

Energy efficient MOF-based Mixed-Matrix Membranes for CO₂ Capture M⁴CO₂

FP7 project # 608490

1 January 2014 – 31 December 2017

www.m4co2.eu/

M⁴CO₂ project aims

- Developing & prototyping Mixed Matrix Membranes based on highly engineered Metal organic frameworks and polymers (M⁴) for energy efficient CO₂ Capture
 - Power plants and other energy-intensive industries
 - Pre-combustion and post-combustion applications

• Target

- Highly selective high flux membranes
- CO₂ capture meeting the targets of the European SET plan (90% of CO₂ recovery at a cost less than 25€/MWh)
 - Internal target 15 €/ton CO₂ (≈ 10-15 €/MWh)

Energy efficient MOF-based Mixed Matrix Membranes for CO₂ Capture

Applications

Pre-combustion CO₂ capture

Post-combustion CO₂ capture

www.m4co2.eu

The Challenge

Membrane performances - targets

۲CO.

Breakthrough in membrane technology

M4CO2

Mixed Matrix Membranes (MMMs)

TUDelft

Chung, T. S.; Jiang, L. Y.; Li, Y.; Kulprathipanja, S., *Prog. Polym. Sci.* 32 **(2007)** 483-507 Zimmerman, C. M.; Singh, A.; Koros, W. J., *J. Membr. Sci.* 137 **(1997)** 145-154.

2

Mixed Matrix Membranes (MMMs)

MOFs as fillers

- Molecular sieve properties
- Some MOFs show outstanding
 - CO_2/CH_4 separation properties
- Infinite design possibilities

Good match between filler and matrix is required

J. L. C. Rowsell, O. M. Yaghi, *Microp. Mes. Mater.*, **2004**, *73*, 3-14, and references therein. **TUDelft** E. Stavitski, J. Gascon, F. Kapteijn, et al. *Langmuir*, **2011**, *27*, 3970-3976.

3

Robeson plot – effect of filler

Targets development M⁴CO₂ components

- Identification of the most interesting MOF polymer couples for their use in M⁴
- MOF tuning at the particle level
 - preparation of MOF nanoparticles
 - MOF surface functionalization: synthesis of core-shell fillers
 - synthesis of hierarchical MOF nano-fillers combining meso and micro-pores
 - control of MOF particles with extreme aspect ratios (lamellae)
- Development of new **high flux polymers** bearing tailored functional groups to optimise polymer-MOF interactions
- The **optimization of membrane preparation** conditions
 - Flat sheet, lab scale MOF membranes
 - Langmuir-Blodgett model ultra-thin membranes
 - Hollow fiber (HF) M⁴s with thin separating layers for real application
- Operando studies
 - Gaining insight into the separation performance and into the physicochemical properties of the new composites under working conditions
- Accurate **engineering models** based on experimentally determined fundamental parameters to describe permeation through the selected types of M⁴
- Economic evaluation and conceptual process designs for the real life applications of the new membranes

Breakthrough in membrane technology

WP-2 Polymer development

Post-combustion High-flux polymers

Polyimides of Intrinsic Microporosity (PIM) PolyBenzImidazoles (PBI)

> Pre-combustion High-selectivity polymers

WP-2 MOF development

2nd generation nanoMOFs

Candidate for 2nd Gen post-combustion which presents good hydrothermal stability and performances under wet conditions

Reflux synthesis in pure water was too difficult to scale-up (low STY)

Optimized reflux synthesis in H₂O/DMF that yields nanoparticles with good yield (100 nm)

ZIF-94 – scale up synthesis

- Experimentation indicate that the synthesis of ZIF-94 can be improved with a phase pure materials still obtained at [1.5x] initial reaction concentration.
- Above optimal concentrations impurity peaks were observed in the XRD, denoted by *.
- TGA shows good agreement between theory and experimental, thermally stable up to ~275 °C.
- N₂ BET surface area = 310 m²/g.
- SEM indicate nano-MOF was formed consisting of nanospheres ~200 nm in diameter.

Mass (%)

Task 4.3 Membrane performance

Journal of Membrane Science 515 (2016) 45-53

Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO₂ capture and its validation through interlaboratory test

Javier Sánchez-Laínez^a, Beatriz Zornoza^a, Sebastian Friebe^b, Jürgen Caro^b, Shuai Cao^c, Anahid Sabetghadam^d, Beatriz Seoane^d, Jorge Gascon^d, Freek Kapteijn^d, Clément Le Guillouzer^e, Guillaume Clet^e, Marco Daturi^e, Carlos Téllez^a, Joaquín Coronas^{a,*}

^a Chemical and Environmental Engineering Department and Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain

^b Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität, 30167 Hannover, Germany

^c Johnson Matthey Technology Center, Sonning Common, Reading RG4 9NH, United Kingdom

^d Catalysis Engineering-Chemical Engineering Department, Delft University of Technology, 2628 BL Delft, The Netherlands

^e Laboratoire Catalyse et Spectrochimie, ENSICAEN, Université de Caen Normandie, CNRS, 14050 Caen, France

- Paper from 1st R-R testing: allowed to do complete review of the calculation procedures among TUDELFT, LUH and UNIZAR to verify the GS measurements
- Some discrepancies found:
 - Unify the way of calculating the membrane performance \rightarrow better coherence with lower average standard deviations (*P* and *S*)
 - Sweep gas has strong influence

Flat sheet membrane performance

PIM-1 vs PBI and Matrimid based MMMs

- All PIM-1 membranes surpass the upper-bound (high increase of permeability but reduced selectivity)
- PBI approaches selectivity target

CO.

Sabetghadam et al, Adv. Func. Mater. 2016

Task Surface Characterization

Rational analysis of series of MOF/Polymer Interfaces

(integrated DFT / MD computational methodology)

PIM-1@ZIF-8

Microvoids

6FDA-DAM@MIL-69

Microvoids

Gap

PVDF@UiO-66

Polymer penetration into the MOF

R. Semino et al, JACS, to be submitted

UNIVERSITÄT LEIPZIG

WP3 Fundamentals & Characterization

Task Diffusion fundamentals

Transport modification by filler particles

⁴CO

UNIVERSITÄT LEIPZIG

WP3 Fundamentals & Characterization

Task Diffusion fundamentals

Transport modification by filler particles

Reference case

COAL-FIRED IGCC POWER PLANT WITHOUT CO_2 CAPTURE

Combined Cycle efficiency 54% Steam cycle efficiency 36%

BASIS OF DESIGN IGCC PLANT WITH PRE-COMBUSTION CAPTURE

- Coal IGCC power plant
- 536 MWe (7450 h/y, Netherlands)
- 3.1 Mt CO₂/y
- CO₂ recovery 90%

2.78 Mt/y of captured CO₂
?? MW power output
?? % efficiency

Challenge the future 24

PROCESS OPTIONS - MEMBRANE SEPARATION

2-STAGE PROCESSES

- ∞ process options
 - # stages
 - pressures feed, permeate
 - Recycles
 - Recovery of species

\rightarrow Optimisation problem

Stage 1

PROCESS FLOW SCHEME

Optimised scheme

Requires membrane operation at high pressure

Challenge the future 26

PROCESS ECONOMICS

Designed capture process (110 bar)

- CAPEX 85 M€
- OPEX 25 M€ (excl. electricity)

Cost of captur	16.4 €/t 70 bar			
Item	Unit	Without capture	With capture	18.2 €/t 35 Dal
Net power output	MW	536	489	-8.8%
Total investment	M€	1148	1233	
Specific investment	€/kW	2141	2522	
Cost of electricity	€/MWh	68.4	80.4	+17.6%, 12 €/MWh

Profitability in 2030 (30 €/t CO₂)

- in 2015 not profitable (7 €/t CO₂)
- ROI = 23%
- Payback time = 3.5 years

SENSITIVITY ANALYSIS

- CO₂ capture cost vs. Membrane performance
- \rightarrow recommend further R&D

Analysed membranes					
Permeance	Selectivity				
(GPU)					
100-1700	15-50				

Pre-combustion concept design

Sensitivity Analysis

Hollow Fibre (HF) membranes

As-spun dual-layer layer Inner layer Outer M⁴ layer

As-spun outer M⁴ layer

Annealed outer M⁴ layer

First performance of M4-HFMs

Single and Mixed gas permeation

14**CO**.

Single Gas (SG) and Mixed Gas (MG) 50%H₂/50%CO₂ @ 150^oC

First performance of M4-HFMs

Single and Mixed gas permeation

14CO

Single Gas (SG) and Mixed Gas (MG) $50\%H_2/50\%CO_2 @ 150$ °C

Constant velocity dip-coating

Proof of principle – lab scale 'Pull-through coater'

The fiber is fixed between the clamps of a tensile tester and is pulled out from the polymer solution at a controlled speed.

This automatic device, having a working height of ca. 1 meter, can be applied to coat

- fibers with a length even larger than 50 cm, or continuously
- working at a speed that can be varied in a quite large range (e.g., 1 - 500 mm/min).

Modules manufacturing at Polymem

Pre-combustion module (100 fibres, 80 cm) to be tested at Hygear

Experimental infrastructure

- 1. Reformer unit and burner
- 2. Water Gas Shift assembly
- 3. Burner blower
- 4. PSA vessels
- 5. DI water storage

- 6. Off gas storage
- 7. H, storage 8. After cooler
- 9. Coolant Expansion vessel
- 10. Water Purification system

- 11. Electronics cabinet
- 12. Desulphurization system
- 13. Mixed bed filter
- 14. Water pumps
- 15. Steam generator
- 16. Jetcap

Flux - Selectivity improvements

High flux polymers:

- Selective fillers
 - Increased path-lengths
 - tuned aspect ratio
 - Adsorption selective

Selective polymers:

- Flux improvements
 - Hollow spheres
 - Mesoporous, good adsorption
- Shorter effective path-lengths

Percolation membranes

Separation performance

Rodenas et al. Nature Materials 14, 48-55 (2015)

Cu-BDC/Matrimid

Aged (3 years) Cu-BDC platelet/Matrimid (15/85 CO₂/N₂ mixed gas @ 25 °C heat treated @ 180 °C)

Membrane (wt%)	<i>∆p</i> (bar)	CO ₂ (Barrer)	N ₂ (Barrer)	α (CO ₂ /N ₂)
0	1	9 ± 0	0.4 ± 0.0	23± 1
8	1	18 ± 0	0.3 ± 0.0	57 ± 1
8	2	14 ± 0	0.3 ± 0.0	46 ± 2

- Permeability (low) and selectivity both improved with MOF
- Stable system

WP4

Hydrothermal Hexagonal rods

(0k0)

d)

Reflux H₂O nano rods

3rd generation nanoMOFs

Control of morphology influencing diffusion properties

A. Knebel et al, ACS Appl. Mater. Interfaces, 8, 7536, 2016

M⁴CO₂ status – Summer 2017

- Project runs in-line with planning
- Process designs guide development direction
 - Selectivity strongest sensitivity
- 1st and 2nd generation materials identified proof-of-principle PT ۲
 - Development lamellar and layered 3rd generation materials
 - MOF stabilized in M4's (3 year)?
- Uniformity in membrane testing •
- Hollow fibre membrane manufacture
 - Pre-combustion selectivity specs reached
 - Films and HF differ in performance
- Supporting studies provide
 - Insight in performance, polymer-MOF interaction, adsorption and diffusion, morphology
 - New experimental and modeling techniques in-situ performance studies

Follow-up NMBP projects under negotiation

Scale up challenging

>90 dissemination items

EURO f 20 17

2nd European conference on Metal Organic Frameworks and Porous polymers

> 29 October – 1 November 2017 Delft, The Netherlands

cheme.nl/EUROMOF2017