





# Benchmarking in other twinning projects: lesson learned

Matteo C. Romano
Politecnico di Milano, Department of Energy
Group of Energy Conversion Systems (GECoS)

HiPerCap EU-Australian workshop 14 September 2017, Oslo, Norway

## **SUMMARY**

- Why am I presenting about benchmarking?
- Main experiences in benchmarking:
  - EBTF experience
  - Cemcap experience
- Lesson learned
- Conclusions

#### WHY AM I PRESENTING ABOUT BENCHMARKING?

- Part of the Group of Energy Conversion Systems (GECoS) of Politecnico di Milano, which contributed to two benchmarking works:
  - European Benchmarking Task Force (EBTF), 2008-2011.
  - Cemcap Framework, 2016-2018 (ongoing).
- I was mildly involved in EBTF, but I used it in several EU projects







I am actively committed to Cemcap techno-economic Framework





#### **EBTF** - MOTIVATIONS

- 1. Consistent and transparent comparison of CO<sub>2</sub> capture technologies is **important** 
  - Discrepancies in assumptions and parameters may lead to significant differences in performances and costs, often higher than the real differences between the technologies
  - The qualities of a new technology can be enhanced by the bad qualities of the reference adopted for comparison
  - Inconsistent comparisons and evaluations can have important commercial implications and, if persistent, can lead to the adoption of inferior solutions with losses for companies, governments and society
- Consistent and transparent comparison of CO<sub>2</sub> capture technologies is difficult
  - Widely recognized, well documented, consistent and accepted references are not available

#### **EBTF** - OBJECTIVES

A team was created with representatives from three FP7 projects – CAESAR, CESAR and DECARBit – with the following objectives:

- Collect the experience gained in previous projects on the definition of standard references and procedures – ENCAP, DYNAMIS, CASTOR, CACHET
- Elaborate a Common Framework Definition Document (CFDD), containing a set of assumptions and parameters to be adopted in techno-economic evaluations
- Define and analyse a set of test cases, as typical examples of application of the definitions given in the CFDD











The results of the work are public and easily accessible, e.g.: <a href="https://www.gecos.polimi.it/research/EBTF\_best\_practice\_guide.pdf">www.gecos.polimi.it/research/EBTF\_best\_practice\_guide.pdf</a> <a href="https://caesar.ecn.nl/fileadmin/caesar/user/documents/D\_4.9\_best\_practice\_guide.pdf">www.gecos.polimi.it/research/EBTF\_best\_practice\_guide.pdf</a>

# **EBTF** – THE TEAM

#### The team:

| Participants                       | Institution           | Project  |
|------------------------------------|-----------------------|----------|
| R. Anantharaman, O. Bolland        | NTNU                  | DECARBit |
| E. van Dorst, D. Nikolic, M. Prins | Shell                 | DECARBit |
| A. Pfeffer, F. Franco              | Alstom UK             | DECARBit |
| S. Rezvani                         | U. Of Ulster          | DECARBit |
| G. Manzolini, E. Macchi            | Politecnico di Milano | CAESAR   |
| N. Booth, L. Robinson              | E.ON                  | CESAR    |
| C. Ekstrom                         | Vattenfall            | CESAR    |
| E. Sanchez Fernandes               | TNO                   | CESAR    |

Contributions also from Siemens and Doosan Babcock

#### The common framework:

- The purpose is NOT to recommend any values as the best or the right ones for future power plants
- The purpose IS to define a set of parameters to ensure that technical and economic comparison of novel cycles involving novel technologies is done in a consistent and fair way
- The choice of parameters is justified and the source acknowledged, for example IEA, DOE, EU, specialized publications, other projects, expert opinion and others are identified

Operating & cost parameters of components based on novel technologies

New air separation technologies

New CO<sub>2</sub> separation technologies Ambient conditions

Unit systems

Fuel characteristics



Operating & cost parameters of standard components

Syngas
Quench

Steam

95% O<sub>2</sub>

N<sub>2</sub>

Dry

Coal

Slag

Consistent comparison of new technologies and cycles



- Common Framework Definition Document
  - General definitions and conditions
  - Fuel
  - Air separation
  - Coal gasification
  - Shift reactor
  - Gas turbine
  - Steam cycle
  - Heat exchangers
  - Efficiency calculations
  - CO<sub>2</sub> stream
  - Emission limits
  - Economic assessment criteria

#### Examples of topics and sources

- General definitions and conditions ISO values, SI units
- Fuels: Bituminous Douglas Premium, lignite and natural gas from ENCAP, DYNAMIS AND CAESAR
- Coal gasification Shell technology
  - Base case and alternative case
  - Conditions and composition of syngas
  - Conditions of O<sub>2</sub> for process and N<sub>2</sub> or CO<sub>2</sub> as carrier gases
- Shift reactor
  - Base case and alternative case defined in DECARBit to fit gasification
  - Conditions and compositions of gases at outlet
- Gas turbine
  - inlet and outlet conditions and performance Politecnico di Milano
- Heat exchangers adapted from ENCAP
  - Pressure drop

#### Examples of topics and sources

- Steam cycles adapted from ENCAP and DYNAMIS
  - Fired boilers and HRSG
  - Steam turbines
  - Condenser
- Efficiency calculations adapted from several sources
  - Mechanical efficiency
  - Generator efficiency
- CO<sub>2</sub> quality requirements adapted from ENCAP and DYNAMIS
- Emission limits from solid fuels adapted by E.ON from EU directives
- Economic assessment criteria based on data of 2008 (also CASTOR data)
  - Basic assumptions costs of fuel, plant lifetime, capacity factors, cost indices, interest rates, variations for sensitivity analysis and others
  - Costs of operation and maintenance
  - Costs of engineering and procurement

#### EBTF - THE TEST CASES

#### Three cases without and with CO<sub>2</sub> capture

- Integrated Gasification Combined Cycle
- Natural Gas Combined Cycle
- Ultra Super Critical Pulverized Coal

The purpose is **NOT** to compare power generation technologies, for example PF with IGCC

The purpose IS to propose references for comparisons within the same power generation technology – PF, IGCC, NGCC

Contents of the report, for each case

- Cycle description
- Heat and mass balance
- Operational characteristics
- Operational performance
- Comparison of results independently produced by two of the three projects

# EBTF - TEST CASE EXAMPLE: IGCC WITH CAPTURE

#### Integrated Gasification Combined Cycle with capture

DECARBIT and CAESAR



## EBTF - TEST CASE EXAMPLE: IGCC WITH CAPTURE

| Comparison of H&M balance and performance                                                         |                                                |                                                |  |  |
|---------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|--|--|
| <b>DECARBIT</b> CAESAR MWe MWe                                                                    |                                                |                                                |  |  |
| GT output ST output Gross elec. power output Total aux. power consumption Net electric power out. | 282.87<br>168.46<br>457.17<br>104.43<br>352.74 | 304.97<br>175.95<br>491.09<br>107.61<br>383.48 |  |  |
| Efficiency<br>Specific emissions, kg/MWh<br>SPECCA, MJ <sub>I HV</sub> /kg <sub>CO2</sub>         | 36.66<br>85.28<br>3.30                         | 36.40<br>97.54<br>3.67                         |  |  |

Specific primary energy consumption for  $CO_2$  avoided:  $SPECCA = \frac{HR - HR_{REF}}{E_{CO2,REF} - E_{CO2}} = \frac{3600 \cdot \left(\frac{1}{\eta} - \frac{1}{\eta_{REF}}\right)}{E_{CO2,REF} - E_{CO2}}$ 

#### EBTF - ECONOMIC FRAMEWORK

- Breakeven electricity selling price (BESP) and CO<sub>2</sub> avoidance cost are the main economic performance characteristics;
- BESP is composed of capital investement costs, fixed O&M costs (e.g. Labour), variable O&M costs (consumables) and fuel costs;
- A sensitivity analysis on main assumptions (e.g. specific investment costs, fuels, etc.) is suggested;
- Capital investement cost calculated with bottom-up and topdown approaches;

# EBTF - BOTTOM UP APPROACH

| Module costs/Equipment costs                                |               |            |
|-------------------------------------------------------------|---------------|------------|
| xxxxxxx                                                     |               | А          |
| уууууууу                                                    |               | В          |
| TOTAL EQUIPMENT COST [TEC]                                  |               | A+B+       |
| Installation costs as percentage of the total ed            | quipment cost | s (TEC)    |
| Total installation costs [TIC]                              | ZZ%           | ZZ% TEC    |
| TOTAL DIRECT PLANT COSTS [TDPC]                             |               | TEC + TIC  |
| INDIRECT COSTS (yard improvment, service faciilities,) [IC] | 14%           | 14% TDPC   |
| ENGINEERING AND PROCUREMENT COSTS [EPC]                     |               | TDPC + IC  |
| Contingencies and owner's costs                             | (C&OC)        |            |
| Contingencies                                               | 10%           | 10% EPC    |
| Owner's costs                                               | 5%            | 5% EPC     |
| TOTAL CONTINGENCIES & OC [C&OC]                             | 15%           | 15% EPC    |
| TOTAL PLANT COSTS                                           |               | EPC + C&OC |

# EBTF – Top-down approach: IGCC

| Table 8.3.1 - Indicative cost breakdown of the IGCC test case with CO <sub>2</sub> capture – figures |
|------------------------------------------------------------------------------------------------------|
| in kEuros                                                                                            |

|                                  | Equipment cost | Installation cost | Overall cost |
|----------------------------------|----------------|-------------------|--------------|
| Coal handling                    | 23951          | 29939             | 53891        |
| Gasifier                         | 108000         | 72000             | 180000       |
| Gas turbine                      | 50996          | 42327             | 93323        |
| Steam turbine                    | 32000          | 20000             | 52000        |
| Heat recovery steam generator    | 15500          | 18600             | 34100        |
| Low temperature heat recovery    | 5250           | 5671              | 10921        |
| Cooling                          | 15000          | 24000             | 39000        |
| Air separation 45500             |                | 27300             | 72800        |
| Ash handling                     | 7838           | 9580              | 17418        |
| Acid gas removal                 | 12023          | 20729             | 8706         |
| Gas cleaning                     | 4324           | 2594              | 6918         |
| Water treatment                  | 13152          | 21044             | 7891         |
| Water gas shift reactor          | 13200          | 7920              | 21120        |
| Claus burner                     | 8000           | 4800              | 12800        |
| Selexol plant                    | 28125          | 16876             | 45001        |
| CO <sub>2</sub> compression unit | 18750          | 11252             | 30002        |

#### EBTF - Top-down approach



## EBTF - Top-down approach: USC Plant

Table 7.5 – Overall costs for ASC without and with capture for top down and bottom up approaches – 800 MW

|                                       |            | CE              | SAR          | DECARBIT/CAESAR |              |  |
|---------------------------------------|------------|-----------------|--------------|-----------------|--------------|--|
| Parameter                             | Unit       | Without capture | With capture | Without capture | With capture |  |
| Gross electricity output              | MW         | 819             | 684.6        | 819             | 684.6        |  |
| Net electricity output                | MW         | 754.3           | 549.6        | 754.3           | 549.6        |  |
| Efficiency                            | %          | 45.5            | 33.4         | 45.5            | 33.4         |  |
| CO <sub>2</sub> emitted               | kg/MWh     | 763             | 104.7        | 763             | 104.7        |  |
| CO <sub>2</sub> produced              | Mton/yr    | -               | 3.90         | -               | 3.90         |  |
| Power plant EPC                       | M€         | 1266            | 1266         | 1013            | 1013         |  |
| Capture plant EPC                     | M€         |                 | 173          | 0               | 226          |  |
| Total plant cost (EPC+OC+Cont.)       | M€         | 1456            | 1655         | 1165            | 1439         |  |
| Specific investment (gross)           | €/kW gross | 1777            | 2417         | 1423            | 2102         |  |
| Specific investment (net)             | €/kWe net  | 1930            | 3011         | 1545            | 2618         |  |
| Fuel                                  | M€/yr      | 133             | 133          | 133             | 133          |  |
| Fixed operating and maintenance costs | M€/yr      | 27              | 45           | 27              | 31           |  |
| Variable operating costs              | M€/yr      | 9               | 20           | 9               | 26           |  |
| Operating costs                       | M€/yr      | 169             | 198          | 166             | 185          |  |
| Cost of CO2 avoided                   | €/tonne    | N/A             | 51.62        | N/A             | 50.07        |  |

#### MY PERSONAL EXPERIENCE AS EBTF USER

#### Lesson learned:

- Excellent initiative, very good outcomes as 1st of kind benchmarking exercise.
- Report maintenance would be needed to:
  - Correct small inevitable mistakes
  - Update performance of evolving components such as gas turbines
  - Change outdated flowsheets, e.g. integrated ASU
  - Add new plants (NG pants with pre-combustion capture).
- Collaborative report maintenance involving different partners is time consuming and unlikely to occur without dedicated funds.
- The lack of capital cost functions for plant components makes the economic benchmarking weaker.

#### MY PERSONAL EXPERIENCE AS EBTF USER

About the importance of updating GT performance:

- The novel CO<sub>2</sub> capture technology to be assessed may introduce constrains on the TIT and the GT efficiency with respect to the benchmark without capture, e.g. H<sub>2</sub> turbines, CLC.
- What is the time horizon for the commercial exploitation of the technology?



## **CEMCAP FRAMEWORK - OBJECTIVES**

#### The common framework:

- To provide a framework for comparative techno-economic analysis in the CEMCAP project, where four CO<sub>2</sub> capture technologies (oxyfuel, chilled ammonia, membrane assisted liquefaction, and calcium looping) are to be evaluated for application in cement plants.
- It defines a reference cement kiln with description of the main unit, and characteristics of raw material and flue gas.
- Specifications are set for process units (e.g. heat exchangers, compressors etc.), for the generation of utilities (e.g. steam, electric power etc.) and for CO<sub>2</sub> capture efficiency and purity.
- Techno-economic KPI are defined and parameters relevant for sensitivity studies are suggested.

#### Available for download on:

https://www.sintef.no/projectweb/cemcap/results/

D3.2 CEMCAP framework for comparative techno-economic analysis of CO<sub>2</sub> capture from cement plants

# **CEMCAP FRAMEWORK - METHODOLOGY**

Examples of framework specifications: steam and heat recovery steam cycle.

#### Cost and climate impact for steam

| Steam source                      | Steam cost<br>[€MWhth] | Steam climate impact<br>[kgco2/MWhth] |
|-----------------------------------|------------------------|---------------------------------------|
| Waste heat available on the plant | 8.5                    | 0                                     |
| External CHP steam plant at 100°C | 7.7                    | 101                                   |
| External CHP steam plant at 120°C | 10.3                   | 136                                   |
| External CHP steam plant at 140°C | 13.0                   | 170                                   |
| Natural gas boiler                | 25.3                   | 224                                   |

#### Steam cycle parameters as function of thermal input

| Nominal thermal input, MW                  | 12.5 | 25   | 50   | 100  | 200  | 300  |
|--------------------------------------------|------|------|------|------|------|------|
| Steam pressure at turbine inlet, bar       | 30   | 40   | 60   | 80   | 100  | 125  |
| Steam temperature at turbine inlet, °C     | 350  | 400  | 460  | 480  | 530  | 565  |
| LP regenerative condensate preheater       | No   | No   | Yes  | Yes  | Yes  | Yes  |
| Feedwater temperature at boiler inlet, °C  | 120  | 120  | 140  | 140  | 140  | 140  |
| Estimated turbine isentropic efficiency, % | 70.0 | 75.0 | 78.0 | 80.8 | 85.6 | 86.8 |

#### **CEMCAP FRAMEWORK - METHODOLOGY**

#### Examples of energy and emissions KPIs.



#### **CEMCAP FRAMEWORK - VALIDATION**

# Validation of benchmark cement plant model on the existing VDZ model.

Overall performances of the cement plant simulated by Polimi and VDZ models.

| Cement plant global balance                                             | Polimi | VDZ    |
|-------------------------------------------------------------------------|--------|--------|
| Clinker, ton/h                                                          | 117.6  | 120.6  |
| Clinker, kg/s                                                           | 32.68  | 33.51  |
| Total fuel input, kg/s                                                  | 3.87   | 3.87   |
| Fuel to kiln, % of total fuel input                                     | 38.0   | 38.0   |
| Total heat input, MW <sub>LHV</sub>                                     | 104.47 | 104.47 |
| Specific Heat Input, kJ/kgclk                                           | 3197   | 3135   |
| Specific CO <sub>2</sub> emissions, g <sub>CO2</sub> /kg <sub>clk</sub> | 863.1  | 845.6  |



Temperature profiles along the suspension preheater

|   | 0                         |       |         |         |         |         |          |         |
|---|---------------------------|-------|---------|---------|---------|---------|----------|---------|
|   | 0                         | Inlet | Stage 4 | Stage 3 | Stage 2 | Stage 1 | Calciner | Stage 0 |
| ŀ | Solid Phase-VDZ           | 60    | 296     | 483     | 640     | 755     | 868      | 860     |
|   | Gas Phase - VDZ           |       | 314     | 498     | 651     | 764     | 860      | 860     |
|   | —— Gas & Solid phase - GS | 60    | 313     | 484     | 623     | 743     | 852      | 852     |

#### Available for download on:

https://www.sintef.no/projectweb/cemcap/results/

D4.1: Design and performance of CEMCAP cement plant without CO<sub>2</sub> capture



# CEMCAP FRAMEWORK – METHODOLOGY FOR ECONOMIC ANALYSIS

#### Preparation of a document for the economic is underway:

- Bottom-up approach adopted for most of the technologies (exception of Chilled ammonia, due to confidentiality.
- Capex cost functions based on scaling factors and/or preliminary design provided.

The report will be available in 2018 for download on:

https://www.sintef.no/projectweb/cemcap/results/

D4.4: Cost of critical components in CO<sub>2</sub> capture processes

#### MY PERSONAL OPINION ON CEMCAP FRAMEWORK

- Easier job than in EBTF from some points of view:
  - Easier reference plant: consolidated state-of the art technology (differently from IGCC)
  - Minor maintenance is expected to be needed:
    - No need of updating reference plant performance for shortmedium term technology evolution
    - No need to update flowsheet (consolidated technology)
- Great committment and high quality contributions by involved companies
- In the end, an excellent piece of work as a 2nd of a kind benchmarking exercise

#### **CONCLUSIONS**

#### A future ideal benchmarking work:

- Should involve collaborative partners from academia/research centers and industry (both technology providers and end users)
- Shoud be funded because it is very time consuming
- Should be subject to continuous update:
  - to follow technology development
  - to follow market evolution: e.g. include part-load calculation methodology for power plants
- Should include sufficiently detailed methodology for economic analysis, with bottom up approach and cost functions for Capex estimation
- Should lead to transparent and shared results of process simulations and economic analyses:
  - detailed stream tables and energy balance (minimum requirement)
  - source files shared as open data (maximum impact)

# Thank you



www.polimi.it



www.gecos.polimi.it

Contact: <u>matteo.romano@polimi.it</u>