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Advantages over Absorption

 Significantly increased contact area over solvent 
systems

 Reduced energy for regeneration and moving 
sorbent materials (if high capacity achieved)

 Elimination of liquid water (corrosion, etc.)
 Potential to reduce energy loading by 30-50%

Challenges of CO2 adsorbents

 High capacity
 High selectivity
 Adequate adsorption/desorption kinetics
 Good stability / lifetime
 Mechanical strength
 Reasonable cost

Gray et al. J. Greenhouse Gas Control 2, :3-8 (2008)

Ho et al. Ind. Eng. Chem. Res. 47, 4883-90 (2008)
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Solid sorbents: Why?
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Post-combustion capture application- challenges
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PC (w FGD) NGCC Oxyfuel

Volume flow (m3/h) 2.2 × 106 3.8 × 106 0.5 × 106

Pressure (barg) 0.05 0.05 0.05

Temperature (⁰C) 90 90 170

N2 (%) 71 75

CO2 (%) 12.6 3.4 62.6

Water (%) 11.1 6.9 31.5

Oxygen (%) 4.4 13.8 4.5

SO2 (ppm) 200

NOx (ppm) 670 25

Very large: pressure drop
Very low: no driving force

Relatively high for adsorption

Ranges from 12 to 63% (wet basis)
High water content

SOx, NOx, ash, heavy metals, etc. present



Post-combustion capture applications
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SRI Advanced Carbon Sorbent 
(ACS) technology
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Post-combustion capture applications
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• 10 MW slipstream from 500 MW
coal-fired power plant

• Location: Hadong, Korea
• 200 t CO2/d
• Sorbent: KEP-CO2P2 or P3
• Targets:

> 80% CO2 capture rate
<95% CO2 purity
US$ 30/t CO2

• Start up: October 2013



WP2 Objectives
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The main objective was to prove adsorption with low-temperature solid 
sorbents as a high efficiency and environmentally benign technology for post-

combustion CO2 capture by means of experimental and modelling work

• Produce a particulate solid adsorbent for a moving bed reactor having suitable
cyclic capacity under post-combustion conditions (e.g. >2.5 mmol/g for the high
surface area sorbents) and that can withstand a 100°C temperature change within
3-4 minutes.

• Produce a structured carbon monolith sorbent with substantial equilibrium
carbon dioxide uptake in high relative humidity environments (e.g. >1.5 mmol/g
at 150 mbar CO2 and 20°C) and with acceptable adsorption/desorption kinetics.
The monoliths should also have enhanced thermal conductivity characteristics of
better than 2W/mK.

• Evaluate and model moving and fixed bed based adsorption processes that
combine low pressure drop and high thermal efficiency and determine the
process performance.

Data generated were transferred for process assessment in WP4



Partners/tasks in WP2
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Sorbent
Development

Process
Development

Process
Modelling

Technology
Assessment
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Porous solid sorbents: low temperature
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Metal-Organic Frameworks(MOF)
Cristaline compounds integrated by metal ions liked by organic ligands in a 
forming a porous network. Extremely high porosity suitable for gas storage 

and purification. Air/moisture sensitive. 

Zeolites
Aluminosilicate molecular sieves. High capacity and selective CO2 
sorbents in the higher pressure range. Very sensitive to water.  

Carbon-based
From activated carbons to carbon 

molecular sieves. Less sensitiveness 
to water, easy regeneration and 

lower cost. Low temperature CO2
sorption.

Functionalised porous materials
- Surface (e.g. amine grafted)
- Matrix (e.g. N containing polymer)



Sorbent selection

Ideal adsorbent:

 Low cost

 Availability

 High capacity

 High selectivity towards CO2

 Ease of regeneration

 High stability/durability

Carbon materials

Cost

Ease of regeneration

Water tolerance

Durability

Availability
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Carbon precursors selected within HiPerCap:
• Agricultural by-products
• Phenolic resins
• Natural polymers/precursors



Sorbent & Process development
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II. Evaluation & Modelling 
 Characterization
 Pure component adsorption isotherms at 

selected T: CO2, N2, H2O
Thermodynamics of adsorption

 Multicomponent adsorption experiments
Selectivity
Kinetics of adsorption
Evaluation of operating conditions
Influence of impurities
Validation of adsorption model

Fixed-bed adsorption-desorption

Design of adsorption-based  
CO2 capture unit

I. Sorbent Production

III. Simulation

Post-combustion CO2 capture (PCC)

Adsorption-based
CO2 capture unit
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Fixed-bed TSA (FBTSA) Moving-bed TSA (MBTSA)

Phenolic resin honeycomb carbon monolith:

 Low pressure drop

 Effective heat transfer

 High stability 

 Challenges: throughput & working capacity

Phenolic resin carbon beads:

 Low pressure drop

 Hardly no attrition

 Uses heat in flue gas for regeneration

 Challenges: hydrodynamics & particle 

residence time in regeneration

215Sep30 214Jun42

Sorbent & Process development
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Sorbent & Process development

Monolith Beads units
BET surface area 708 1314 m2 g-1

Total pore volume 0.29 1.22 cm3 g-1

Narrow micropore volume 0.29 0.22 cm3 g-1

Narrow micropore width 0.57 0.79 nm
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Process modelling: FBTSA 
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CSIC designed, developed and scaled up several FBTSA post-combustion CO2 capture
processes that meet the following specifications:

 ≥ 85% CO2 capture rate from the 800 MWe advanced supercritical coal reference
plant

 The CO2 product is delivered to the compression stage with a purity of ≥ 95% (dry
basis) at 2 bar and 30 °C

TSA  with steam stripping
Carbon honeycomb monoliths (D = 3 cm; H = 0.7 m) installed in 24 adsorbers

Success cases:
• Case 1: the flue gas is fed to the adsorption capture unit directly after 

the desulfurization unit, at 47 ° C
• Case 2: the flue gas is cooled down to 30.78 °C prior to be fed to the 

adsorption capture unit 



Process modelling: FBTSA 
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Process modelling: FBTSA 
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Parameter Case 1 Case 2 Case 2b Units

Purity of the CO2 product (dry basis) 95.4 95.6 95.7 %

CO2 capture rate 85.4 85.4 88.6 %

Productivity 0.35 0.40 0.52 kgCO2 kgadsorbent
-1 h-1

Specific heat duty 4.89 3.59 2.89 MJth kg-1 CO2

Specific cooling duty 4.40 3.36 2.79 MJth kg-1 CO2

Specific electricity consumption 123 127 118 kJe kg-1 CO2

Total amount of adsorbent 1428 1256 1005 tons

Case 2b evaluates the influence of faster adsorption kinetics  on Case 2 configuration



Process modelling: MBTSA 
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SINTEF designed and scaled up several MBTSA post-combustion CO2 capture processes
that meet the following specification:

 ≥ 85% CO2 capture rate from the 800 MWe advanced supercritical coal reference
plant

Moving bed TSA 
Four units (D = 10 m; H = 25 m) installed in parallel

Basic configurations (A & B): CO2 purity very low (<< 95%)
Success cases:

• Configurations D: includes preheating section and recycle of extracted 
gas from top of preheating section into the flue gas feed.



Process modelling: MBTSA 
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4 parallel moving bed TSA units



Process modelling: MBTSA 
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4 parallel moving bed TSA units



Process modelling: MBTSA 
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Parameter Conf A Conf B Conf D Units

Purity of the CO2 product (dry basis) 65 72 94.6 %

CO2 capture rate 86 78 85.6 %

Heat duty (external heat) 410 410 NA MWth

Recovered heat 660 660 NA MWth

Cooling duty 382 382 NA MWth

Specific electricity consumption 23.9 23.9 NA kJe kg-1 CO2

Amount of circulating sorbent
(per unit)

2280 2280 2550 kg s-1

Total amount of adsorbent 7982 7982 NA tons



Testing with real flue gas from power plant
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MAST Carbon monolith module

Stable performance over 24 cycles of adsorption-regeneration



Conclusions
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 Both MBTSA and FBTSA reach the targets defined in HiPerCap:

≥ 85% CO2 capture rate with ≥ 95% CO2 purity from the 800

MWe advanced supercritical coal reference plant.

 Reducing the energy penalty of the TSA capture unit is

challenging and requires action on the solid sorbent and

engineering developments.

 Testing with real flue gas demonstrated the stability of the

adsorption based system.
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