TCM Post-combustion testing at TCM

Anne-Berit Hjorth Viken Acting managing director TCM

TCM: One of the key components in the Norwegian route to CCS implementation

CO2 Technology Centre Mongstad Full Scale

CLIMIT

Research, Development and Demonstration program

TCM – A new partnership until 2020

Has been operational since 2012, and will continue until at least 2020 with 3 Industrial partners

The three main activities at TCM

Competence development for our owners

Test campaigns with vendors and proprietary technology Develop a global competence center for CO_2 capture technologies and support international networking

Scientific "Non-proprietary" test campaigns

TCM and the «Research world»

TCM – an arena for training, problem-solving and development

Reduce the cost and risks of CO₂ capture technology deployment

Providing an arena where vendors can test, verify, and demonstrate proprietary CO₂ capture technologies.

Scientific support to vendors

 Non-propritory technology development

The TCM offer to technology vendors

An opportunity to get technology to market faster and cheaper

- Large scale 24/7 testing on real industrial flue gas (10 MW)
- Scientific support, test design and trouble shooting
- Emission control and environmental chemistry
- Support on approval processes with environmental authorities
- Analytical methods
- Operator training facilities for full scale capture operations

Continuous testing since inauguration in 2012

Five companies have already validated their technology at TCM.

Completed test campaigns:

- Aker Solutions (Norway)
- Alstom/GE (US)
- Cansolv Technologies (Canada
- Carbon Clean Solution (UK/India)
- ION Engineering (USA)

Amine plant at TCM – overview

Research in Non-proprietory technology aspects

Also essential for accelerating capture technology...some examples..

- Development of advanced plant control schemes
- CO₂ product composition
- Workplace monitoring
- Emission monitoring and water wash operations
- Corrosion monitoring
- Flue gas composition and impurities, and further flue gas pretreatment
- Absorber and stripper column distributions and mass transfer measurements
- Detailed degradation mechanism and products
- Impact of dynamic operations

TCM's third scientific "open" campaign will be conducted later this year

The campaign has several sponsors, including industry, scientific institutions and public funding

OPERATION OF THE CAP PLANT

PERIOD 1

NOV 2012 – APRIL 2013

Trouble shooting - modification, process development and design adjustments

PERIOD 2 MAY 2013 – NOV 2014

Target: Stable operation Operability around 90% and prove technology

PERIOD 3

FUTURE

Further process development conducted throughout 2015 with Alstom/GE

On-going dialogue regarding the use of the CAP.

CAP plant – overview

Networking and competence sharing is essential for TCM

Also a crucial part of developing and implementing CO₂ capture technology

- Bilateral international agreements and participation in the International test center network (ITCN)
- Collaboration agreements with academia and research institutions (eg. SINTEF/TCM)
- Support agreements with CCS projects globally.
- Dedicated conference sessions (eg. GHGT-13)

THE WAY FORWARD

TCM strategy

