

# MODELLING OF ADSORPTION BASED CO<sub>2</sub> CAPTURE PROCESSES FOR LARGE-SCALE APPLICATIONS

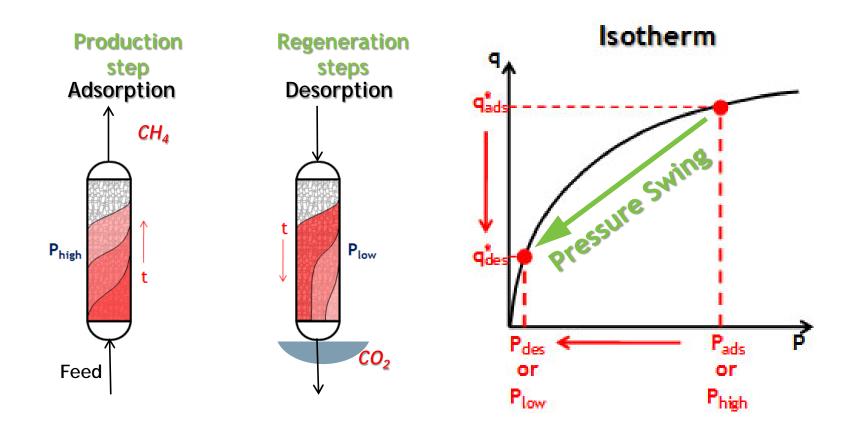
1

**Carlos A. Grande** 

SINTEF Materials and Chemistry. Forskningsveien 1. Oslo, Norway.

Email: carlos.grande@sintef.no

## Adsorption & adsorption processes


• Adsorption: spontaneous phenomenon of attraction that a molecule from a fluid phase experiences when it is close to the surface of a solid, named adsorbent.

## **Desorption processes**

- PSA: Pressure Swing Adsorption. Regenerated by lowering the pressure.
- VPSA: same as PSA but using a vacuum pump.
- TSA: Temperature Swing Adsorption. Regenerates by heating the adsorbent.
- ESA: Electric Swing Adsorption: same as TSA using electricity.
- SMB: Simulated Moving Bed. Displaces one component with other.
- Moving beds: sends the adsorbent to other process "compartments" where T and or P can be changed.



## Example: the PSA operation



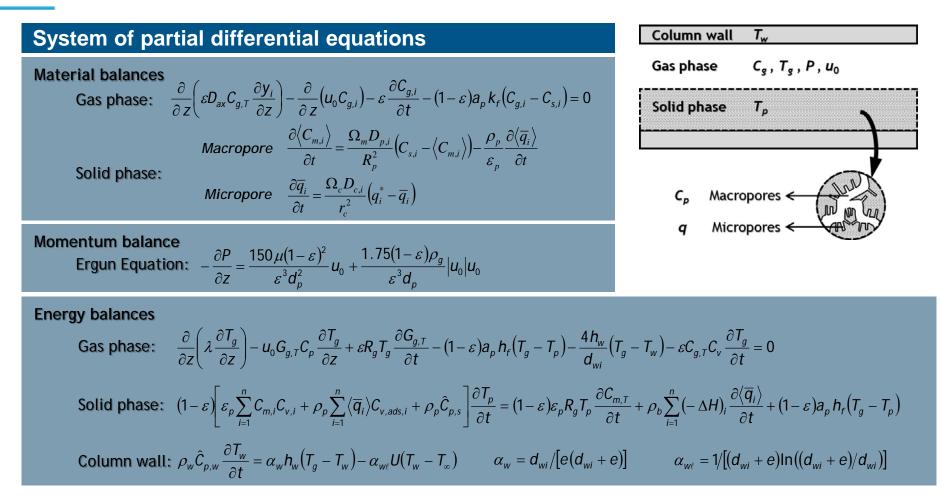
Before  $CO_2$  break through the adsorbent bed, the feed step is stopped and column is regenerated by lowering the pressure.

## Rationale for modelling

- Get a good model for a "column" where the process will happen.
  - Column is the closed environment where we can define a unitary process

## Rationale for modelling II

• When your 1-column model works you are half-way. You need to do the proper cycling and get the number of columns.


| 1 |   | ADS | SORPT    | ION | EQ1        | CD | EQ2 | CD         | PU  | EQ2 | EQ1        | R   | E   |
|---|---|-----|----------|-----|------------|----|-----|------------|-----|-----|------------|-----|-----|
| 2 | 2 | CD  | D PU EQ2 |     | EQ1        | RE |     | ADSORPTION |     |     | EQ1        | CD  | EQ2 |
| 3 | 3 | EQ1 | CD EQ2   |     | CD         | PU | EQ2 | EQ1        | RE  |     | ADSORPTION |     |     |
| 4 | ŀ | EQ1 | RE       |     | ADSORPTION |    | EQ1 | CD         | EQ2 | CD  | PU         | EQ2 |     |



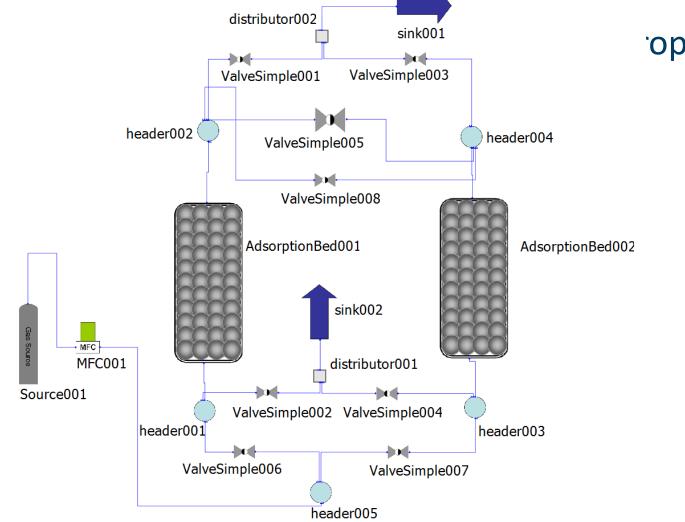




## The mathematical model for the column



Linked by the isotherm equation and the gas phase equation of state.




## For the model you need...

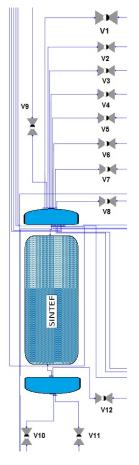
- Adsorption isotherms: at all P and T (try to avoid extrapolation)
- Some equation to predict real behavior: might not work in real life.
- Diffusion coefficients
- Heat capacity
- Dispersion, many properties of the adsorbent, etc
- The beauty of large-scale processes: they are adiabatic so we need less heat transfer parameters.
  - Bad part of large-scale processes: they are adiabatic so is a big job to take out heat (fast).

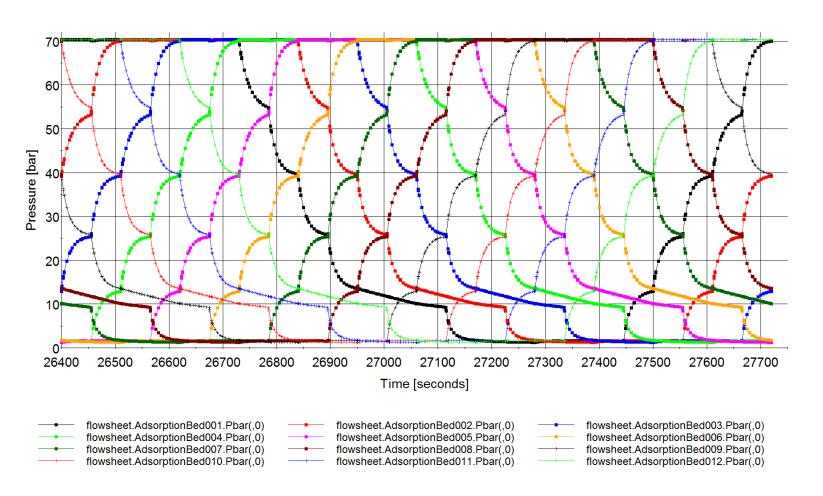
## Software for modelling: alternatives

• I don't see the e units can be mo



#### op code where


**SINTEF** 

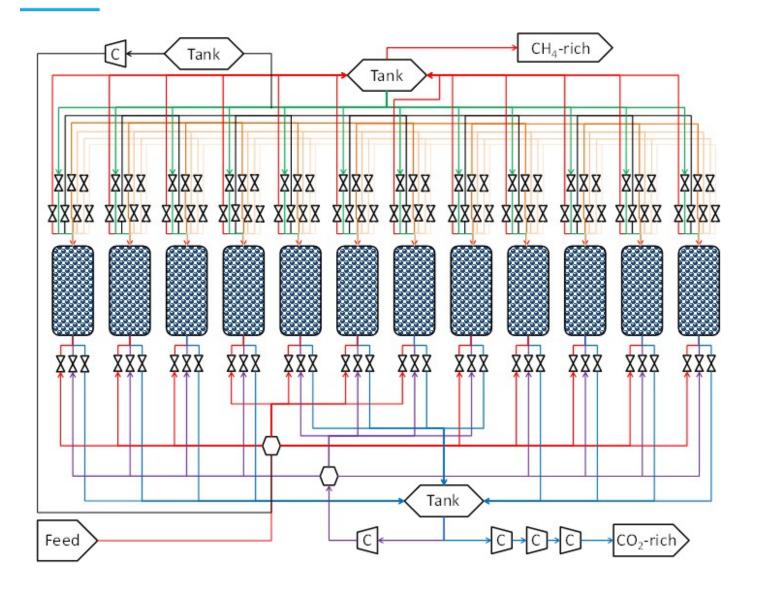

## Calendar of operation. Remember high-school?

| C1  | FEED 个                          |         |              | D1 ↑       | D2 ↑                              | D3 个            | D4 ↑                              | PP              | $\uparrow$      | R ↑             |                      | $B\downarrow$   |                                   | Pu ↓            | Pu            | $\leftarrow$  | E4 ↓                              | E3 ↓        | E2 ↓                     | $\mathrm{E1} \downarrow$ | Pr $\downarrow$ |            |
|-----|---------------------------------|---------|--------------|------------|-----------------------------------|-----------------|-----------------------------------|-----------------|-----------------|-----------------|----------------------|-----------------|-----------------------------------|-----------------|---------------|---------------|-----------------------------------|-------------|--------------------------|--------------------------|-----------------|------------|
| C2  | E1 $\downarrow$ Pr $\downarrow$ |         | FEEI         | D 个 🗌      |                                   |                 | D1 ↑                              | D2 个            | D3 个            | D4 ↑            | PP                   | $\uparrow$      | R 个                               |                 | $B\downarrow$ |               | Pu $\downarrow$                   | Pu          | $\downarrow \downarrow$  | E4 ↓                     | E3 ↓            | E2 ↓       |
| C3  | E3 ↓ E2 ↓                       | E1↓ Pr  | $\downarrow$ |            | FEEI                              | D 个 🗌           |                                   |                 | D1 ↑            | D2 个            | D3 ↑                 | D4 个            | PP                                | $\uparrow$      | R ↑           |               | $B\downarrow$                     |             | Pu ↓                     | Pu                       | $\downarrow$    | E4 ↓       |
| C4  | Pu ↓ E4 ↓                       | E3 ↓ E2 | ↓ E1 ↓       | Pr ↓       |                                   |                 | FEE                               | D 个             |                 |                 | D1 ↑                 | D2 个            | D3 ↑                              | D4 ↑            | PP            | $\uparrow$    | R 个                               |             | B↓                       |                          | Pu ↓            | Pu 🗸       |
| C5  | Pu \downarrow 🛛 Pu              | ↓ E4    | ↓ E3 ↓       | E2 ↓       | $\mathrm{E1} \mathbf{\downarrow}$ | Pr $\downarrow$ |                                   |                 | FEE             | D 个 🗌           |                      |                 | D1 ↑                              | D2 个            | D3 个          | D4 ↑          | PP                                | $\uparrow$  | R↑                       |                          | B↓              |            |
| C6  | в 🗸                             | Pu 🗸    | Pu 🗸         | E4 ↓       | E3 ↓                              | E2 ↓            | $\mathrm{E1} \mathbf{\downarrow}$ | Pr $\downarrow$ |                 |                 | FEE                  | D 个 🗌           |                                   |                 | D1 ↑          | D2 个          | D3 个                              | D4 个        | PP                       | $\uparrow$               | R↑              | в 🧄 🔰      |
| C7  | R 个                             | В↓      | Pu ↓         | Pu         | $\downarrow$                      | E4 ↓            | E3 ↓                              | E2 ↓            | E1 $\downarrow$ | Pr $\downarrow$ |                      |                 | FEE                               | D 个             |               |               | D1 个                              | D2 ↑        | D3 个                     | D4 ↑                     | PP              | $\uparrow$ |
| C8  | PP 个                            | R 个     | В ↓          |            | Pu $\downarrow$                   | Pu              | $\downarrow$                      | E4 ↓            | E3 ↓            | E2 ↓            | E1 $\downarrow$      | Pr ↓            |                                   |                 | FEE           | D 个 🗌         |                                   |             | D1 ↑                     | D2 个                     | D3 ↑            | D4 ↑       |
| C9  | D3 ↑ D4 ↑                       | PP ↑    | R ↑          |            | $B\downarrow$                     |                 | Pu ↓                              | Pu              | $\downarrow$    | E4 ↓            | E3 ↓                 | E2 $\downarrow$ | $\mathrm{E1} \mathbf{\downarrow}$ | $ \downarrow$   |               |               | FEE                               | D 个 🗌       |                          |                          | D1 ↑            | D2 ↑       |
| C10 | D1 ↑ D2 ↑                       | D3 ↑ D4 | ↑ PP         | $\uparrow$ | R 个                               |                 | $B\downarrow$                     |                 | Pu↓             | Pu              | $ \downarrow\rangle$ | E4 $\downarrow$ | E3 ↓                              | E2 $\downarrow$ | E1 ↓          | $ \downarrow$ |                                   |             | FEE                      | D 个 🗌                    |                 |            |
| C11 | FEED 个                          | D1 ↑ D2 | ↑ D3 ↑       | D4 ↑       | PP                                | $\uparrow$      | R ↑                               |                 | $B\downarrow$   |                 | Pu ↓                 | Pu              | $\downarrow$                      | E4 ↓            | E3 ↓          | E2 ↓          | $\mathrm{E1} \mathbf{\downarrow}$ | $\Pr{\psi}$ |                          | FEEI                     | D ↑             |            |
| C12 | FEE                             | D 个     | D1 ↑         | D2 ↑       | D3 个                              | D4 ↑            | PP                                | $\uparrow$      | R ↑             |                 | $B\downarrow$        |                 | Pu $\downarrow$                   | Pu              | $\downarrow$  | E4 ↓          | E3 ↓                              | E2 ↓        | $\mathrm{E1} \downarrow$ | Pr 🗸                     | FEED            | $\uparrow$ |

Multi-feed **12-column** scheme. Four pressure equalizations, provide purge, rinse with heavy gas, counter-current blowdown, purge and one counter-current final pressurization with light product.

#### Pressure swing in each column







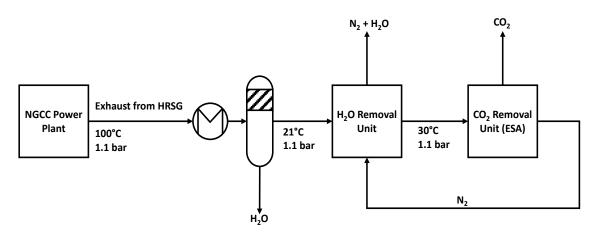
Each simulation took 2 days...

Column connections for multi-column PSA modelling.

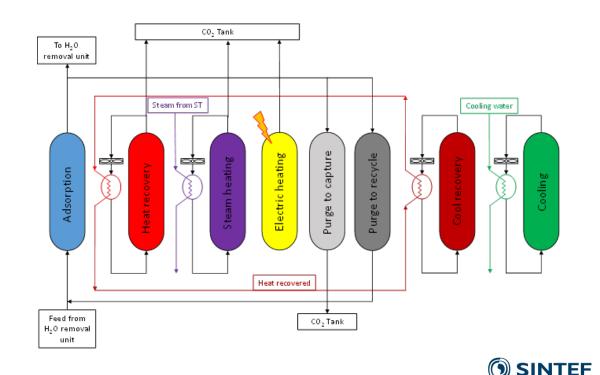


## Example I: PSA for CO<sub>2</sub> removal from natural gas





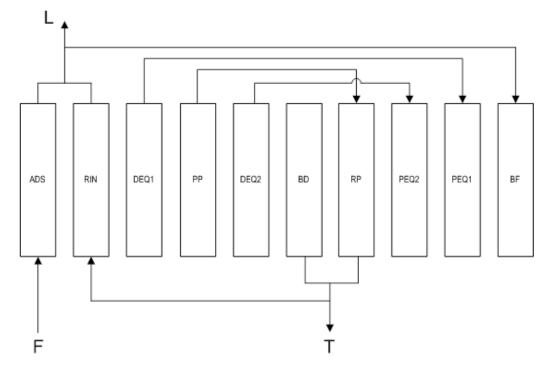

🕥 SINTEF


## Example II: ESA for CO<sub>2</sub> removal NGCC



• We did this work within MATESA project. Main difficulty is modelling hybrid sources of energy: heat produced by electricity and hot gas.




| Main results                                                                 |       |  |  |  |  |  |  |
|------------------------------------------------------------------------------|-------|--|--|--|--|--|--|
| Carbon Capture ratio                                                         | 92.14 |  |  |  |  |  |  |
| CO <sub>2</sub> purity                                                       | 95.04 |  |  |  |  |  |  |
| Electric duty for the fans [MJel/kgCO2]                                      | 1.43  |  |  |  |  |  |  |
| Heat duty means steam bleeding @150°C [MJ <sub>th</sub> /kg <sub>CO2</sub> ] | 0.71  |  |  |  |  |  |  |
| Heat duty means electricity [MJel/kgco2]                                     | 1.30  |  |  |  |  |  |  |
| Heat recovered [MJ <sub>th</sub> /kg <sub>CO2</sub> ]                        | 2.90  |  |  |  |  |  |  |



### Example III: Pre-combustion



- We have a new material here that we believe that can make a difference.
  - UTSA-16 is good for removing CO<sub>2</sub> and also to remove CO so it can make the control of the PSA easier. A pre-layer for water will still be necessary like with materials used today.

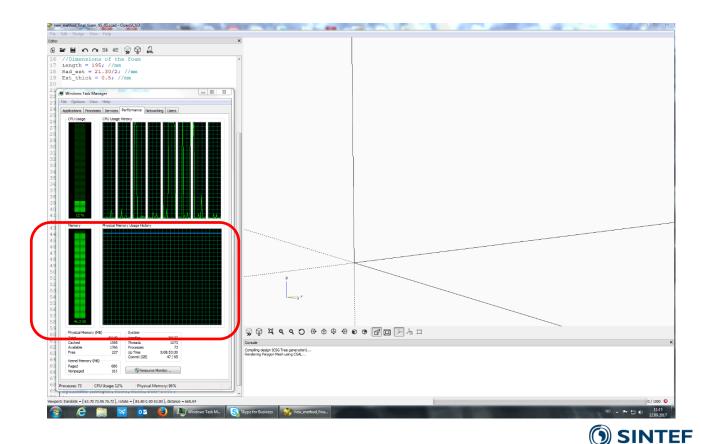


| Simulation | $u_F$ , m s <sup>-1</sup> | <i>t<sub>RIN</sub></i> , s | <sup>a</sup> P <sub>DEQ1</sub> ,<br>bar | <sup>a</sup> P <sub>DEQ2</sub> ,<br>bar | Pur., % | Rec., % | Productivity,<br>$mol_{H2} kg^{-1} h^{-1}$ |  |  |
|------------|---------------------------|----------------------------|-----------------------------------------|-----------------------------------------|---------|---------|--------------------------------------------|--|--|
| 1          | 0.0529                    | 0                          | 9.16                                    | 3.21                                    | 99.9902 | 80.3    | 3.71                                       |  |  |
| 2          | 0.0462                    | 65                         | 8.50                                    | 2.89                                    | 99.9947 | 94.8    | 2.78                                       |  |  |
| 3          | 0.0398                    | 95                         | 8.37                                    | 2.80                                    | 99.9980 | 96.7    | 2.03                                       |  |  |
| 4          | 0.0460                    | 60                         | 8.61                                    | 2.96                                    | 99.9991 | 93.0    | 2.80                                       |  |  |



## SINTERCAP project




- We have started exploring a new dimension: utilization of 3D printing technology.
- First steps were in 3D printed reactors for continuous synthesis of materials.





## Next steps: 3D modelling in adsorption processes

- We will soon start 3D-CAPS project (ACT) and CARMOF (H2020).
- New challenges are coming...
  - RAM memory flyes away...



## Conclusions

- Adsorption processes could be more popular if they were tought at university level.
- There is a lot about the process itself and not just the material.

- They generally result in larger footprint but lower consumption.
- Everything that helps in making them faster helps. Moving beds and monoliths can be a major sucess.
  - If monoliths can be 3D printed it might be even better.

## Acknowledgments

• All the colleagues at University of Porto, SINTEF and other partner institutions in joint projects.

#### • Projects:

- "New Challenges in Adsorption Technologies", 2005-2008, FCT, Portugal
- "Advanced Materials and Electric Swing Adsorption Process for CO<sub>2</sub> capture", 2013-2016, FP7. <u>www.sintef.no/matesa</u>
- "CO<sub>2</sub> Capture in Natural Gas Production by Adsorption Processes for CO<sub>2</sub> Storage, EOR and EGR". 2015-2016, IEAGHG
- SINTERCAP: Shaping of advanced materials for CO<sub>2</sub> capture processes. NFR, Norway through the CLIMIT program: project 233818.



Technology for a better society