

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD CSIC

INSTITUTO NACIONAL DEL CARBÓN

HiPer ap

HiPerCap: Adsorption Technologies – Overview & Results

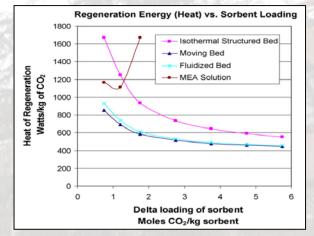
Dr. Covadonga Pevida

Energy Processes and Emission Reduction Group (PrEM) Instituto Nacional del Carbón, INCAR-CSIC cpevida@incar.csic.es

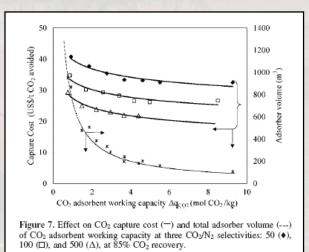
EU-Australia Workshop, Oslo, 13th September 2017

Energy Processes and Emission Reduction Group

Solid sorbents: Why?



Advantages over Absorption


- Significantly increased contact area over solvent systems
- Reduced energy for regeneration and moving \checkmark sorbent materials (if high capacity achieved)
- Elimination of liquid water (corrosion, etc.) \checkmark
- Potential to reduce energy loading by 30-50%

Challenges of CO₂ adsorbents

- **High capacity**
- **High selectivity**
- Adequate adsorption/desorption kinetics
- Good stability / lifetime
- **Mechanical strength**
- **Reasonable cost**

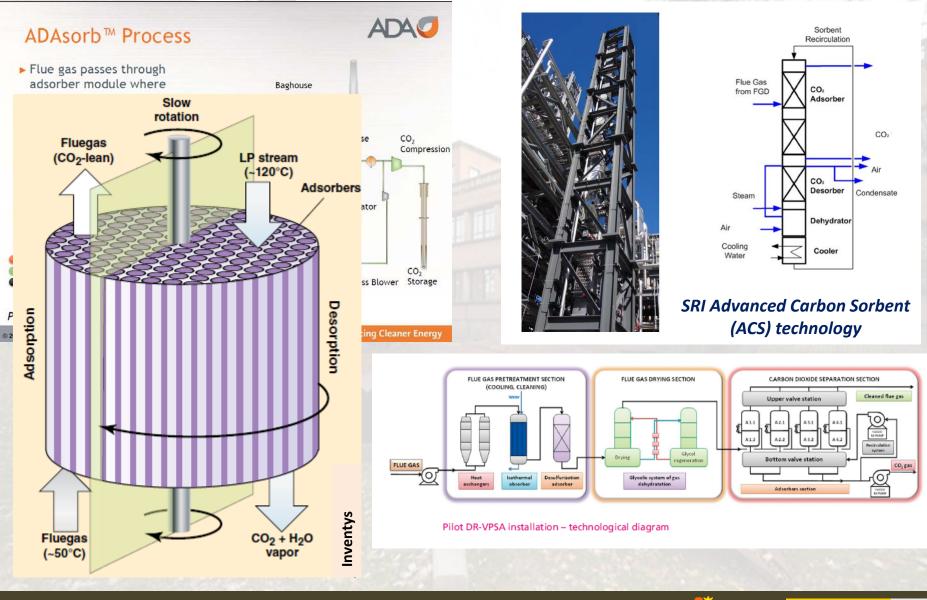
Ho et al. Ind. Eng. Chem. Res. 47, 4883-90 (2008)

CSIC

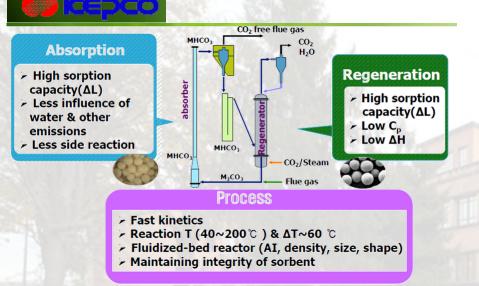
Post-combustion capture application- challenges

	PC (w FGD)	NGCC	Oxyfuel
Volume flow (m ³ /h)	2.2×10^{6}	3.8×10^{6}	0.5×10^{6}
Pressure (barg)	0.05	0.05	0.05
Temperature (°C)	90	90	170
N ₂ (%)	71	75	
CO ₂ (%)	12.6	3.4	62.6
Water (%)	11.1	6.9	31.5
Oxygen (%)	4.4	13.8	4.5
SO ₂ (ppm)	200	17	
NOx (ppm)	670	25	

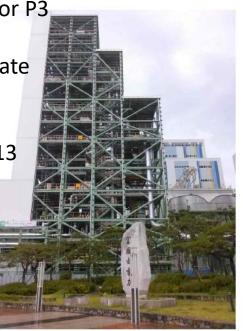
- Very large: pressure dropVery low: no driving force
- Relatively high for adsorption
- Ranges from 12 to 63% (wet basis)High water content


SOx, NOx, ash, heavy metals, etc. present

Post-combustion capture applications



Energy Processes and Emission Reduction Group


Post-combustion capture applications

Carbonation	Regeneration			
$\begin{array}{l} K_2 CO_3(s) + CO_2(g) + H_2 O(g) \rightarrow 2 KHCO_3(s) \\ \Delta H = -3.25 \ GJ/tCO_2 \\ K_2 CO_3^* 1.5 H_2 O(s) + CO_2(g) \rightarrow 2 KHCO_3(s) + \\ 0.5 \ H_2 O(g), \ \Delta H = -1.0 \ GJ/tCO_2 \\ \end{array}$ Operating temperature: 40-80°C	2KHCO ₃ (s)→ K ₂ CO ₃ (s)+CO ₂ (g)+H ₂ O(g ΔH = 3.25 GJ/tCO ₂ 2KHCO ₃ (s) + 0.5 H ₂ O(g))→K ₂ CO ₃ ·1.5H ₂ O + CO ₂ (g), ΔH = 1.0 GJ/tCO ₂ Operating temperature: 140-200%			
 Little Corrosion & No volatiles No waste water 	 Recover high-concentrated CO₂ after condensing H₂O 			
 Easy to control heat for exothermic reaction 	Use waste heat, steam for endothermic reaction			

- 10 MW slipstream from 500 MW coal-fired power plant
- Location: Hadong, Korea
- 200 t CO₂/d
- Sorbent: KEP-CO2P2 or P3
- Targets:
 - $> 80\% CO_2$ capture rate <95% CO₂ purity US\$ 30/t CO₂
- Start up: October 2013

10 MW Pilot Plant at KOSPO's Hadong coal-fired power plant, Unit # 8

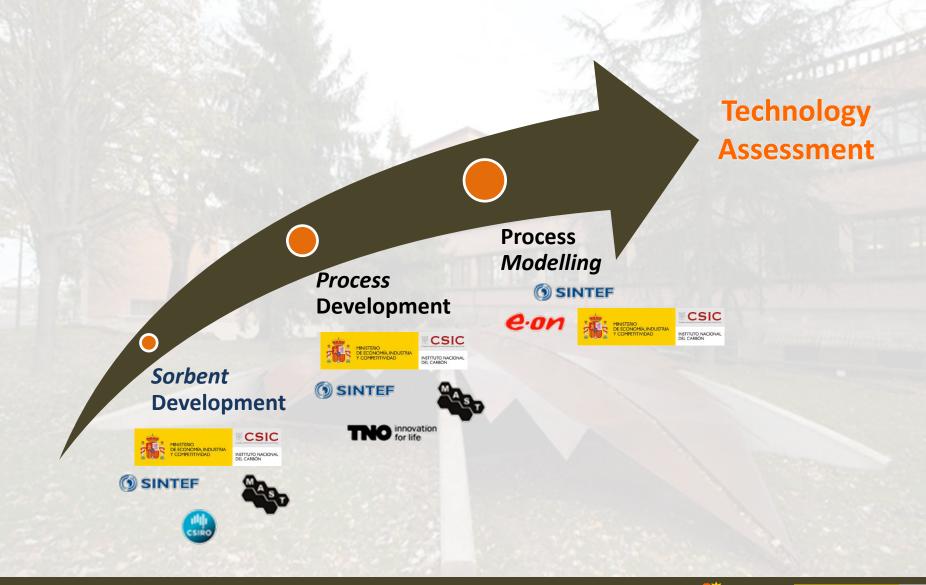
Energy Processes and Emission Reduction Group

WP2 Objectives

The main objective was to prove **adsorption** with **low-temperature solid sorbents** as a high efficiency and environmentally benign technology for postcombustion CO₂ capture by means of experimental and modelling work

- Produce a particulate solid adsorbent for a moving bed reactor having suitable cyclic capacity under post-combustion conditions (e.g. >2.5 mmol/g for the high surface area sorbents) and that can withstand a 100°C temperature change within 3-4 minutes.
- Produce a structured carbon monolith sorbent with substantial equilibrium carbon dioxide uptake in high relative humidity environments (e.g. >1.5 mmol/g at 150 mbar CO₂ and 20°C) and with acceptable adsorption/desorption kinetics. The monoliths should also have enhanced thermal conductivity characteristics of better than 2W/mK.

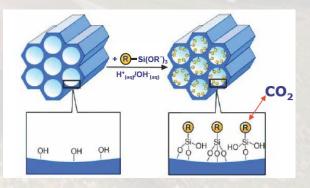
• Evaluate and model moving and fixed bed based adsorption processes that combine low pressure drop and high thermal efficiency and determine the process performance.


Data generated were transferred for process assessment in WP4

Partners/tasks in WP2

Porous solid sorbents: low temperature

Metal-Organic Frameworks(MOF)


Cristaline compounds integrated by metal ions liked by organic ligands in a forming a porous network. Extremely high porosity suitable for gas storage and purification. Air/moisture sensitive.

Zeolites

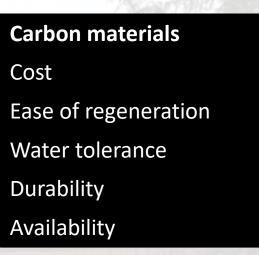
Aluminosilicate molecular sieves. High capacity and selective CO₂ sorbents in the higher pressure range. Very sensitive to water.

Functionalised porous materials

- Surface (e.g. amine grafted)
- Matrix (e.g. N containing polymer)

Carbon-based

From activated carbons to carbon molecular sieves. Less sensitiveness to water, easy regeneration and lower cost. Low temperature CO₂ sorption.



Sorbent selection

Ideal adsorbent:

- Low cost
- Availability
- High capacity
- ✓ High selectivity towards CO₂
- Ease of regeneration
- High stability/durability

Ca • / • F • P

Carbon precursors selected within HiPerCap:

- Agricultural by-products
- Phenolic resins
- Natural polymers/precursors

Sorbent & Process development

Moving-bed: aPROMS

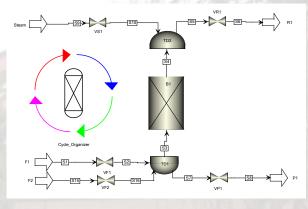
MODEL Composite (SolSorb_MovingBed)

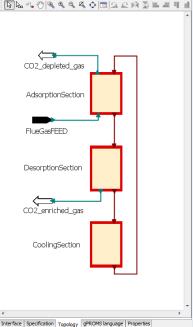
I. Sorbent Production

II. Evaluation & Modelling

- Characterization
- Pure component adsorption isotherms at selected T: CO₂, N₂, H₂O

Thermodynamics of adsorption


- Multicomponent adsorption experiments
 - Selectivity Kinetics of adsorption Evaluation of operating conditions Influence of impurities Validation of adsorption model


Fixed-bed adsorption-desorption

III. Simulation

Design of adsorption-based CO2 capture unit

Fixed-bed: Aspen Adsorption

Sorbent & Process development

Fixed-bed TSA (FBTSA)

Phenolic resin honeycomb carbon monolith:

- Low pressure drop
- Effective heat transfer
- **High stability**

215Sep30

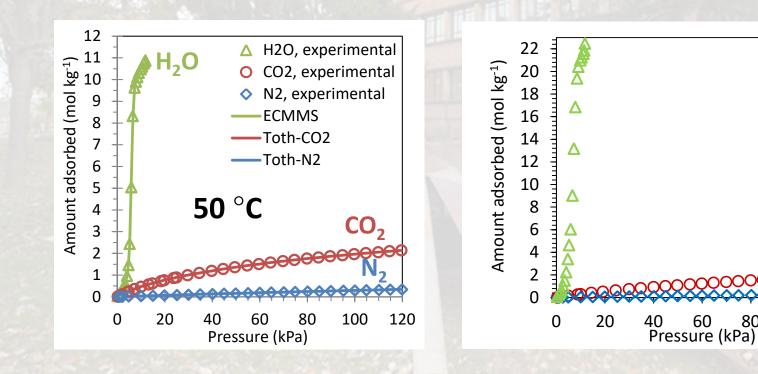
Challenges: throughput & working capacity

Moving-bed TSA (MBTSA)

Phenolic resin carbon beads:

- Low pressure drop
- Hardly no attrition
- Uses heat in flue gas for regeneration \checkmark
- **Challenges:** hydrodynamics & particle residence time in regeneration

214Jun42


Sorbent & Process development

50 °C

100

215Sep30	Adsorpt	214Jun42			
		Monolith	Beads	units	
	BET surface area	708	1314	m² g-1	
	Total pore volume	0.29	1.22	cm ³ g ⁻¹	
	Narrow micropore volume	0.29	0.22	cm ³ g ⁻¹	
	Narrow micropore width	0.57	0.79	nm	

80

120

Emission Reduction Group

CSIC designed, developed and scaled up several **FBTSA post-combustion CO₂ capture** processes that meet the following specifications:

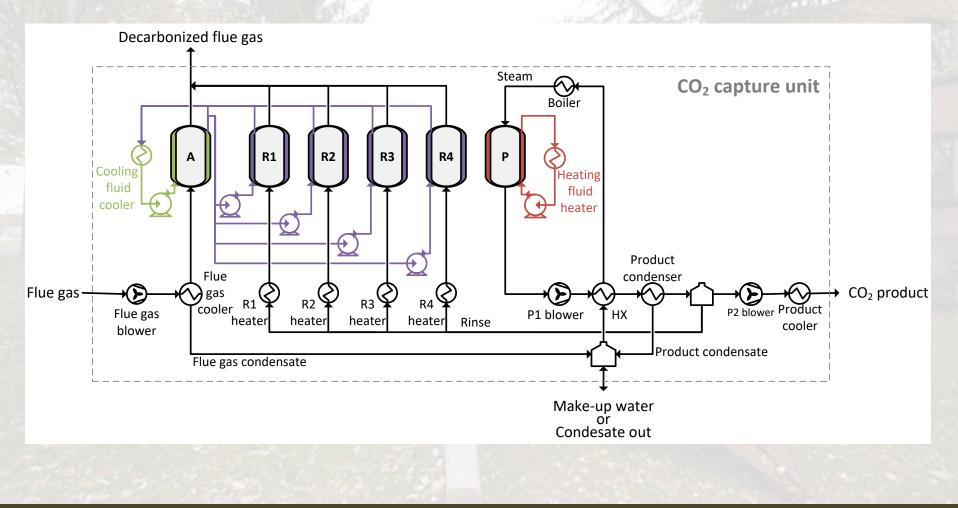
- ✓ ≥ 85% CO_2 capture rate from the 800 MW_e advanced supercritical coal reference plant
- ✓ The CO₂ product is delivered to the compression stage with a purity of ≥ 95% (dry basis) at 2 bar and 30 °C

TSA with steam stripping

Carbon honeycomb monoliths (D = 3 cm; H = 0.7 m) installed in 24 adsorbers

Success cases:

- Case 1: the flue gas is fed to the adsorption capture unit directly after the desulfurization unit, at 47 ° C
- **Case 2**: the flue gas is cooled down to 30.78 °C prior to be fed to the adsorption capture unit



Process modelling: FBTSA

Case 2: flue gas is cooled down to 30.78 °C prior to adsorption unit

Process modelling: FBTSA

Parameter	Case 1	Case 2	Case 2b	Units
Purity of the CO ₂ product (dry basis)	95.4	95.6	95.7	%
CO ₂ capture rate	85.4	85.4	88.6	%
Productivity	0.35	0.40	0.52	$kg_{CO2} kg_{adsorbent}^{-1} h^{-1}$
Specific heat duty	4.89	3.59	2.89	MJ _{th} kg ⁻¹ CO ₂
Specific cooling duty	4.40	3.36	2.79	MJ _{th} kg ⁻¹ CO ₂
Specific electricity consumption	123	127	118	kJ _e kg ⁻¹ CO ₂
Total amount of adsorbent	1428	1256	1005	tons

Case 2b evaluates the influence of faster adsorption kinetics on Case 2 configuration

SINTEF designed and scaled up several **MBTSA post-combustion CO₂ capture** processes that meet the following specification:

✓ ≥ 85% CO_2 capture rate from the 800 MW_e advanced supercritical coal reference plant

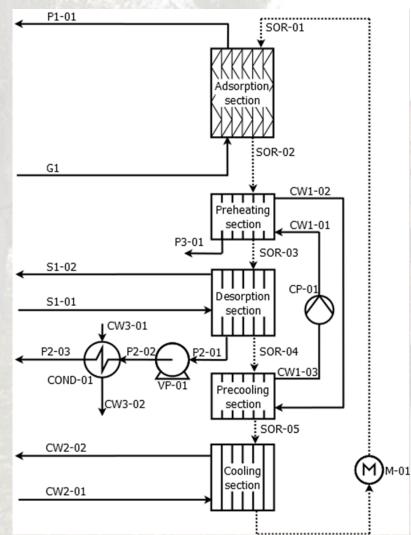
Moving bed TSA

Four units (D = 10 m; H = 25 m) installed in parallel

Basic configurations (A & B): CO_2 purity very low (<< 95%)

Success cases:

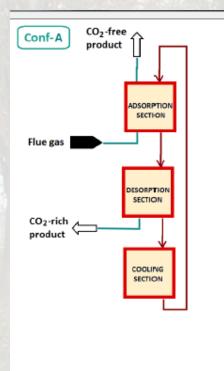
• **Configurations D**: includes preheating section and recycle of extracted gas from top of preheating section into the flue gas feed.

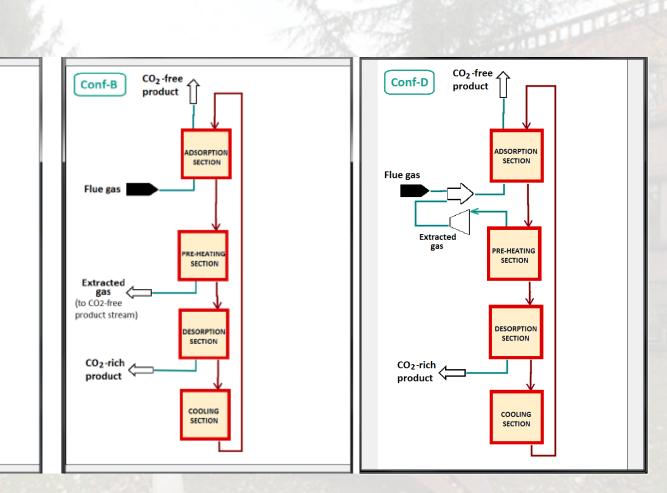


Process modelling: MBTSA

4 parallel moving bed TSA units SINTER

Name/tag	info					
Stream						
CW1-01	Cooling water for heat recovery at preheater inlet (closed loop)					
CW1-02	Water for heat recovery at preheater outlet (closed loop)					
CW1-03	Water for heat recovery at precooler outlet (closed loop)					
CW2-01	Cooling water from power plant for sorbent cooling (supply)					
CW2-02	Cooling water used for sorbent cooling (supply)					
CW3-01	Cooling water for condenser - drying of CO2-rich product (supply					
CW3-02	Cooling water for condenser - drying of CO2-rich product (return)					
G1	Feed gas (flue gas from power plant)					
P1-01	CO2-depleted product					
P2-01	CO2-rich product (wet)					
P2-02	CO2-rich product after condenser					
SOR-01	Sorbent at adsorption section inlet					
SOR-02	Sorbent at adsorption section outlet/preheating section inlet					
SOR-03	Sorbent at preheating section outlet/desorption section inlet					
SOR-04	Sorbent at desorption section outlet/precooling section inlet					
SOR-05	Sorbent at precooling section outlet/cooling section inlet					
S1-01	Steam from power plant (for sorbent regeneration)					
S1-02	Exhaust steam back to power plant (after sorbent regeneration)					
Separation	equipment					
Adsorption	section					
Preheating	section (heat exchanger)					
Desorption :	section (heat exchanger)					
Cooling sec	tion (heat exchanger)					
Cooling sec	tion (heat exchanger)					
Auxiliary e	quipment					
M-01	Motor for sorbent circultation					
CP-01	Circulating pump					
VP-01	Vacuum pump					
COND-01	Condenser (for drying of CO2-rich product)					




Process modelling: MBTSA

4 parallel moving bed TSA units

🕥 SINTEF

Process modelling: MBTSA

Parameter	Conf A	Conf B	Conf D	Units
Purity of the CO ₂ product (dry basis)	65	72	94.6	%
CO ₂ capture rate	86	78	85.6	%
Heat duty (external heat)	410	410	NA	MW _{th}
Recovered heat	660	660	NA	MW _{th}
Cooling duty	382	382	NA	MW _{th}
Specific electricity consumption	23.9	23.9	NA	kJ _e kg ⁻¹ CO ₂
Amount of circulating sorbent (per unit)	2280	2280	2550	kg s ⁻¹
Total amount of adsorbent	7982	7982	NA	tons

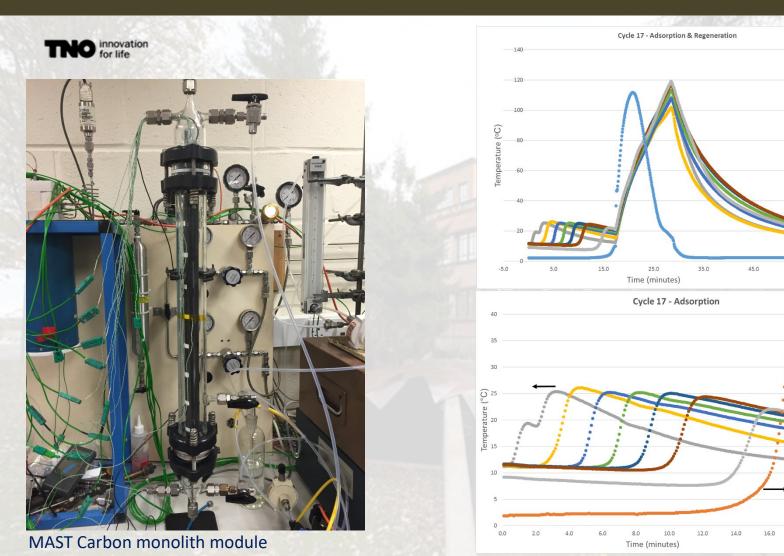
Testing with real flue gas from power plant

50

45

40

30


55.0

2.5

18.0

CO2 - 100%

CO2 - 15%

Stable performance over 24 cycles of adsorption-regeneration

Emission Reduction Group

Conclusions

- ✓ Both MBTSA and FBTSA reach the targets defined in HiPerCap: ≥ 85% CO₂ capture rate with ≥ 95% CO₂ purity from the 800 MW_{e} advanced supercritical coal reference plant.
- Reducing the energy penalty of the TSA capture unit is challenging and requires action on the solid sorbent and engineering developments.
- Testing with real flue gas demonstrated the stability of the adsorption based system.

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD CSIC

INSTITUTO NACIONAL DEL CARBÓN

HiPer ap

HiPerCap: Adsorption Technologies – Overview & Results

Dr. Covadonga Pevida

Energy Processes and Emission Reduction Group (PrEM) Instituto Nacional del Carbón, INCAR-CSIC cpevida@incar.csic.es

EU-Australia Workshop, Oslo, 13th September 2017

Energy Processes and Emission Reduction Group