= Now, the architecture of the hy W hy wh hyey 1 W
network become very deep, even

starting from a shallow RNN. : _____ | ‘ E _______

® The weights are constrained to be i t {
the same.

m |ess parameters than in other deep
architectures. @ @ @ 25

BACK PROPAGATION THROUGH TIME

3
= |n the example, we need to backpropagate the 0E; B 0E; 0y3 0hs 0h,,
gradient % from current time (t3) to initial ow £t 0y3 0hs dhy, OW
time (t,) — chain rule (eq. on the right). -
= We sum up the contributions of each time step Eo F Es Fs Ey
to the gradient.
= With of very long sequence (possibly infinite) ‘ iﬁ:
we have untreatable depth. ri;“ ri“
N on
m Repeate the procedure only up to a given time _>. _:.® @ﬁ,.@
(truncate BPPT).
= Why it works? Because each state carries a
little bit of information on each previous input.
® Once the network is unfolded, the procedure is Ty T To T3)
analogue to standard backpropagation used in 2

deep Feedforward Neural Networks.

VANISHING GRADIENT:
SIMPLE EXPERIMENT

Bengio, 1991.

A simple RNN is trained to
keep | bit of information for T
time steps.

P(success|T) decreases
exponentially as T increases.

L]

[=)

=

20

25 g ik 10

[Image:Yoshua Bengio]

45

50

55

&0

27

VANISHING GRADIENT: TOO MANY PRODUCTS!

= In order to have (local) stability, the spectral radius of the matrix W;* must be lower than I.
= Consider state update equation h[t + 1] = f(h[t], u[t + 1]). We can see it is a recursive equation.

= When input sequence is given, the previous equation can be rewritten explicitly as:
hlt +1] = fe(hltD) = fe(fi-1 (- fo(R[OD)). (D)

" The resulting gradient, relative to the loss at time ¢ will be:

oL oL |on.|on
B_M;:z () 0|0)

Oh;

® The Jacobian of matrix derivatives ctorized as follows

Ohy Ohyqy Ohgyq
= =f/fl_ .1 3
aht_l aht_z ahT ftft—l f'l’+1 ()

28

In order to reliably “store” information in the state of the network h;, RNN dynamics must remain close to a
stable attractor.

According to local stability analysis, the latter condition is met when |f/]| < 1

. dh
However, the previous product a_ht’ expanded in (3) rapidly (exponentially) converges to O when t — T increases.
T

Consequently, the sum in (2) is dominated by terms corresponding to short-term dependencies.
This effects is called “vanishing gradient”.
As an effect, weights are less and less updates, as the gradient flows backward through the architecture.

On the other hand, when |f/| > 1 we obtain an opposite effect called “exploding gradient”, which leads to
instability in the network.

29

HOW TO LIMIT VANISHING GRADIENT ISSUE?

= Use RelU activations (in RNN however, they cause the “dying neurons” problem).
m Use LSTM or GRU architectures (discussed later).

m Use a proper initialization of the weights in IV/.

30

WEIGHTS INITIALIZATION

m A suitable initialization of the weights permits the gradient to flow quicker through the layers.
= A smoother flow ensures faster convergence of the training procedure (faster reach of the minimum).
® |t also helps to reduce the issue of vanishing gradient.

® When using sigmoids or hyperbolic tangent neurons, use the following weight initialization:

w = np.random.randn(n)/sqrt(n)

® This has to be repeated for each layer. The value n is the number of neurons in each layer.
® This ensures that all neurons in the network initially have approximately the same output distribution.
= The biases instead should be initialized to 0.

31
® Random initialization is important to break symmetry (prevents coupling of neurons).

LEARNING RATE

® The standard weights-update procedure is called Stochastic Gradient Descent (SGD).

m SGD depends on a learning rate hyperparameter y:

dL oL oL

wh =wh — , wh=wh—-y—, we =wpe — .
yan-h h h VGWh h h yc’)W,{’

l l

m s a critical parameter. How to set it?
m Use cross-validationn to find optimal value.

= Several strategies can be used to improve learning:
|. Annealing of the learning rate.
2. Second order methods.
3. Add momentum to SGD

32
4. Adaptive learning rate methods.

ANNEALING OF THE LEARNING RATE

= With a high learning rate, the system has too much kinetic energy and the parameter vector bounces around
chaotically, unable to settle down into deeper, but narrower parts of the loss function.

® Possible solution: anneal the learning rate over time.

® Decay it slowly and you'’ll be wasting computation bouncing around chaotically with little improvement for a long
time.

m Decay it too aggressively and the system will cool too quickly, unable to reach the best position it can.
= 3 common ways to decay learning rate:
|. Step decay: half y every few epochs.

2. Exponential decay:y = yoe ", where ¥, and k are hyperparameters and t is epoch number.

Yo
1+kt

3. Multiplicative decay:y = , Where y, and k are hyperparameters and t is epoch number.

33

SECOND ORDER METHODS

" Weights are updated as follows
h<h—[Hf(W]T'Vf(R)

= Where Hf (h) is the Hessian matrix, containing second-order partial
derivatives of f.

[m Hessian describes the local curvature of the loss function.

" More aggressive steps in directions of shallow curvature and shorter
steps in directions of steep curvature.

® Perform a more efficient update.

® |mpractical for most deep learning applications: computing (and
inverting) the Hessian is a very costly process in both space and time.

= Martens, James. "Deep learning via Hessian-free optimization., 2010:
reduces cost, but still much slower than first-order methods.

34

SGD WITH MOMENTUM

® |n SGD update, gradient directly integrates the position.

= With momentum, the gradient only directly influences the velocity, which in turn has an effect on the position.

af (h
= Momentum update: v <« y-v — y%, h—h+v
N g of (h*)
esterov momentum (NAG):h* <« h+u-v, vepu-v—y oh ,h—<h+v
Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

momentum

step
actual step

actual step

35

gradient
step

[Image: Andrej Karpathy]

ADAPTIVE LEARNING RATE

m Adapts the learning rate to the parameters, performing larger updates for infrequent parameters and smaller
updates for frequent parameters.
m Adagrad: g;; = Vi J(W;), Wjtpq1 = Wit — — . Ji t»Where G is a diagonal matrix whose elements are the

sum of the squares of the gradients w.r.t. individual weights w; at time step ¢ (they might be updated differently)
and € is a smoothing term that avoids division by zero.

m Other adaptive learning rate methods are:

|. Adadelta and Rmsprop: reduce the aggressive, monotonically decreasing learning rate of Adagrad, by restricting the window
of accumulated past gradients to some fixed size.

2. Adam:adaptive learning rate + momentum.

3. Nadam: adaptive learning rate + Nesterov momentum.
36

COMPARISON OF

LEARNING PROCESS N e seb |
DYNAMICS (1/2) | \ I
—— i == NAG %

| — Adagrad

Adadelta

Contours of a loss surface and
time evolution of different
optimization algorithms.

[Image: Alec Radford]

COMPARISON OF
LEARNING PROCESS
DYNAMICS (2/2)

A visualization of a saddle point
in the optimization landscape.

The curvature along different
dimension has different signs
(one dimension curves up and
another down — very common
in deep learning!).

SGD has a very hard time
breaking symmetry and gets
stuck on the top.

RMSprop will see very low
gradients in the saddle
direction

— SGD

= NAG
- Adagrad
Adadelta

- Momentum

1.0

-1.5

[Image: Alec Radford]

38

4. RNN EXTENSIONS

DEEP RNN (1/2)

" Increase the depth of RNN to increase expressive power.

= N.B. here we add depth in SPACE (like FFNN), not in TIME.

® Pascanu, R, Gulcehre, C., Cho, K., & Bengio,Y, “How to
construct deep recurrent neural networks”, 201 3. % f;% —

Vi

Stacked RNIN
(learns different time-scales at each layer —
Standard RNN from fast to slow dynamics)

40

DEEP RNN (2/2)

!

_/
_ P T
h¢
hen h '
2?)(t

Deep input-to-hidden +
Deep input-to-hidden + Deep hidden-to-hidden +
Deep hidden-to-hidden + Shortcut connections (useful for letting the 41
Deep hidden-to-output gradient flow faster during backpropagation).

BIDIRECTIONAL RNN

The output at time t may not only depend on the
previous elements in the sequence, but also future
elements.

Example: to predict a missing word in a sequence
you want to look at both the left and the right
context.

Two RNNs stacked on top of each other.

Output computed based on the hidden state of
both RNNs.

Huang Zhiheng, Xu Wei,Yu Kai. Bidirectional LSTM
Conditional Random Field Models for Sequence Tagging.

42

DEEP (BIDIRECTIONAL) RNN

S

imilar to Bidirectional RNNs, but with multiple hidden layers per time

step.

Higher learning capacity.
Needs a lot of training data (the deeper the architecture the harder is

the training).
Graves Alex, Navdeep |aitly, and Abdel-rahman Mohamed. "Hybrid speech
recognition with deep bidirectional LSTM.", 201 3.

43

5. GATED RNNS

Ispired by: http://colah.github.io/posts/20|5-08-Understanding-LSTMs/

LONG-TERM DEPENDENCIES

® Due to vanishing gradient, RNN are uncapable of learning long-term dependencies.
= Some applications require both short and long term dependencies.
m Example: Natural Language Processing (INLP).

= |n some cases, short-term dependencies are sufficient to make predictions.

under the

—
[—
<
(4]

m Consider to train the RNN to make |-step ahead
prediction.

m To predict the word ‘sea’it is sufficient to look only 3 step
back in time.

v

b -
54

fishes live under

&—>—@

® |n this case, it is sufficient to backpropagate the gradient 3
step back to succesfully learn this task.

T 9
A — A
& &

45

= |et’s stick to |-step ahead prdiction.

= Consider the sentence: | am from Rome. | was born 30 years ago. | like eating good food and riding my bike. My native
language is ltalian.

= When we want to predict the word ltalian, we have to look back several time steps, up to the word Rome.

" |n this case, the short-term memory of the RNN would not do the trick.

Rome | [talian .
» — > » >
from Rome language is Italian

m As the gap in time grows, the harder for an RNN become to handle the problem.

m Let’s see how Long-Short Term Memory (LSTM) can handle this difficulty.

46

LSTM OVERVIEW

" Introduced by Hochreiter & Schmidhuber (1997).
= Work very well on many different problems and are widely used nowadays.

= Like RNN, they must be unfolded in time to be trained and understood.

a RNN. t

m Let’s recall the unfolded version of @ @ @
ry
-

m A very simple processing unit is

repeated each time. A M | " A -

The repeating module in a standard RNN contains a single layer.

® The processing unit of the LSTM is more complex and is called cell.

® An LSTM cell is composed of 4 layers, interacting with each other in a special way.

&
T

® ®
T

F'y

' T ' ™ 7 ™

—> > ® > -

anh>
A Do A
0] (&) [0]

—» > -

\. A iy L vy

I
&)) &)

The repeating module in an LSTM contains four interacting lavers.

MNeural Network Pointwise Vector

Layer Operation Transfer

Concatenate Copy

48

CELL STATE AND GATES

® The state of a cell at time t is C;.

= The LSTM modify the state only through linear interactions: Cei ® @ >

information flows smoothly across time.

m LSTM protect and control the information in the cell through 3
gates.

= Gates are implemented by a sigmoid and a pointwise

multiplication.
+ \

Cell state

> Gate

49

FORGET GATE

m Decide what information should be discarded from the cell state.

B _ | 0 > completely get rid of content in C,
fe= o(Wr - The-1,xe] + by) = { 1 - completely keep the content in C,

= Gate controlled by current input x; and
past cell output h;_;.

= NLP example: cell state keep the gender
of the present subject to use correct
pronouns.

® When sees a new subject, forget the
gender of the old subject.

50

UPDATE GATE

= With forget gate we decided wheter or not to forget cell content.

= After, with update gate we decide how much to update the old state C,_; with a new candidate C,.

| 0 — no update
m Update gate: i; = o(W; - [he—1, xe] + b;) = {1 — completely update

= New candidate: C, = tanh(W, - [h,_1, x:] + be).
= New state:C, = Cr_q + iy * Cy.

= |n the NLP example, we update the cell state as we
see a new subject. i

= Note that the new candidate is computed exactly o E;nh

like the state in traditional RNN (same difference hi_y N
equation).
A

OUTPUT GATE

" The output is a filtered version of the cell state.
m Cell state is fed into a tanh, which squashed its values between -1 and I.

" Then, the gate select the part to be returned as output.

0 — no output

= Output gate: oy = o(W, * [he—q,x¢] + by) = {1 — return complete cell state

= Cell output: hy = o; * tanh(C;) Iy
= |n NLP example, after having seen a
subject, if a verb comes next, the cell
outputs information about being singluar Qantd
or plural. Ot (%)
O | h,

.il.lp 1

52
i':I

COMPLETE FORWARD PROPAGATION STEP

= f = O'(Wf |heoq, xe] + bf) - forget gate

s . =0(W;-[ht—q1,x:] + b;) - input gate

= o, = oW, - [hsq1,x:] + b,) - output gate

s C, =tanh(W, - [he_q, x¢] + bc) - new state candidate
s C,=C,_q+i*C; - new cell state

= h; = o; * tanh(C;) — cell output

= Parameters of the model: {W;, W, W,, b;, b, b, }

= Note that the weight matrix have a larger size than in normal RNN (they multiply the concatentation of x;
and ht) 53

LSTM DOWNSIDES

m Gates are never really | or 0.The content of the cell is inevitably corrupted after long time.

= Even if LSTM provides a huge improvement w.r.t. RNN, it still struggles with very long time dependencies.

= Number of parameters: 4 - (N; + 1) -+ N, +N2.

= Example:input = time series of 100 elements, LSTM units = 256 — 168960 parameters.

m Scales up quickly!! Lot of parameters = lot of training data.

m Rule of thumb: data elements must always be one order of magnitude greater than the number of parameters.
= Memory problems when dealing with lot of data.

® Long training time (use GPU computing).
54

GATED RECURRENT UNITS

= Several LSTM variants exists.

= GRU is one of the most famous alternative architectures (Cho, et al. (2014).
= |t combines the forget and input gates into a single update gate.

® |t also merges the cell state and hidden state, and makes some other changes.

® The cell is characterize by fewer parameters.

55

GRU FORWARD PROPAGATION STEP

= 7z, = o(W, - [hi(—q1,x:]) - output gate.

|
>
~
Il

tanh(W - [r; * hy_4, x;]) - new candidate output (merge internal state and output).

u ht = (1 - Zt) * ht—l + Zt * i:lt - cell OUtPUt

m Performs better LSTM or GRU?

= Depends on the problem at hand: Chung, Junyoung, et al.
"Empirical evaluation of gated recurrent neural networks on
sequence modeling.”, 2014.

= ‘No free lunch’ theorem © .

6. ECHO STATE NETWORKS

ESN OVERVIEW

" Introduced by Jaeger (2001).
= With Liquid State Machine, they form the family of Reservoir Computing approaches.
m large, untrained recurrent layer (reservoir).
® |t has to be sparse and as much heterogeneous as possible to generate a large variety of internal dynamics.
® Linear, memoryless readout trained with linear regression, picks the dynamics useful to solve the task at hand.
m State of the art in real-valued time series prediction.
= Pros:
> Fast and easy to train (no backpropagation).
> Relatively small, they are used in embedded systems.
= Cons:

> High sensitivity to hyperparameters (model parameters, usually set by hand).

» Random initialization add stochasticity to the results. >

Dashed boxes are randomly initialized weights, left untrained.

Solid boxes are readout weights, usually trained with linear
regression.

Outputs of the network are forced to match target values.

L, regularization is used in the linear regression to prevent
overfitting.

ESN state and output update:
hlt + 1] = fWT R[] + W x[t + 1] + W) y[t])
ylt + 1] = gW°h[t + 1] + W2x[t + 1])

f () is usually implemented as a tanh.

g() is usually the identity function (more complicated readouts
are possible though).

@

59

PRINCIPAL ESN HYPERPARAMETERS

= Reservoir size:
» Should be large enough to provide a great variety of dynamics.

> If too large, there could be overfit (the readout just learn a simple mapping |-to-1 from network state to output (effect is
damped by regularization).

= Reservoir spectral radius:
> Is the largest eigenvalue of the reservoir matrix.
» Controls the dynamics of the system. Should be tuned to provide a stable dynamics, yet sufficient rich (edge of chaos).

" Input scaling: Sigmoid High non-linearity
) o (saturation)
» Controls the amount of nonlinearity introduce by the neurons. ' 1

1
14+ &

> High value — high amount of nonlinearity. f(x) =

Low amount of 60
non-linearity

People whose work (partially) inspired this presentation.

Y. Bengio G. Hinton J. Schmidthuber A. Graves

6l

C. Olah A. Karpathy

THE END

THANKS FORTHE ATTENTION

