Differentiable Simulators: Implications for Software Development and Applications to Reduced-Order and Data-Driven Modelling

Knut-Andreas Lie
SINTEF Digital, Oslo, Norway

SIAM Conference on Mathematical \& Computational Issues in the Geosciences (GS23) June 19-22, 2023, Bergen, Norway

Differentiable Simulators

Differentiable programming is a programming paradigm in which a numeric computer program can be differentiated throughout via automatic differentiation.

From: wikipedia.org/wiki/Differentiable_programming

Differentiable Simulators

Differentiable programming is a programming paradigm in which a numeric computer program can be differentiated throughout via automatic differentiation.

From: wikipedia.org/wiki/Differentiable_programming

- provides gradients that indicate how input parameters should change to produce a change in the output state(s)
- enables gradient-based optimization, allowing for efficient parameter tuning and optimization of models
- leveraged in frameworks like TensorFlow, Theano, and PyTorch to enhance model training and optimization
- can be used to develop differentiable PDE-based simulators

Differentiable programming is a programming paradigm in which a numeric computer program can be differentiated throughout via automatic differentiation.

From: wikipedia.org/wiki/Differentiable_programming

- provides gradients that indicate how input parameters should change to produce a change in the output state(s)
- enables gradient-based optimization, allowing for efficient parameter tuning and optimization of models
- leveraged in frameworks like TensorFlow, Theano, and PyTorch to enhance model training and optimization
- can be used to develop differentiable PDE-based simulators

Two types of approaches

- static, compiled graph-based approaches like TensorFlow and Theano
- good computer optimization and scaling
- static nature limits interactivity and type of program
- operator overloading, dynamic graph-based approaches like PyTorch and Zygote (Julia)
- dynamic/interactive use, more flexible programming
- interpreter overhead, less optimization

Either case: rely on computational graphs
Typically has support for GPU, TPU, or other accelerators

What is Automatic Differentiation?

Automatic differentiation is a set of techniques to compute the derivative or gradient of a function with respect to its inputs

Basic concepts:

- can leverage the chain rule of calculus to break down complex computations into a sequence of elementary operations
- these operations consist of a limited set of arithmetic operations and elementary functions
- each elementary operation has known differential rules
- by evaluating the derivatives of each elementary operation, one obtains exact derivatives at given input values

What is Automatic Differentiation?

Automatic differentiation is a set of techniques to compute the derivative or gradient of a function with respect to its inputs

Basic concepts:

- can leverage the chain rule of calculus to break down complex computations into a sequence of elementary operations
- these operations consist of a limited set of arithmetic operations and elementary functions
- each elementary operation has known differential rules
- by evaluating the derivatives of each elementary operation, one obtains exact derivatives at given input values

Example: evaluate $3 * \exp (-x * y)$

Modes of Automatic Differentiation

Forward mode:

- computes both function values and their derivatives by propagating computations forward through the computational graph, starting from the input variables
- well-suited for functions with a small number of inputs and a large number of outputs

Reverse/backward mode:

- starts from the output variables, works backward through the computational graph, accumulating sensitivities or gradients with respect to the inputs
- is efficient for large number of inputs compared to outputs, making it particularly useful for gradient-based optimization

Many libraries also use source code transformation. Mixed-mode versions may also be needed
PDE-based simulators have approximately as many outputs as inputs, and question is how to best exploit inherent sparsity structure

Software

Description

TRANSFORMING RESEARCH

OPEN POROUS MEDIA

A unique research and prototyping tool used all over the world, e.g., as evidenced by more than 210 master/doctoral theses and 600 external journal and proceedings papers
URL: mrst.no

Open-source reservoir simulator aimed at commercial application based on industry-standard black-oil type models. Used by Equinor for asset models on the Norwegian Continental Shelf.
URL: opm-project.org
Sandve, MS35, Wed 09:10, Plenary Hall

Experimental Julia framework for fully differentiable multi-physics simulators. Extensive functionality for reservoir simulation (JutulDarcy.jl) and computational electrochemistry (BattMo.jl)
URL: github.com/sintefmath/Jutul.jl
Møyner, MS35, Wed 10:25, Plenary Hall

Automatic Differentiation in MRST

- Introduce an extended pair, $\left\langle v, v_{x}\right\rangle$, to represent the value v and its derivative v_{x} to a given input variable $x=\langle x, 1\rangle$
- Use chain rule and elementary derivative rules to mechanically accumulate derivatives at specific values of x
- Elementary: $v=\sin (x) \quad \longrightarrow \quad\langle v\rangle=\langle\sin x, \cos x\rangle$
- Arithmetic: $v=f * g \quad \longrightarrow \quad\langle v\rangle=\left\langle f * g, f * g_{x}+f_{x} * g\right\rangle$
- Chain rule: $\quad v=\exp (f(x)) \quad \longrightarrow \quad\langle v\rangle=\left\langle\exp (f(x)), \exp (f(x)) f^{\prime}(x)\right\rangle$
- Use operator overloading to avoid messing up code
$[\mathrm{x}, \mathrm{y}]=$ initVariablesADI $(1,2)$; $z=3 * \exp (-x * y)$

z = ADI Properties:
val: 0.4060
jac: $\{[-0.8120][-0.4060]\}$
- Accuracy: exact derivatives, unlike for finite-difference approximations
- Correctness: avoids error-prone manual derivation and implementation
- Efficiency: avoids time-consuming manual derivation and implementation
- Flexibility: enables users to focus on the model's logic rather than manual derivation of derivatives
- Adaptability: simple differentiation of underlying equations with respect to parameters or variables enables sensitivity analysis, optimization, and parameter estimation
- Accuracy: exact derivatives, unlike for finite-difference approximations
- Correctness: avoids error-prone manual derivation and implementation
- Efficiency: avoids time-consuming manual derivation and implementation
- Flexibility: enables users to focus on the model's logic rather than manual derivation of derivatives
- Adaptability: simple differentiation of underlying equations with respect to parameters or variables enables sensitivity analysis, optimization, and parameter estimation

However, there are potential pitfalls

- May struggle with complex control flow such as loops, conditionals, recursions, linear solvers, etc.
- Increased memory consumption (because of intermediate storage)
- Computational overhead: all intermediate steps computed if straightforward implementation, compiler must perform simplification of expressions in advanced versions
- Primarily designed for continuous functions/variables
- Can be misleading if you fail to specify independent variables correctly

Rapid Prototyping Using Automatic

 DifferentiationAD Applied to Dynamic Variables

water(outIx) $=s W$ (outIX);

ADI with properties:
\% Collect and conca
\% Iinearize system)
val: [726×1 double]
$\begin{aligned} \text { eqs } & =\{\text { oil, water }\} ; \\ \text { eq } & =\text { combineEquations (eqs }[:\}) \text {; }\end{aligned}$
iac: $\{[726 \times 726$ double $]\}$

Discrete Differentiation Operators

Imagine you had discrete differentiation operators you could use like their continuous counterparts when writing code:

Continuous equations:

$$
\nabla \cdot(\mathbf{K} \nabla p)+q=0
$$

Discrete equations:

$$
\operatorname{div}(\operatorname{Kgrad}(p))+q=0
$$

To explain how to achieve this, we write the equation in first-order form instead

$$
-\nabla \cdot \vec{v}+q=0, \quad \vec{v}=-K \nabla p
$$

Discrete Differentiation Operators (Finite-Volume Methods)

Conservation of mass:

$\sum_{\Gamma_{f} \in \partial \Omega_{c}} \int_{\Gamma_{f}} \vec{v} \cdot \vec{n} d s=\int_{\Omega_{c}} \nabla \cdot \vec{v} d \vec{x}=\int_{\Omega_{c}} q d \vec{x}$
discrete:

$$
\operatorname{div}(\boldsymbol{v})[c]=\boldsymbol{q}[c]
$$

Discrete Differentiation Operators (Finite-Volume Methods)

Conservation of mass:

$$
\sum_{\Gamma_{f} \in \partial \Omega_{c}} \int_{\Gamma_{f}} \vec{v} \cdot \vec{n} d s=\int_{\Omega_{c}} \nabla \cdot \vec{v} d \vec{x}=\int_{\Omega_{c}} q d \vec{x}
$$

discrete:

$$
\operatorname{div}(\boldsymbol{v})[c]=\boldsymbol{q}[c]
$$

$$
\int_{\Gamma_{f}} \vec{v}(x) \cdot \vec{n}_{f} d s=-\int_{\Gamma_{f}} \mathbf{K}(x) \nabla p \cdot \vec{n}_{f} d s
$$

$$
\text { discrete: } \quad \boldsymbol{v}[f]=-\boldsymbol{T}[f] \operatorname{grad}(\boldsymbol{p})[f]
$$

$$
\begin{aligned}
v_{i, k} & =T_{i, k}\left(p_{i}-\pi_{i, k}\right) \\
T_{i, k} & =A_{i, k} \frac{\vec{c}_{i, k} \cdot \mathbf{K}_{i} \vec{n}_{i, k}}{\left|\vec{c}_{i, k}\right|^{2}} \\
v_{i k} & =T_{i k}\left(p_{i}-\mathbf{p}_{k}\right), \quad T_{i k}=\left[T_{i, k}^{-1}+T_{k, i}^{-1}\right]^{-1}
\end{aligned}
$$

Operators div and grad as Sparse Matrices

The discrete grad operator maps from cell pair $C_{1}(f), C_{2}(f)$ to face f :

$$
\operatorname{grad}(\boldsymbol{p})[f]=\boldsymbol{p}\left[C_{2}(f)\right]-\boldsymbol{p}\left[C_{1}(f)\right],
$$

$\boldsymbol{p}[c]$: scalar quantity associated with cell c

Operators div and grad as Sparse Matrices

The discrete grad operator maps from cell pair $C_{1}(f), C_{2}(f)$ to face f :

$$
\operatorname{grad}(\boldsymbol{p})[f]=\boldsymbol{p}\left[C_{2}(f)\right]-\boldsymbol{p}\left[C_{1}(f)\right],
$$

$\boldsymbol{p}[c]$: scalar quantity associated with cell c
Introduce sparse matrix:

$$
D_{i j}= \begin{cases}1, & j=C_{1}(i) \\ -1, & j=C_{2}(i) \\ 0, & \text { otherwise }\end{cases}
$$

so that

$$
\operatorname{grad}(\mathbf{x})=-\mathbf{D x}
$$

and likewise,

$$
\operatorname{div}(\mathbf{y})=\mathbf{D}^{T} \mathbf{y}
$$

Operators div and grad as Sparse Matrices

The discrete grad operator maps from cell pair $C_{1}(f), C_{2}(f)$ to face f :

$$
\operatorname{grad}(\boldsymbol{p})[f]=\boldsymbol{p}\left[C_{2}(f)\right]-\boldsymbol{p}\left[C_{1}(f)\right],
$$

$\boldsymbol{p}[c]$: scalar quantity associated with cell c

Introduce sparse matrix:

$$
D_{i j}= \begin{cases}1, & j=C_{1}(i) \\ -1, & j=C_{2}(i), \\ 0, & \text { otherwise }\end{cases}
$$

so that

$$
\operatorname{grad}(\mathbf{x})=-\mathbf{D x}
$$

and likewise,

$$
\operatorname{div}(\mathbf{y})=\mathbf{D}^{T} \mathbf{y}
$$

Operators div and grad as Sparse Matrices

The discrete grad operator maps from cell pair $C_{1}(f), C_{2}(f)$ to face f :

$$
\operatorname{grad}(\boldsymbol{p})[f]=\boldsymbol{p}\left[C_{2}(f)\right]-\boldsymbol{p}\left[C_{1}(f)\right],
$$

$\boldsymbol{p}[c]$: scalar quantity associated with cell c
Introduce sparse matrix:

$$
D_{i j}= \begin{cases}1, & j=C_{1}(i) \\ -1, & j=C_{2}(i), \\ 0, & \text { otherwise }\end{cases}
$$

so that

$$
\operatorname{grad}(\mathbf{x})=-\mathbf{D x}
$$

and likewise,

$$
\operatorname{div}(\mathbf{y})=\mathbf{D}^{T} \mathbf{y}
$$

Continuous

Incompressible flow:

$$
\nabla \cdot(\mathbf{K} \nabla p)+q=0
$$

Compressible flow:

$$
\frac{\partial(\phi \rho)}{\partial t}+\nabla \cdot(\rho \mathbf{K} \nabla p)+q=0
$$

Discrete in MATLAB

Incompressible flow:

```
eq = div(T .* grad(p)) + q;
```

Compressible flow:

$$
\begin{aligned}
\mathrm{eq}= & (\mathrm{pv}(\mathrm{p}) \cdot * r h o(\mathrm{p})-\mathrm{pv}(\mathrm{p} 0) \cdot * \operatorname{rho}(\mathrm{p} 0)) / \mathrm{dt} \ldots \\
& +\operatorname{div}(\operatorname{avg}(\operatorname{rho}(\mathrm{p})) \cdot * T \cdot * \operatorname{grad}(\mathrm{p}))+\mathrm{q} ;
\end{aligned}
$$

Continuous

Incompressible flow:

$$
\nabla \cdot(\mathbf{K} \nabla p)+q=0
$$

Compressible flow:

$$
\frac{\partial(\phi \rho)}{\partial t}+\nabla \cdot(\rho \mathbf{K} \nabla p)+q=0
$$

Discrete in MATLAB
Incompressible flow:

```
eq = div(T .* grad(p)) + q;
```

Compressible flow:

```
eq = (pv(p).*rho(p)-pv(p0).*rho(p0))/dt
    + div(avg(rho(p)).*T.*grad(p))+q;
```

Discretization of flow models leads to large systems of nonlinear algebraic equations, typically linearized and solved with Newton's method

$$
\boldsymbol{F}(\boldsymbol{u})=\mathbf{0} \quad \Rightarrow \quad \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{u}}\left(\boldsymbol{u}^{i}\right)\left(\boldsymbol{u}^{i+1}-\boldsymbol{u}^{i}\right)=-\boldsymbol{F}\left(\boldsymbol{u}^{i}\right)
$$

Discretization gives the residual flow equation


```
% Grid and petrophysics
load seamount
G = pebi(triangleGrid([x(:) y(:)]));
G = computeGeometry(G);
rock = makeRock(G, 1, 1);
nc =G.cells.num;
% Discrete operators
S = setupOperatorsTPFA(G,rock);
% Unknown p (AD) + source and sink
p = initVariablesADI(zeros(nc,1));
q = zeros(nc, 1);
q([llll 282 17]) =[\begin{array}{llll}{13}&{.5}&{.5}\end{array}];
% Evaluate residual equation
eq =S.Div(S.T.*S.Grad(p))+q;
eq(1) = eq(1) + p(1);
% Solve linear system
p =-eq.jac{1}\eq.val;
```

Discretization gives the residual flow equation

Setting the residual to zero, gives a linear system


```
% Grid and petrophysics
load seamount
G = pebi(triangleGrid([x(:) y(:)]));
G = computeGeometry(G);
rock = makeRock(G, 1, 1);
nc =G.cells.num;
% Discrete operators
S = setupOperatorsTPFA(G,rock);
% Unknown p (AD) + source and sink
p = initVariablesADI(zeros(nc,1));
q = zeros(nc, 1);
q([llll 282 17]) =[[-1 .5 .5}]
% Evaluate residual equation
eq =S.Div(S.T.*S.Grad(p))+q;
eq(1) = eq(1) + p(1);
% Solve linear system
p =-eq.jac{1}\eq.val;
```

Discretization gives the residual flow equation

Setting the residual to zero, gives a linear system

With AD, we can assemble the linear system implicitly and solve it with Newton's method since $\partial \mathbf{F} / \partial \mathbf{p}=\mathbf{A}$

```
% Grid and petrophysics
load seamount
G = pebi(triangleGrid([x(:) y(:)]));
G = computeGeometry(G);
rock = makeRock(G, 1, 1);
nc =G.cells.num;
% Discrete operators
S = setupOperatorsTPFA(G,rock);
% Unknown p (AD) + source and sink
p = initVariablesADI(zeros(nc,1));
q = zeros(nc, 1);
q([lll 282 17]) =[\begin{array}{llll}{-1}&{.5}&{.5}\end{array}];
% Evaluate residual equation
eq}=S.Div(S.T.*S.Grad(p))+q
eq(1) = eq(1) +p(1);
% Solve linear system
p =-eq.jac{1}\eq.val;
```


Example: $-\nabla \cdot(\mathbf{K} \nabla p)=q$ on Unstructured Grid

Discretization gives the residual flow equation

With AD, we can assemble the linear system implicitly and solve it with Newton's method since $\partial \mathbf{F} / \partial \mathbf{p}=\mathbf{A}$

Not much gained so far. However, the same idea applies to more complex nonlinear models

- You implement the residual equations $\mathbf{R}\left(\mathbf{x}_{n+1}, \mathbf{x}_{n} ; \mathbf{p}\right)=\mathbf{0}$
- The AD library linearizes and assembles Jacobians, $\partial \mathbf{R} / \partial \mathbf{x}$
- The nonlinear system of algebraic equations can be solved with Newton's method

$$
\begin{array}{ll}
-\mathbf{J} \Delta \mathbf{x}=\mathbf{R}(\mathbf{x}), & \mathbf{J}=\frac{\partial \mathbf{R}}{\partial \mathbf{x}} \\
\mathrm{A} & \mathrm{p} \\
\mathrm{q} & 0
\end{array}
$$


```
% Grid and petrophysics
load seamount
G = pebi(triangleGrid([x(:) y(:)]));
G = computeGeometry(G);
rock = makeRock(G, 1, 1);
nc =G.cells.num;
% Discrete operators
S = setupOperatorsTPFA(G,rock);
% Unknown p (AD) + source and sink
p = initVariablesADI(zeros(nc,1));
q = zeros(nc, 1)
q([lll5 282 17]) =[[-1 - .5 .5}];
% Evaluate residual equation
eq =S.Div(S.T.*S.Grad(p))+q
eq(1) = eq(1) + p(1);
% Solve linear system
p=-eq.jac{1}\eq.val;
```


Example: black-oil model

Efficient Implementation

Naive implementation of AD is powerful, but can be slow compared to manual codes

MRST:

- vectorized AD library with variable-major ordering
- acceleration through C++-extensions

Example: 3-phase flow in 3D

Variable-major ordering

Efficient Implementation

Naive implementation of AD is powerful, but can be slow compared to manual codes

MRST:

- vectorized AD library with variable-major ordering
- acceleration through C++-extensions

OPM:

- switch from variable-major to cell-major gave speedup
- further speedup from TPFA-specialized AD library

Jutul: both version available
Many tricks generally necessary for high efficiency

Example: 3-phase flow in 3D

Performance using Jutul (with Hypre linear solver on a single thread)

Name	Model	\#cells	\#wells	AD : linear solver
SPE1	black-oil, 3-phase	300	2	40%
Fractures	2-phase, 3-component $\left(\mathrm{CO}_{2}\right)$	7932	2	9.4%
SPE9	black-oil, 3-phase	9000	26	28%
Egg	water-oil, 2-phase	18553	12	23%
Olympus	water-oil, 2-phase	192749	18	14%
SPE10	water-oil, 2-phase	1122000	5	12%
Sleipner	water-gas $\left(\mathrm{CO}_{2}\right)$, 2-phase	1986176	1	23%

For OPM Flow, the AD and property fraction is typically 30% for models of commercial interest across a wide range of parallelism

Two physical models

Model A with linearization

$$
\mathbf{R}_{a}\left(\mathbf{x}_{a}\right)=\mathbf{0}, \quad-\mathbf{J}_{a a} \Delta \mathbf{x}_{a}=-\mathbf{R}_{a}
$$

Model B with linearization

$$
\mathbf{R}_{b}\left(\mathbf{x}_{b}\right)=\mathbf{0}, \quad-\mathbf{J}_{b b} \Delta \mathbf{x}_{b}=-\mathbf{R}_{b}
$$

Combined model

$$
R\left(\mathbf{x}_{a}, \mathbf{x}_{b}\right)=\left[\begin{array}{l}
R_{a}\left(\mathbf{x}_{a}, \mathbf{x}_{b}\right) \\
R_{b}\left(\mathbf{x}_{b}, \mathbf{x}_{a}\right)
\end{array}\right]=\mathbf{0}
$$

Model equations, isothermal case:

$$
\frac{\partial}{\partial t}[\phi \rho(p)]+\nabla \cdot[\rho(p) \vec{v}]=q, \quad \vec{v}=-\frac{\mathbf{K}}{\mu(p)}[\nabla p-g \rho(p) \nabla z],
$$

```
Constitutive laws and operators
pvr = poreVolume(G, rock);
pv =@(p) pvr .* exp( cr * (p - pr) );
rho =@(p) rhor.*(1+(cp*(p - pr)));
mu =@(p)mu0*(1+cmup*(p p_r));
```

```
Discrete equations
v =@(p) -(Tr./mu(avg(p)))
    .*( grad(p) - g*avg(rho(p)).*dz );
pEq=@(p, p0, dt)
    (1/dt)*(pv(p).*rho(p) - pv(p0).*rho(p0))
    + div( avg(rho(p)).*v(p));
```


Model equations, thermal case:

$$
\begin{gathered}
\frac{\partial}{\partial t}[\phi \rho(p, T)]+\nabla \cdot[\rho(p, T) \vec{v}]=q, \quad \vec{v}=-\frac{\mathbf{K}}{\mu(p, T)}[\nabla p-g \rho(p, T) \nabla z] \\
\frac{\partial}{\partial t}\left[\phi(p, T) \rho E_{f}(p, T)+(1-\phi) E_{r}(p, T)\right]+\nabla \cdot\left[\left(\rho H_{f} \vec{v}\right)(p, T)\right]-\nabla \cdot[\kappa \nabla T]=q_{e}
\end{gathered}
$$

Constitutive laws and operators

```
pvr = poreVolume(G, rock);
```

pvr = poreVolume(G, rock);
pv =@(p) pvr .* exp(cr * (p-pr));
pv =@(p) pvr .* exp(cr * (p-pr));
spv =@(p) G.cells.volumes - pv(p);
spv =@(p) G.cells.volumes - pv(p);
rho =@(p,T) rhor.*(1+(cp*(p - pr))).*exp(-ct*(T Tr));
rho =@(p,T) rhor.*(1+(cp*(p - pr))).*exp(-ct*(T Tr));
mu =@(p,T) mu0*(1+cmup*(p p_r)).*exp(-cmut*(T-T_r));
mu =@(p,T) mu0*(1+cmup*(p p_r)).*exp(-cmut*(T-T_r));
Hf =@(p,T) Cw*T + (1-Tr*ct).*(p-pr)./rho(p,T);
Hf =@(p,T) Cw*T + (1-Tr*ct).*(p-pr)./rho(p,T);
Ef =@(p,T) Hf(p,T) - p./rho(p,T);
Ef =@(p,T) Hf(p,T) - p./rho(p,T);
Er =@(T) Cr*T;

```
Er =@(T) Cr*T;
```


Discrete equations

$\mathrm{v} \quad=@(\mathrm{p}, \mathrm{T}) \quad-(\operatorname{Tr} . / \operatorname{mu}(\operatorname{avg}(\mathrm{p}), \operatorname{avg}(\mathrm{T})))$
.$*(\operatorname{grad}(\mathrm{p})-\mathrm{g} * \operatorname{avg}(\mathrm{rho}(\mathrm{p}, \mathrm{T})) . * \mathrm{dz})$;
$\mathrm{pEq}=@(\mathrm{p}, \mathrm{T}, \mathrm{p} 0, \mathrm{T0}, \mathrm{dt})$
$(1 / \mathrm{dt}) *(\mathrm{pv}(\mathrm{p}) \cdot * \mathrm{rho}(\mathrm{p}, \mathrm{T})-\mathrm{pv}(\mathrm{p} 0) \cdot * \mathrm{rho}(\mathrm{p} 0, \mathrm{~T} 0))$
$+\operatorname{div}(\operatorname{avg}(\operatorname{rho}(\mathrm{p}, \mathrm{T})) \cdot * \mathrm{v}(\mathrm{p}, \mathrm{T}))$;
$\mathrm{hEq}=@(\mathrm{p}, \mathrm{T}, \mathrm{p} 0, \mathrm{~T} 0, \mathrm{dt})$
$(1 / \mathrm{dt}) *(\mathrm{pv}(\mathrm{p}) \cdot * \mathrm{rho}(\mathrm{p}, \mathrm{T}) \cdot * \operatorname{Ef}(\mathrm{p}, \mathrm{T})+\operatorname{spv}(\mathrm{p}) \cdot * \operatorname{Er}(\mathrm{~T})$
$-\mathrm{pv}(\mathrm{p} 0) . * \mathrm{rho}(\mathrm{p} 0, \mathrm{~T} 0) . * \operatorname{Ef}(\mathrm{p} 0, \mathrm{~T} 0)-\mathrm{spv}(\mathrm{p} 0) . * \operatorname{Er}(\mathrm{~T} 0)) .$.
$+\operatorname{div}(\operatorname{upw}(\operatorname{Hf}(\mathrm{p}, \mathrm{T}), \mathrm{v}(\mathrm{p}, \mathrm{T})>0) \cdot * \operatorname{avg}(\mathrm{rho}(\mathrm{p}, \mathrm{T})) \cdot * \mathrm{v}(\mathrm{p}, \mathrm{T})) \ldots$
$+\operatorname{div}(-$ Th. $* \operatorname{grad}(\mathrm{~T}))$;

Model equations, thermal case:

$$
\begin{gathered}
\frac{\partial}{\partial t}[\phi \rho(p, T)]+\nabla \cdot[\rho(p, T) \vec{v}]=q, \quad \vec{v}=-\frac{\mathbf{K}}{\mu(p, T)}[\nabla p-g \rho(p, T) \nabla z] \\
\frac{\partial}{\partial t}\left[\phi(p, T) \rho E_{f}(p, T)+(1-\phi) E_{r}(p, T)\right]+\nabla \cdot\left[\left(\rho H_{f} \vec{v}\right)(p, T)\right]-\nabla \cdot[\kappa \nabla T]=q_{e}
\end{gathered}
$$

Isothermal case
Thermal case

Example: Multisegment Well Model from Jutul

- Model A: standard reservoir model
- Model B: multisegment well model, representing pressure drops and well-bore storage (often: drift flux)

Mandel's problem:

- famous problem from poroelasticity
- demonstrates two-way coupling of fluid pressure and mechanical deformation

| Steps |
| :--- | :--- |
| Time step and control numbers |
| $\left\{\left(\Delta T_{1}, C_{1}\right), \ldots,\left(\Delta T_{n}, C_{n}\right)\right\}$, |$\quad$| Controls |
| :--- |\quad| Different wells and bc |
| :--- |
| $\left\{\left(W_{1}, B C_{1}\right), \ldots,\left(W_{m}, B C_{m}\right)\right\}$ |

Type color legend

Fully Differentiable Simulators

AD Applied to Parameters

Differentiating a General Computational Graph

Stacking the residual equations, we can write the simulator as a system

$$
\mathbf{S}(\mathbf{x}, \mathbf{p}, \mathbf{q})=\mathbf{0}
$$

where
\mathbf{x} : vector of all states in time
p: parameter vector
\mathbf{q} : vector of driving forces

S cannot easily be differentiated because of complex program control, iterative solvers, etc.

Instead: compute gradients with adjoint method
(Similar to backpropagation from machine learning)

Define a Lagrange function (observed quantity penalized by simulator residual)

$$
J_{\lambda}=O(\mathbf{x}(\mathbf{p}))+\boldsymbol{\lambda}^{\top} \mathbf{S}(\mathbf{x}(\mathbf{p}), \mathbf{p}, \mathbf{q})
$$

Gradient: differentiate with respect to \mathbf{p}

$$
\frac{d J_{\boldsymbol{\lambda}}}{d \mathbf{p}}=\left(\frac{\partial O}{\partial \mathbf{x}}+\boldsymbol{\lambda}^{\top} \frac{\partial \mathbf{S}}{\partial \mathbf{x}}\right) \frac{d \mathbf{x}}{d \mathbf{p}}+\boldsymbol{\lambda}^{\top} \frac{\partial \mathbf{S}}{\partial \mathbf{p}}+\mathbf{S}^{\top} \frac{d \boldsymbol{\lambda}}{d \mathbf{p}}
$$

Define a Lagrange function (observed quantity penalized by simulator residual)

$$
J_{\lambda}=O(\mathbf{x}(\mathbf{p}))+\boldsymbol{\lambda}^{\top} \mathbf{S}(\mathbf{x}(\mathbf{p}), \mathbf{p}, \mathbf{q})
$$

Gradient: differentiate with respect to \mathbf{p}

$$
\frac{d J_{\boldsymbol{\lambda}}}{d \mathbf{p}}=\left(\frac{\partial O}{\partial \mathbf{x}}+\boldsymbol{\lambda}^{\top} \frac{\partial \mathbf{S}}{\partial \mathbf{x}}\right) \frac{d \mathbf{x}}{d \mathbf{p}}+\boldsymbol{\lambda}^{\top} \frac{\partial \mathbf{S}}{\partial \mathbf{p}}+\mathbf{S}^{\top} \frac{d \boldsymbol{\lambda}}{d \mathbf{p}}
$$

Forward simulation:

$\mathbf{S}(\mathbf{x}(\mathbf{p}), \mathbf{p}, \mathbf{q})=0$
Solved with a standard simulator

Define a Lagrange function (observed quantity penalized by simulator residual)

$$
J_{\lambda}=O(\mathbf{x}(\mathbf{p}))+\boldsymbol{\lambda}^{\top} \mathbf{S}(\mathbf{x}(\mathbf{p}), \mathbf{p}, \mathbf{q})
$$

Gradient: differentiate with respect to \mathbf{p}

$$
\frac{d J_{\boldsymbol{\lambda}}}{d \mathbf{p}}=\left(\frac{\partial O}{\partial \mathbf{x}}+\boldsymbol{\lambda}^{\top} \frac{\partial \mathbf{S}}{\partial \mathbf{x}}\right) \frac{d \mathbf{x}}{d \mathbf{p}}+\boldsymbol{\lambda}^{\top} \frac{\partial \mathbf{S}}{\partial \mathbf{p}}+\mathbf{S}^{\top} \frac{d \boldsymbol{\lambda}}{d \mathbf{p}}
$$

Ajoint equations:
$(\partial \mathbf{S} / \partial \mathbf{x})^{\top} \boldsymbol{\lambda}=-(\partial O / \partial \mathbf{x})^{\top}$
Solved backward for $\boldsymbol{\lambda}$ after solving forward for \mathbf{x}

Forward simulation:

$\mathbf{S}(\mathbf{x}(\mathbf{p}), \mathbf{p}, \mathbf{q})=0$
Solved with a standard simulator

Define a Lagrange function (observed quantity penalized by simulator residual)

$$
J_{\lambda}=O(\mathbf{x}(\mathbf{p}))+\boldsymbol{\lambda}^{\top} \mathbf{S}(\mathbf{x}(\mathbf{p}), \mathbf{p}, \mathbf{q})
$$

Gradient: differentiate with respect to \mathbf{p}

Ajoint equations:

$(\partial \mathbf{S} / \partial \mathbf{x})^{\top} \boldsymbol{\lambda}=-(\partial O / \partial \mathbf{x})^{\top}$ Solved backward for $\boldsymbol{\lambda}$ after solving forward for \mathbf{x}

Automatic differentiation:

$\partial \mathbf{S} / \partial \mathbf{p}$ computed "behind the curtain" by the code during the backward adjoint solve (technically: set \mathbf{p} as independent variable)

Forward simulation:

$\mathbf{S}(\mathbf{x}(\mathbf{p}), \mathbf{p}, \mathbf{q})=0$
Solved with a standard simulator

Computing Adjoints: Backpropagation Method

We can write the Lagrange function as a sum over all time steps:

$$
J_{\lambda}=\sum_{n=1}^{N}\left[O_{n}\left(\mathbf{x}_{n}(\mathbf{p})\right)+\boldsymbol{\lambda}_{n}^{\top} \mathbf{R}_{n}\left(\mathbf{x}_{n}(\mathbf{p}), \mathbf{x}_{n-1}(\mathbf{p}), \mathbf{p}, \mathbf{q}_{n}\right)\right]
$$

Differentiate with respect to \mathbf{p}

$$
\frac{d J_{\boldsymbol{\lambda}}}{d \mathbf{p}}=\sum_{n=1}^{N}\left[\left(\frac{\partial O_{n}}{\partial \mathbf{x}_{n}}+\boldsymbol{\lambda}_{n}^{\top} \frac{\partial \mathbf{R}_{n}}{\partial \mathbf{x}_{n}}+\boldsymbol{\lambda}_{n}^{\top} \frac{\partial \mathbf{R}_{n+1}}{\partial \mathbf{x}_{n}}\right) \frac{d \mathbf{x}_{n}}{d \mathbf{p}}+\boldsymbol{\lambda}_{n}^{\top} \frac{\partial \mathbf{R}_{n}}{\partial \mathbf{p}}+\mathbf{S}_{n}^{\top} \frac{d \boldsymbol{\lambda}_{n}}{d \mathbf{p}}\right]
$$

Backward pass for the adjoints:

$$
\begin{aligned}
\left(\frac{\partial \mathbf{R}_{n}}{\partial \mathbf{x}_{n}}\right)^{\top} \boldsymbol{\lambda}_{n}=-\left(\frac{\partial O_{n}}{\partial \mathbf{x}_{n}}\right)^{\top}- & \left(\frac{\partial \mathbf{R}_{n+1}}{\partial \mathbf{x}_{n}}\right)^{\top} \boldsymbol{\lambda}_{n+1}, \quad n=N, N-1, \ldots, 1 \\
\frac{d J_{\boldsymbol{\lambda}}}{d \mathbf{p}} & =\sum_{n=1}^{N}\left(\frac{\partial \mathbf{R}_{n}}{\partial \mathbf{p}}\right)^{\top} \boldsymbol{\lambda}_{n}
\end{aligned}
$$

Exercise Caution: Important Reminders

■ With $\mathbf{R}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, the Jacobian is $\mathbb{R}^{m \times m}$ (machine learning $\mathbf{R}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}, k \ll m$)

- Generally, not simple to decide between forward and backward AD
- However, we are saved by sparsity (but it can be difficult to utilize)
- In practice, we only solve $\mathbf{R}_{n}\left(\mathbf{x}_{n}, \mathbf{x}_{n-1}, \mathbf{p}, \mathbf{q}\right)$ to a precribed tolerance:
- Accuracy of the computed gradient depends highly on this tolerance
- Errors may accumulate
- To solve the adjoint equations, all \mathbf{x}_{n} must be available
- Typically write and read from disk
- Special strategies for very large models
- The computed matrices $\partial \mathbf{R}_{n} / \partial \mathbf{x}_{n}$ are not necessarily the correct Jacobians
- Typically computed using the same code as the forward solution
- This code may contain logic, specialized techniques and manipulations that invalidates AD

Example: Time-Lapse End-to-End Permeability Inversion

Complex multiphysics workflow realized by SLIM group (Georgia Tech, Prof. F. Herrmann) using the Jutul flow solver as one out of several components

Example: Time-Lapse End-to-End Permeability Inversion

From: M. Louboutin et al. Learned multiphysics inversion with differentiable programming and machine learning. arXiv:2304.05592 [cs.MS]

Minimize over latent variable z

$$
\frac{1}{2}\left\|\mathcal{F} \circ \mathcal{R} \circ \mathcal{S}\left(\mathcal{G}_{\theta^{*}}(\mathbf{z})\right)-\mathbf{d}\right\|_{2}^{2}+\frac{\lambda}{2}\|z\|_{2}^{2}
$$

where
d: time-lapse seismic data
$\mathcal{G}_{\theta^{*}}$: maps latent variable to permeability \mathbf{K}
\mathcal{S} : flow physics (Jutul)
\mathcal{R} : rock physics
\mathcal{F} : wave physics module
AD + adjoints provide accurate Jacobians of \mathcal{S} with respect to \mathbf{K}

This ensures interoperability with other packages in Julia's AD ecosystem

Example: Time-Lapse End-to-End Permeability Inversion

From: M. Louboutin et al. Learned multiphysics inversion with differentiable programming and machine learning. arXiv:2304.05592 [cs.MS]

Minimize over latent variable z

$$
\frac{1}{2}\left\|\mathcal{F} \circ \mathcal{R} \circ \mathcal{S}\left(\mathcal{G}_{\theta^{*}}(\mathbf{z})\right)-\mathbf{d}\right\|_{2}^{2}+\frac{\lambda}{2}\|z\|_{2}^{2}
$$

where
d: time-lapse seismic data
$\mathcal{G}_{\theta^{*}}$: maps latent variable to permeability \mathbf{K}
\mathcal{S} : flow physics (Jutul)
\mathcal{R} : rock physics
\mathcal{F} : wave physics module
AD + adjoints provide accurate Jacobians of \mathcal{S} with respect to \mathbf{K}

This ensures interoperability with other packages in Julia's AD ecosystem

Making your simulator differentiable and open source makes it more versatile and simplifies inclusion into other workflows

Why use data-driven or reduced-order models?

- Traditional reservoir simulation models take long time to build
- Forward simulations are computationally costly
- Production optimization: may require hundreds of model evaluations
- Digital twins: desire for models that can be "continuously" updated with incoming data

Given map outline: fit Cartesian blocks

- Observations: more connections and parameters seem to improve training ability
- Why not use coarse grid instead of a "streamtube" approach?
- Advantages:
- more parameters, fewer grid cells
- graph topology does not depend on well placement

References:

- CGNet: Lie \& Krogstad, Geoenergy Science and Engineering, 2023. DOI:
10.1016/j.petrol.2022.111266
- TriNet: Devold, MSc thesis, NTNU, 2023
- Krogstad, MS26, Tue 10:05, Dræggen 7

$$
\begin{aligned}
& \text { Continuous } \\
& \begin{array}{c}
\frac{\partial}{\partial t}\left(\phi \rho_{\alpha} S_{\alpha}\right)+\nabla \cdot\left(\rho_{\alpha} \vec{v}_{\alpha}\right)=q_{\alpha} \\
\vec{v}_{\alpha}=-\mathbf{K} \lambda_{\alpha}\left(\nabla p-\rho_{\alpha} g \nabla z\right) \\
q_{\alpha}=\lambda_{\alpha}^{w b} \mathrm{~J}\left(p^{w b}-p\right)
\end{array}
\end{aligned}
$$

Discrete

$$
\begin{gathered}
\frac{1}{\Delta t}\left[\left(\boldsymbol{S}_{\alpha} \boldsymbol{\rho}_{\alpha}\right)^{n+1}-\left(\boldsymbol{\Phi} \boldsymbol{S}_{\alpha} \boldsymbol{\rho}_{\alpha}\right)^{n}\right]+\operatorname{div}\left(\boldsymbol{\rho}_{\alpha} \boldsymbol{v}_{\alpha}^{n+1}\right)=\boldsymbol{q}_{\alpha} \\
\boldsymbol{v}_{\alpha}=-\boldsymbol{T} \operatorname{upw}\left(\boldsymbol{\lambda}_{\alpha}\right)\left(\operatorname{grad}(\boldsymbol{p})-g \operatorname{avg}\left(\boldsymbol{\rho}_{\alpha}\right) \operatorname{grad}(\boldsymbol{z})\right) \\
\boldsymbol{q}_{\alpha}=\boldsymbol{\lambda}_{\alpha}^{w b} \mathbf{J}\left(\boldsymbol{p}^{w b}-\boldsymbol{p}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \text { Continuous } \\
& \qquad \begin{array}{c}
\frac{\partial}{\partial t}\left(\phi \rho_{\alpha} S_{\alpha}\right)+\nabla \cdot\left(\rho_{\alpha} \vec{v}_{\alpha}\right)=q_{\alpha} \\
\vec{v}_{\alpha}=-\mathbf{K} \lambda_{\alpha}\left(\nabla p-\rho_{\alpha} g \nabla z\right) \\
q_{\alpha}=\lambda_{\alpha}^{w b} \mathrm{~J}\left(p^{w b}-p\right)
\end{array}
\end{aligned}
$$

Discrete

$$
\frac{1}{\Delta t}\left[\left(\boldsymbol{\Phi} \boldsymbol{S}_{\alpha} \boldsymbol{\rho}_{\alpha}\right)^{n+1}-\left(\boldsymbol{\Phi} \boldsymbol{S}_{\alpha} \boldsymbol{\rho}_{\alpha}\right)^{n}\right]+\operatorname{div}\left(\boldsymbol{\rho}_{\alpha} \boldsymbol{v}_{\alpha}^{n+1}\right)=\boldsymbol{q}_{\alpha}
$$

$$
\boldsymbol{v}_{\alpha}=-\boldsymbol{T} \operatorname{upw}\left(\boldsymbol{\lambda}_{\alpha}\right)\left(\operatorname{grad}(\boldsymbol{p})-g \operatorname{avg}\left(\boldsymbol{\rho}_{\alpha}\right) \operatorname{grad}(\boldsymbol{z})\right)
$$

$$
\boldsymbol{q}_{\alpha}=\boldsymbol{\lambda}_{\alpha}^{w b} \mathbf{J}\left(\boldsymbol{p}^{w b}-\boldsymbol{p}\right)
$$

Misfit function:

$$
M(\boldsymbol{\theta})=\boldsymbol{m}(\boldsymbol{\theta})^{T} \boldsymbol{m}(\boldsymbol{\theta})
$$

Here,
\boldsymbol{m} - scaled misfit, $m_{i}=\left(y_{i}(\boldsymbol{\theta})-y_{i}\right) / w_{i}$
y_{i} - the i th data point (flow rate, bhp, etc.)
$y_{i}(\boldsymbol{\theta})$ - data point predicted by GPSNet
w_{i} - weight for data point i
$\boldsymbol{\theta}$ - tunable parameters, $\{V, T, J\}$
In addition, we impose certain physical bounds on $\boldsymbol{\theta}$
Method: Gauss-Newton with damping (Levenberg-Marquardt),
 Jacobians computed from adjoint equations

Semi-realistic model:

- Real-field grid:
github.com/OPM/opm-data
- $46 \times 112 \times 22,44915$ active cells
- Complex grid: faults, erosions, inactive cells, etc.
- Permeability/porosity: from Lorentzen et al. (SPE J., 2019)
- oil-water system, quadratic relperm, viscosity ratio 5:1
- initial state: filled with oil
- six injectors, constant rate
- five producers, constant bhp

CGNet:

- Fit $6 \times 6 \times 1$ mesh to map outline
- Potential problems:
- top/bottom surfaces not represented
- wells I1 and P1 within same cell

Example: CGNet as Data-Driven Model

CGNet:

- Fit $6 \times 6 \times 1$ mesh to map outline
- Potential problems:
- top/bottom surfaces not represented
- wells I1 and P1 within same cell
- Fit to data is nonetheless ok, except in producer P5 (initially poorly connected and hence sensitivity ≈ 0)

CGNet:

- Fit $6 \times 6 \times 1$ mesh to map outline
- Potential problems:
- top/bottom surfaces not represented
- wells I1 and P1 within same cell
- Fit to data is nonetheless ok, except in producer P5 (initially poorly connected and hence sensitivity ≈ 0)
- Increase to 8×8 to avoid multiple wells within the same cell
- Add layers to also represent top and bottom surfaces
- Cull some partially overlapping cells

- Rectangular partition in index space + split disconnected blocks
- Training data: random variation around prescribed bhp and rate controls
- Motivation: excite more reservoir states in training data

- Rectangular partition in index space + split disconnected blocks
- Training data: random variation around prescribed bhp and rate controls
- Motivation: excite more reservoir states in training data
- Case 1: Fixed but different bhp/rates

- Rectangular partition in index space + split disconnected blocks
- Training data: random variation around prescribed bhp and rate controls
- Motivation: excite more reservoir states in training data
- Case 2: P1 shut-in after 8 yrs

- Rectangular partition in index space + split disconnected blocks
- Training data: random variation around prescribed bhp and rate controls
- Motivation: excite more reservoir states in training data
- Case 3: I1/I2 converted to producers, P1 shut-in

- Rectangular partition in index space + split disconnected blocks
- Training data: random variation around prescribed bhp and rate controls
- Motivation: excite more reservoir states in training data
- Case 3: I1/I2 converted to producers, P1 shut-in

- Residential/commercial building complex in Asker
- Complex multi-reservoir geothermal storage facility: three reservoirs, one hundred wells
- Covers heating and cooling needs
- Also provides energy to snow-melting in city streets

Residential/commercial building complex in Asker, Norway wesselkvartalet.no

Example: Optimizing Geothermal Storage Plants

- Residential/commercial building complex in Asker
- Complex multi-reservoir geothermal storage facility: three reservoirs, one hundred wells
- Covers heating and cooling needs
- Also provides energy to snow-melting in city streets

Simulation of the entire history using observed injection temperatures

Klemetsdal/Andersen, MS65, Thu 14:35/15:00

Example: Optimizing Geothermal Storage Plants

- Residential/commercial building complex in Asker
- Complex multi-reservoir geothermal storage facility: three reservoirs, one hundred wells
- Covers heating and cooling needs
- Also provides energy to snow-melting in city streets

CGNet with 294 reservoir nodes tuned to match manifold temperature, results after 50 quasi-Newton iterations

Tried to make a case for the importance of differentiable simulators and the utility of automatic differentiation

- First part discussed how to apply AD to dynamic variables to aid simulator development:
- avoid hand-calculation and explicit implementation of Jacobians
- aid in developing fully coupled multiphysics simulators
- Second part showed how to apply AD to parameters in workflows:
- use of differentiable simulator to generate data-driven or reduced-order models
- could also have demonstrated optimization workflows
- However, none of the simulators are fully differentiable:
- differentiable with respect to parameters in the continuous equations
- not differentiable to grid, tolerances and program control parameters, etc.
- generally challenging to know upfront where the need for gradients will pop up

