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Differentiable programming is a programming paradigm in
which a numeric computer program can be differentiated
throughout via automatic differentiation.

From: wikipedia.org/wiki/Differentiable programming

provides gradients that indicate how input parameters
should change to produce a change in the output state(s)

enables gradient-based optimization, allowing for efficient
parameter tuning and optimization of models

leveraged in frameworks like TensorFlow, Theano, and
PyTorch to enhance model training and optimization

can be used to develop differentiable PDE-based
simulators

Two types of approaches

static, compiled graph-based approaches
like TensorFlow and Theano

good computer optimization and scaling

static nature limits interactivity and type of
program

operator overloading, dynamic graph-based
approaches like PyTorch and Zygote (Julia)

dynamic/interactive use, more flexible
programming

interpreter overhead, less optimization

Either case: rely on computational graphs

Typically has support for GPU, TPU, or other
accelerators

https://en.wikipedia.org/wiki/Differentiable_programming
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Automatic differentiation is a set of techniques to compute the
derivative or gradient of a function with respect to its inputs

Basic concepts:

can leverage the chain rule of calculus to break down
complex computations into a sequence of elementary
operations

these operations consist of a limited set of arithmetic
operations and elementary functions

each elementary operation has known differential rules

by evaluating the derivatives of each elementary operation,
one obtains exact derivatives at given input values

Example: evaluate 3*exp(-x*y)

x y

−x −xy

e−xy3e−xy

− ∗

exp

3∗
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Forward mode:

computes both function values and their derivatives by propagating computations forward
through the computational graph, starting from the input variables

well-suited for functions with a small number of inputs and a large number of outputs

Reverse/backward mode:

starts from the output variables, works backward through the computational graph,
accumulating sensitivities or gradients with respect to the inputs

is efficient for large number of inputs compared to outputs, making it particularly useful for
gradient-based optimization

Many libraries also use source code transformation. Mixed-mode versions may also be needed

PDE-based simulators have approximately as many outputs as inputs, and question is how to
best exploit inherent sparsity structure
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Software Description

A unique research and prototyping tool used all over the world, e.g., as
evidenced by more than 210 master/doctoral theses and 600 external
journal and proceedings papers
URL: mrst.no

Open-source reservoir simulator aimed at commercial application based
on industry-standard black-oil type models. Used by Equinor for asset
models on the Norwegian Continental Shelf.
URL: opm-project.org
Sandve, MS35, Wed 09:10, Plenary Hall

Experimental Julia framework for fully differentiable multi-physics sim-
ulators. Extensive functionality for reservoir simulation (JutulDarcy.jl)
and computational electrochemistry (BattMo.jl)
URL: github.com/sintefmath/Jutul.jl

Møyner, MS35, Wed 10:25, Plenary Hall

http://www.mrst.no/
https://www.opm-project.org/
https://github.com/sintefmath/JutulDarcy.jl
https://github.com/BattMoTeam/BattMo.jl
https://github.com/sintefmath/Jutul.jl
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Introduce an extended pair, ⟨v, vx⟩, to represent the value v and its derivative vx to a given
input variable x = ⟨x, 1⟩

Use chain rule and elementary derivative rules to mechanically accumulate derivatives at
specific values of x

– Elementary: v = sin(x) −→ ⟨v⟩ = ⟨sinx, cosx⟩
– Arithmetic: v = f ∗ g −→ ⟨v⟩ = ⟨f ∗ g, f ∗ gx + fx ∗ g⟩
– Chain rule: v = exp(f(x)) −→ ⟨v⟩ = ⟨exp(f(x)), exp(f(x))f ′(x)⟩

Use operator overloading to avoid messing up code

[x,y] = initVariablesADI(1,2);
z = 3∗exp(−x∗y)

x = ADI Properties:
val: 1
jac: {[1] [0]}

y = ADI Properties:
val: 2
jac: {[0] [1]}

z = ADI Properties:
val: 0.4060
jac: {[-0.8120] [-0.4060]}

∂x

∂x

∂x

∂y
∂y

∂x

∂y

∂y

∂z

∂x

∣∣∣
x=1,y=2

∂z

∂y

∣∣∣
x=1,y=2



The Pros and Cons of Using AD for Simulator Development 6 / 32

Accuracy: exact derivatives, unlike for finite-difference
approximations

Correctness: avoids error-prone manual derivation and
implementation

Efficiency: avoids time-consuming manual derivation and
implementation

Flexibility: enables users to focus on the model’s logic
rather than manual derivation of derivatives

Adaptability: simple differentiation of underlying
equations with respect to parameters or variables enables
sensitivity analysis, optimization, and parameter
estimation

However, there are potential pitfalls

May struggle with complex control flow such
as loops, conditionals, recursions, linear
solvers, etc.

Increased memory consumption (because of
intermediate storage)

Computational overhead: all intermediate
steps computed if straightforward
implementation, compiler must perform
simplification of expressions in advanced
versions

Primarily designed for continuous
functions/variables

Can be misleading if you fail to specify
independent variables correctly
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Rapid Prototyping Using Automatic
Differentiation
AD Applied to Dynamic Variables
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Imagine you had discrete differentiation operators you could use like their continuous
counterparts when writing code:

Continuous equations:

∇ ·
(
K∇p

)
+ q = 0

Discrete equations:

div
(
K grad(p)

)
+ q = 0

To explain how to achieve this, we write the equation in first-order form instead

−∇ · v⃗ + q = 0, v⃗ = −K∇p



Discrete Differentiation Operators (Finite-Volume Methods) 8 / 32

Conservation of mass:∑
Γf∈∂Ωc

∫
Γf

v⃗ · n⃗ ds =

∫
Ωc

∇ · v⃗ dx⃗ =

∫
Ωc

qdx⃗

discrete: div(v)[c] =q[c]

Darcy’s law:∫
Γf

v⃗(x) · n⃗f ds = −
∫
Γf

K(x)∇p · n⃗f ds

discrete: v[f ] = −T [f ] grad(p)[f ]

Ki

Ai,k

Kk

~ni,k
~ci,k

vi,k = Ti,k(pi − πi,k)

Ti,k = Ai,k
c⃗i,k ·Kin⃗i,k

|⃗ci,k|2

vik = Tik(pi − pk), Tik = [T−1
i,k + T−1

k,i ]
−1
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Operators div and grad as Sparse Matrices 9 / 32

Grid structure in MRST
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Map: face → cells

Idealized models Industry models

The discrete grad operator maps from cell pair
C1(f), C2(f) to face f :

grad(p)[f ] = p[C2(f)]− p[C1(f)],

p[c]: scalar quantity associated with cell c

Introduce sparse matrix:

Dij =


1, j = C1(i),

−1, j = C2(i),

0, otherwise

so that

grad(x) = −Dx

and likewise,

div(y) = DTy



Operators div and grad as Sparse Matrices 9 / 32

Grid structure in MRST

5

6

7

8

2

1

2

3

4 1

3 4

5

6

7
8

9

c F(c)

1 1

1 2

1 3

1 4

2 5

2 6

2 7

2 8

2 2

3 1
...

...
...

...

Map: cell → faces

f

1

2

3

4

5

6

7

8
...
...

C1

3

1

1

9

4

2

2

2
...
...

C2

1

2

8

1

2

5

6

7
...
...

Map: face → cells

Idealized models Industry models

The discrete grad operator maps from cell pair
C1(f), C2(f) to face f :

grad(p)[f ] = p[C2(f)]− p[C1(f)],

p[c]: scalar quantity associated with cell c

Introduce sparse matrix:

Dij =


1, j = C1(i),

−1, j = C2(i),

0, otherwise

so that

grad(x) = −Dx

and likewise,

div(y) = DTy



Operators div and grad as Sparse Matrices 9 / 32

∂
∂x

∂
∂y
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Compact Code for Residual Equations 10 / 32

Incompressible flow:

∇ · (K∇p) + q = 0

Compressible flow:

∂(φρ)

∂t
+∇ · (ρK∇p) + q = 0

Continuous

Incompressible flow:

eq = div(T .* grad(p)) + q;

Compressible flow:

eq = (pv(p).* rho(p)-pv(p0).* rho(p0))/dt ...

+ div(avg(rho(p)).*T.*grad(p))+q;

Discrete in MATLAB

Discretization of flow models leads to large systems of nonlinear algebraic equations, typically lin-
earized and solved with Newton’s method

F (u) = 0 ⇒ ∂F

∂u
(ui)(ui+1 − ui) = −F (ui)
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Example: −∇ · (K∇p) = q on Unstructured Grid 11 / 32

Discretization gives the residual flow equation

Setting the residual to zero, gives a linear system

With AD, we can assemble the linear system implicitly and
solve it with Newton’s method since ∂F/∂p = A

Not much gained so far. However, the same idea applies to more
complex nonlinear models

You implement the residual equations R(xn+1,xn;p) = 0

The AD library linearizes and assembles Jacobians, ∂R/∂x

The nonlinear system of algebraic equations can be solved
with Newton’s method

−J∆x = R(x), J =
∂R

∂x

% Grid and petrophysics
load seamount
G = pebi(triangleGrid([x(:) y(:) ])) ;
G = computeGeometry(G) ;
rock= makeRock(G, 1, 1);
nc = G.cells.num;

% Discrete operators
S = setupOperatorsTPFA(G,rock) ;

% Unknown p (AD) + source and sink
p = initVariablesADI(zeros(nc,1)) ;
q = zeros(nc, 1);
q([135 282 17]) = [−1 .5 .5] ;

% Evaluate residual equation
eq = S.Div(S.T.∗S.Grad(p))+q;
eq(1) = eq(1) + p(1);

% Solve linear system
p =−eq.jac{1}\eq.val;
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Efficiency: Linearization is Straightforward 12 / 32
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Mi−Mn
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∆t
+ div(Vi) = Qi

Example: black-oil model



Efficient Implementation 13 / 32

Naive implementation of AD is powerful, but can be slow
compared to manual codes

MRST:

vectorized AD library with variable-major ordering

acceleration through C++-extensions

OPM:

switch from variable-major to cell-major gave speedup

further speedup from TPFA-specialized AD library

Jutul: both version available

Many tricks generally necessary for high efficiency

Example: 3-phase flow in 3D

Variable-major ordering
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Example: Computational Performance 14 / 32

Performance using Jutul (with Hypre linear solver on a single thread)

Name Model #cells #wells AD : linear solver

SPE1 black-oil, 3-phase 300 2 40%

Fractures 2-phase, 3-component (CO2) 7 932 2 9.4%

SPE9 black-oil, 3-phase 9 000 26 28%

Egg water–oil, 2-phase 18 553 12 23%

Olympus water–oil, 2-phase 192 749 18 14%

SPE10 water–oil, 2-phase 1 122 000 5 12%

Sleipner water–gas (CO2), 2-phase 1 986 176 1 23%

For OPM Flow, the AD and property fraction is typically 30% for models of commercial
interest across a wide range of parallelism



Flexibility: Extending Models with New Physics 15 / 32

Two physical models

Model A with linearization

Ra(xa) = 0, −Jaa∆xa = −Ra

Model B with linearization

Rb(xb) = 0, −Jbb∆xb = −Rb

Combined model

R(xa,xb) =

[
Ra(xa,xb)
Rb(xb,xa)

]
= 0

Jaa

Jbb

Jab

Jba

xa

xb

Ra

Rb

=



Example: Single-Phase Thermal Flow 16 / 32

Model equations, isothermal case:

∂

∂t

[
ϕρ(p)

]
+∇ ·

[
ρ(p)v⃗

]
= q, v⃗ = − K

µ(p)

[
∇p− gρ(p)∇z

]
,

∂

∂t

[
ϕ(p, T )ρEf (p, T ) + (1− ϕ)Er(p, T )

]
+∇ ·

[
(ρHf v⃗)(p, T )

]
−∇ ·

[
κ∇T

]
= qe.

pvr = poreVolume(G, rock) ;
pv =@(p) pvr .∗ exp( cr ∗ (p − pr) ) ;
:
rho =@(p) rhor.∗(1+(cp∗(p − pr))) ;
mu =@(p) mu0∗(1+cmup∗(p−p_r)) ;

Constitutive laws and operators

v =@(p) −(Tr./mu(avg(p))) . . .
.∗( grad(p) − g∗avg(rho(p)).∗dz ) ;

pEq =@(p, p0, dt) . . .
(1/dt)∗(pv(p).∗rho(p) − pv(p0).∗rho(p0)) . . .
+ div( avg(rho(p)).∗v(p) ) ;

Discrete equations
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Model equations, thermal case:

∂

∂t

[
ϕρ(p, T )

]
+∇ ·

[
ρ(p, T )v⃗

]
= q, v⃗ = − K

µ(p, T )

[
∇p− gρ(p, T )∇z

]
,

∂

∂t

[
ϕ(p, T )ρEf (p, T ) + (1− ϕ)Er(p, T )

]
+∇ ·

[
(ρHf v⃗)(p, T )

]
−∇ ·

[
κ∇T

]
= qe.

pvr = poreVolume(G, rock) ;
pv =@(p) pvr .∗ exp( cr ∗ (p − pr) ) ;
spv =@(p) G.cells.volumes − pv(p);
:
rho =@(p,T) rhor.∗(1+(cp∗(p − pr))) .∗exp(−ct∗(T−Tr));
mu =@(p,T) mu0∗(1+cmup∗(p−p_r)) .∗exp(−cmut∗(T−T r));
:
Hf =@(p,T) Cw∗T+ (1−Tr∗ct).∗(p−pr)./rho(p,T);
Ef =@(p,T) Hf(p,T) − p./rho(p,T);
Er =@(T) Cr∗T;

Constitutive laws and operators

v =@(p,T) −(Tr./mu(avg(p) ,avg(T))) . . .
.∗( grad(p) − g∗avg(rho(p,T)).∗dz ) ;

pEq =@(p,T, p0, T0, dt) . . .
(1/dt)∗(pv(p).∗rho(p,T) − pv(p0).∗rho(p0,T0)) . . .
+ div( avg(rho(p,T)).∗v(p,T) );

hEq=@(p, T, p0, T0, dt) . . .
(1/dt)∗( pv(p).∗rho(p,T).∗Ef(p,T) + spv(p).∗Er(T)

− pv(p0).∗rho(p0,T0).∗Ef(p0,T0) − spv(p0).∗Er(T0)) . . .
+ div( upw(Hf(p,T) ,v(p,T)>0).∗avg(rho(p,T)).∗v(p,T) ) . . .
+ div( −Th.∗grad(T));

Discrete equations



Example: Single-Phase Thermal Flow 16 / 32

Model equations, thermal case:

∂

∂t

[
ϕρ(p, T )

]
+∇ ·

[
ρ(p, T )v⃗

]
= q, v⃗ = − K

µ(p, T )

[
∇p− gρ(p, T )∇z

]
,

∂

∂t

[
ϕ(p, T )ρEf (p, T ) + (1− ϕ)Er(p, T )

]
+∇ ·

[
(ρHf v⃗)(p, T )

]
−∇ ·

[
κ∇T

]
= qe.

Jpp

Jpp JpT

JTp JTT

Isothermal case
Thermal case



Example: Multisegment Well Model from Jutul 17 / 32

Jrr

JwwJwr

Jrw

Model A: standard reservoir model

Model B: multisegment well model,
representing pressure drops and well-bore
storage (often: drift flux)



Example: Coupled Flow and Geomechanics 18 / 32

flow

mechanics Mandel’s problem:

famous problem from poroelasticity

demonstrates two-way coupling of fluid
pressure and mechanical deformation



Primary vars

[Res, Jac], info

Assemble: Ax = b

δx

Update variables:
p← p + δp, s← s + δs, ...

Initial ministep:
∆t

Adjusted:
∆t̃

Write to storage

3D visualization

Well curves

State(Ti), ∆Ti, Controls(Ci)

State(Ti + ∆Ti)

Type color legend

Class

Struct

Function(s)

Input

Contains object

Optional output

Initial state Physical model
Schedule

Steps

Time step and control numbers
{(∆T1, C1), ..., (∆Tn, Cn)},

Controls

Different wells and bc
{(W1, BC1), ..., (Wm, BCm)}

Simulator

Solves simulation schedule comprised
of time steps and drive mechanisms
(wells/bc)

simulateScheduleAD

Nonlinear solver

Solves nonlinear problems sub-divided
into one or more mini steps using
Newton’s method

Time step selector

Determines optimal time steps

SimpleTimeStepSelector,

IterationCountSelector,

StateChangeTimeStepSelector, ...

Result handler

Stores and retrieves simulation data
from memory/disk in a transparent
and efficient manner.

Visualization

Visualize well curves, reservoir proper-
ties, etc

plotCellData, plotToolbar,

plotWellSols, ...

State

Primary variables: p, sw, sg, Rs, Rv...

Well solutions

Well data: qW, qO, qG, bhp, ...

Physical model

Defines mathematical model: Resid-
ual equations, Jacobians, limits on
updates, convergence definition...

TwoPhaseOilWaterModel,

ThreePhaseBlackOilModel

Well model

Well equations, control switch, well-
bore pressure drop, ...

Linearized problem

Jacobians, residual equations and
meta-information about their types

Linear solver

Solves linearized problem and returns
increments

BackslashSolverAD, AGMGSolverAD,

CPRSolverAD, MultiscaleSolverAD, ...

Fully Differentiable Simulators
AD Applied to Parameters
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Initial ministep:
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∆t̃

Write to storage
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Well curves

State(Ti), ∆Ti, Controls(Ci)

State(Ti + ∆Ti)

Type color legend

Class

Struct

Function(s)

Input

Contains object

Optional output

Initial state Physical model
Schedule

Steps

Time step and control numbers
{(∆T1, C1), ..., (∆Tn, Cn)},

Controls

Different wells and bc
{(W1, BC1), ..., (Wm, BCm)}

Simulator

Solves simulation schedule comprised
of time steps and drive mechanisms
(wells/bc)

simulateScheduleAD

Nonlinear solver

Solves nonlinear problems sub-divided
into one or more mini steps using
Newton’s method

Time step selector

Determines optimal time steps

SimpleTimeStepSelector,

IterationCountSelector,

StateChangeTimeStepSelector, ...

Result handler

Stores and retrieves simulation data
from memory/disk in a transparent
and efficient manner.

Visualization

Visualize well curves, reservoir proper-
ties, etc

plotCellData, plotToolbar,

plotWellSols, ...

State

Primary variables: p, sw, sg, Rs, Rv...

Well solutions

Well data: qW, qO, qG, bhp, ...

Physical model

Defines mathematical model: Resid-
ual equations, Jacobians, limits on
updates, convergence definition...

TwoPhaseOilWaterModel,

ThreePhaseBlackOilModel

Well model

Well equations, control switch, well-
bore pressure drop, ...

Linearized problem

Jacobians, residual equations and
meta-information about their types

Linear solver

Solves linearized problem and returns
increments

BackslashSolverAD, AGMGSolverAD,

CPRSolverAD, MultiscaleSolverAD, ...

Vi,α Vi

λf
i,α

gρα∆z

TfΘα

vα

Θα

Θα ≤ 0

∇pα

Tf

λf
α

Flux

Qi,α Qi
W → c

ρwα

pc − pbh − g∆zρmix

qα
WI

Wells

ρα

pα Φ wp
i

bα

µα

Rmax
s

PVT

pc λi,α

ραxi,α

Mi,α Mi

λαkα

Accumulation

bhp

rs

pressure

s

state

Stacking the residual equations, we can write
the simulator as a system

S(x,p,q) = 0

where

x: vector of all states in time

p: parameter vector

q: vector of driving forces

S cannot easily be differentiated because of
complex program control, iterative solvers, etc.

Instead: compute gradients with adjoint method

(Similar to backpropagation from machine learning)



Computing Gradients by Adjoint Method 20 / 32

Define a Lagrange function (observed quantity penalized by simulator residual)

Jλ = O
(
x(p)

)
+ λ⊤S

(
x(p),p,q

)

Gradient: differentiate with respect to p

dJλ
dp

=

(
∂O

∂x
+ λ⊤ ∂S

∂x

)
dx

dp
+ λ⊤ ∂S

∂p
+ S⊤ dλ

dp

Ajoint equations:
(∂S/∂x)⊤ λ = − (∂O/∂x)⊤

Solved backward for λ after solv-
ing forward for x

Automatic differentiation:
∂S/∂p computed “behind the curtain” by the
code during the backward adjoint solve (tech-
nically: set p as independent variable)

Forward simulation:
S
(
x(p),p,q

)
= 0

Solved with a stan-
dard simulator

=0
=0
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Computing Adjoints: Backpropagation Method 21 / 32

We can write the Lagrange function as a sum over all time steps:

Jλ =
N∑

n=1

[
On

(
xn(p)

)
+ λ⊤

nRn

(
xn(p),xn−1(p),p,qn

)]
Differentiate with respect to p

dJλ

dp
=

N∑
n=1

[(
∂On

∂xn
+ λ⊤

n
∂Rn

∂xn
+ λ⊤

n
∂Rn+1

∂xn

)
dxn

dp
+ λ⊤

n
∂Rn

∂p
+ S⊤

n
dλn

dp

]

Backward pass for the adjoints:(
∂Rn

∂xn

)⊤

λn = −
(
∂On

∂xn

)⊤

−
(
∂Rn+1

∂xn

)⊤

λn+1, n = N,N − 1, . . . , 1

dJλ
dp

=

N∑

n=1

(
∂Rn

∂p

)⊤

λn



Exercise Caution: Important Reminders 22 / 32

With R : Rm → Rm, the Jacobian is Rm×m (machine learning R : Rm → Rk, k ≪ m)

– Generally, not simple to decide between forward and backward AD

– However, we are saved by sparsity (but it can be difficult to utilize)

In practice, we only solve Rn(xn,xn−1,p,q) to a precribed tolerance:

– Accuracy of the computed gradient depends highly on this tolerance

– Errors may accumulate

To solve the adjoint equations, all xn must be available

– Typically write and read from disk

– Special strategies for very large models

The computed matrices ∂Rn/∂xn are not necessarily the correct Jacobians

– Typically computed using the same code as the forward solution

– This code may contain logic, specialized techniques and manipulations that invalidates AD



Example: Time-Lapse End-to-End Permeability Inversion 23 / 32

Complex multiphysics workflow realized by SLIM group (Georgia Tech,

Prof. F. Herrmann) using the Jutul flow solver as one out of several

components

From: M. Louboutin et al. Learned multiphysics inversion with differentiable
programming and machine learning. arXiv:2304.05592 [cs.MS]

Minimize over latent variable z

1

2
∥F ◦ R ◦ S(Gθ∗ (z))− d∥22 +

λ

2
∥z∥22

where

d: time-lapse seismic data

Gθ∗ : maps latent variable to permeability K

S: flow physics (Jutul)

R: rock physics

F : wave physics module

AD + adjoints provide accurate Jacobians of S
with respect to K

This ensures interoperability with other
packages in Julia’s AD ecosystem

Making your simulator differentiable and open
source makes it more versatile and simplifies
inclusion into other workflows
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Application to Reduced-Order and
Data-Driven Modelling



Motivation 24 / 32

Why use data-driven or reduced-order models?

Traditional reservoir simulation models take long time to build

Forward simulations are computationally costly

Production optimization: may require hundreds of model evaluations

Digital twins: desire for models that can be “continuously” updated with incoming data



Introducing: Coarse-Grid Network (CGNet) Models 25 / 32

Given fine model: agglomerate blocks

Given map outline: fit Cartesian blocks

Observations: more connections and
parameters seem to improve training
ability

Why not use coarse grid instead of a
“streamtube” approach?

Advantages:

– more parameters, fewer grid cells

– graph topology does not depend
on well placement

References:

– CGNet: Lie & Krogstad, Geoenergy Science
and Engineering, 2023. DOI:
10.1016/j.petrol.2022.111266

– TriNet: Devold, MSc thesis, NTNU, 2023

– Krogstad, MS26, Tue 10:05, Dræggen 7



Network Model: Physics-based Tuning Parameters 26 / 32

Continuous Discrete

I P

∂
∂t

(
ϕραSα

)
+∇ ·

(
ραv⃗α

)
= qα

v⃗α = −Kλα

(
∇p− ραg∇z

)

qα = λwb
α J

(
pwb − p

)

1
∆t

[
(Sαρα)

n+1 − (ΦSαρα)
n
]
+ div(ραvα

n+1) = qα

vα = −T upw(λα)
(
grad(p)− g avg(ρα)grad(z)

)

qα = λwb
α J(pwb − p)
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Model Training: Minimize Misfit 27 / 32

Misfit function:
M(θ) = m(θ)Tm(θ)

Here,

m – scaled misfit, mi = (yi(θ)− yi)/wi

yi – the ith data point (flow rate, bhp, etc.)

yi(θ) – data point predicted by GPSNet

wi – weight for data point i

θ – tunable parameters, {V, T, J}
In addition, we impose certain physical bounds on θ

Method: Gauss–Newton with damping (Levenberg–Marquardt),
Jacobians computed from adjoint equations

0 500 1000 1500

Time [days]

Data

Prediction



Example: the Norne Field 28 / 32

Semi-realistic model:

Real-field grid:
github.com/OPM/opm-data

46× 112× 22, 44 915 active cells

Complex grid: faults, erosions, inactive
cells, etc.

Permeability/porosity: from Lorentzen et
al. (SPE J., 2019)

oil–water system, quadratic relperm,
viscosity ratio 5:1

initial state: filled with oil

six injectors, constant rate

five producers, constant bhp



Example: CGNet as Data-Driven Model 29 / 32

CGNet:

Fit 6× 6× 1 mesh to map outline

Potential problems:

– top/bottom surfaces not represented

– wells I1 and P1 within same cell

Fit to data is nonetheless ok, except in
producer P5 (initially poorly connected
and hence sensitivity≈0)

Increase to 8× 8 to avoid multiple wells
within the same cell

Add layers to also represent top and
bottom surfaces

Cull some partially overlapping cells

Levenberg–Marquardt is much more
efficient than L-BFGS-B
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Example: CGNet as Reduced-Order Model 30 / 32

Rectangular partition in index space +
split disconnected blocks

Training data: random variation around
prescribed bhp and rate controls

Motivation: excite more reservoir states
in training data
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Training data: random variation around
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Case 2: P1 shut-in after 8 yrs
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Example: Optimizing Geothermal Storage Plants 31 / 32

Residential/commercial building complex in Asker

Complex multi-reservoir geothermal storage facility: three
reservoirs, one hundred wells

Covers heating and cooling needs

Also provides energy to snow-melting in city streets

Residential/commercial building complex in
Asker, Norway

wesselkvartalet.no

wesselkvartalet.no
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Residential/commercial building complex in Asker

Complex multi-reservoir geothermal storage facility: three
reservoirs, one hundred wells

Covers heating and cooling needs

Also provides energy to snow-melting in city streets
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Residential/commercial building complex in Asker

Complex multi-reservoir geothermal storage facility: three
reservoirs, one hundred wells

Covers heating and cooling needs

Also provides energy to snow-melting in city streets

CGNet with 294 reservoir nodes tuned to match
manifold temperature, results after 50

quasi-Newton iterations



Concluding remarks 32 / 32

Tried to make a case for the importance of differentiable simulators and the utility of
automatic differentiation

First part discussed how to apply AD to dynamic variables to aid simulator development:

– avoid hand-calculation and explicit implementation of Jacobians

– aid in developing fully coupled multiphysics simulators

Second part showed how to apply AD to parameters in workflows:

– use of differentiable simulator to generate data-driven or reduced-order models

– could also have demonstrated optimization workflows

However, none of the simulators are fully differentiable:

– differentiable with respect to parameters in the continuous equations

– not differentiable to grid, tolerances and program control parameters, etc.

– generally challenging to know upfront where the need for gradients will pop up


