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Coal-fired power plant retrofitted with an absorption-

based post combustion CO2 capture process (PP-PCC)

Context: A domain of operational uncertainties

• 19.5 % net efficiency reduction due to PCC

• High capital cost

• Large scale integration issues

• Flexibility in operation



Electricity demand and price fluctuations
Technical uncertainties

- solar GHI, 

- electricity price, 

- electricity demand, & 

- carbon price.
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Policy uncertainties:

› Australia: 

- Carbon tax legislation started in July 2012, 

- scrapped July 2014, and 

- currently we have the Emissions Reduction Fund 

(ERF) proposed in 2015

› China: emissions trading scheme

› Internationally: Paris Meeting December 2015

Context: A domain of operational uncertainties



Integration of PCC into coal-fired power plant requires understanding

dynamic and flexible operations.

The PCC plant must respond flexibly to two significant scenarios:

1. Power plant operations at full and partial loads, and

2. Considering fluctuations in electricity and carbon prices.

Flexible Operation

The objective is to develop a model-

based strategy for operational 

management of flexible amine-based 

post combustion CO2 (PCC) process.
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pilot plant
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ReCAP from previous HiPerCAP



Model boundaries using NARX data-based model1,2
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Dynamic modelling
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1Norhuda, A. M., Ashleigh , C., Paul, F. & Ali, A. 2014. Dynamic Modelling and Simulation of Post Combustion 

CO2 Capture Plant. CHEMECA 2014: Western Australia
2 Norhuda, A. M., Ashleigh , C., Paul, F. & Ali, A. 2014. Dynamic modelling, identification and preliminary control 

analysis of an amine-based post-combustion CO2 capture pilot plant. Journal of Cleaner Production (in review)
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6Minh Tri Luu, Norhuda Abdul Manaf, Ali Abbas. Control strategies for flexible operation of amine-based post-combustion CO2 capture systems. Journal of Greenhouse Gas Control (accepted with revisions)
4Dugas, R. E. 2006. Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine. M.S.E. Thesis, The University of Texas 
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Control Approach

Identified 2 key performance metrics:

1. Carbon capture efficiency, CC (%)  = 
(𝑦4 /100) 𝑦5

𝑢1 (𝑢2 /100)

2. Energy performance, EP (MJ/kg) =
𝑢7

(𝑦4/100) 𝑦5

Reduced 4 x 3 PCC systems model
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Control Approach
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Control Approach  – Controllability Analysis

PCC control 

objective

Upstream 

disturbances
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Control Approach  – Controllability Analysis
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Control Approach  – Controllability Analysis

PID Controller MPC Controller

Control performance under process operational constraints



Control-optimization framework 
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Control-Optimization Approach

PCC Plant

PCC 

Control 

System

Economic-Optimization

Management Decision Support 

System

CC ideal

CC actual

PP match load

PP + PCC flowsheet 

models

Assuming capture rate

Calculate CO2 capture

Net load matched ?

Y/N

Profit maximized ?

Y/N

Gross load

 (Fuel uptake)

Carbon 

price

Constraints

N

Y

N

Y

MPC

Optimal  values for CO2 

capture rate, CCideal
Net load matching 

EPideal

Constraints

u2u1

EPactual

CCactual

Calculate actual and ideal 

profits 

Perform N simulation case 

studies

Response Surface Modelling 

(MODDE package)

A technical nonlinear prediction of the 

PCC process Qreb = f (Xi),                  

Aux = f (Xi) 

Input real time-based 

power plant gross load (t) 

Input real time-based                  

electricity price (t)

Evaluation of techno-

economic study based 

on PP-PCC profit

Economic study via  
optimization with GA 

based on real-time 
based plant/data

CC EPu3 u7

PCC process

INSTRUMENTATION 

LEVEL

PLANT

 LEVEL

ENTERPRISE 

LEVEL

Technical study via 
NARX-MPC data-

based model 



16

The optimization formulation is summarised as: 

Objective function: Maximize Revenue(t, Pe, x1,x2,Ct)

s.t.

Process model: Q_reb (x1,x2), E_Aux (x1,x2)

Initial conditions: x1= CRI, x2= PPLI

Process variables bounds: CRMin (20%)  <  x1 < CRMax (90%)

PPLMin (250 MW)  < x2 < PPLMax (700 MW) 

Constraints:

h(x1,x2) < 0

Where;

x1= the capture rate (%) Pe = electricity price

x2 = the power plant load (MW Gross) Ct = carbon price

Q_reb = Reboiler energy

E_Aux = Auxiliary energy

CRI, CRMin and CRMax = the initial, lower bound and upper bound carbon capture rates

PPLI, PPLMin and PPLMax = the initial, minimum and maximum power plant loads 

h = the process inequality constraints (net electricity output of the power plant does not exceed the historical 

net load of the power plant at a particular time.)

Control-Optimization Algorithm
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Control-Optimization Approach

PP-PCC plant revenue 

Rev-PP: Revenue generated through selling of electricity  

A: Cost of CO2 emission

B: Power plant operating cost (PP-OPEX)

C: PCC operating cost (PCC-OPEX) 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 =   𝑃𝑒 ∗ (𝑃𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡 𝑛𝑒𝑡 𝑙𝑜𝑎𝑑 − 𝑃𝐶𝐶 𝑝𝑒𝑛𝑎𝑙𝑡𝑦) ∗ 𝑑𝑡 −

− 𝐶𝑡 ∗ 𝐶𝑂2 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 𝑑𝑡   −  𝑃𝑃𝑃 − 𝑃𝑃𝐶𝐶                                                       

Rev-PP

A B C



Control-Optimization Algorithm

Analysis for 24 hrs: Simulate techno-economic scenarios for:

• A 24-hour operation,

• Based on 2011 electricity prices3 and at

• Constant carbon prices ($5/tonne CO2, $25/tonne CO2, $50/tonne CO2)

Run analysis for 2 modes:

1. Fixed operation mode (This is the benchmarking base case which runs

at constant capture rate of 90%)

2. Flexible operation mode (variation in power plant load and carbon

capture rate)

Analysis for full year: Repeat analysis above for:

• A yearly operation,

• Based on 2011 and forecasted 2020 electricity prices and at

• Market driven carbon price.

3 Electricity price data: AEMO (Australian Energy Market’s Operator)



Control-Optimization:
Algorithm

ENTERPRISE LEVEL

PLANT LEVEL

Black line: CCideal

Red bar: CCactual
u
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u
7

Analysis for 24 hours:

30 min. time intervals; Fixed mode (90% 

capture rate) & Electricity price: 2011
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Control-Optimization:
Algorithm

Carbon Tax: $5/ tonne-CO2 Carbon Tax: $25/ tonne-CO2
Carbon Tax: $50/ tonne-CO2

PP load
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u3 = lean solvent flow 
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u7 = reboiler heat duty
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Advanced Control responses

Economic-Optimization responses

Analysis for 24 hours:

30 min. time intervals; Flexible mode (variable 

capture rate) & Electricity price: 2011



Control-Optimization:
Algorithm

Analysis for full year:

Electricity and carbon prices for 2011 and 2020

2011 

electricity 

and 

Carbon 

prices 

2020 

electricity 

and 

Carbon 

prices 



Control-Optimization:
Algorithm

2011

2020

Analysis for full year:

30 min. time intervals; Fixed mode (90% 

capture rate) & Electricity price: 2011 & 2020



Control-Optimization:
Algorithm

Analysis for full year:

30 min. time intervals; Flexible mode (variable 

capture rate) & Electricity price: 2011

2011

Power 

plant load

Capture 

rate

Lean 

solvent 

flowrate 

Steam 

flowrate



Control-Optimization:
Algorithm
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Control-Optimization:
Algorithm

20202011

Revenue breakdown for power plant retrofitted with PCC 

𝑁𝑒𝑡 𝑆𝑦𝑠𝑡𝑒𝑚 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝐴 − 𝐵 − 𝐶 − 𝐷
A = Revenue generated through selling of electricity B = Cost of CO2 emission (carbon price paid)

C = Power plant D = PCC operational costs 



Implementation for solar-assisted carbon capture
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Flexible Operation - Objective

RESEARCH OBJECTIVE is to optimize system revenue through flexible 

operation of power plant load and PCC process (carbon capture rate) for the 

following scenarios:

A. Power plant and PCC process only.

B. Power plant and PCC process with solar thermal energy used in PCC process 

C. Power plant and PCC process with solar thermal repowering of power plant 

D. Power plant and PCC process with solar thermal repowering of power plant (net 

load matched with historical power plant load)



Objective function

Constraints

• 25% < Capture rate < 90%

• 250MW < Power plant load < 700MW

Case Study

• 660MW black coal power plant near Sydney, Australia.

• Carbon tax assumed to be $25/tonne-CO2 and $50/tonne-CO2.
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Flexible Operation - Results

0 100 200 300 400 500 600 700
20

40

60

80

100

C
a

rb
o

n
 c

a
p

tu
u

re
 r

a
te

 (
%

) 

Case B

0 100 200 300 400 500 600 700
0

200

400

600

800

N
e

t 
e

le
c
tr

ic
it
y
 (

M
W

)

0 100 200 300 400 500 600 700
20

40

60

80

100

Time (Hour)

C
a

rb
o

n
 c

a
p

tu
u

re
 r

a
te

 (
%

) 

Case D

0 100 200 300 400 500 600 700

200

400

600

800

N
e

t 
e

le
c
tr

ic
it
y
 (

M
W

)

0 100 200 300 400 500 600 700
20

40

60

80

100

C
a

rb
o

n
 c

a
p

tu
u

re
 r

a
te

 (
%

) 

Case C
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Implementation for emissions trading schemes
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Australia’s Emissions Reductions Fund (ERF) Scheme:

› A voluntary scheme that aims to provide incentives to adopt new practices and 

technologies to reduce their emissions.

› Participants in the Scheme can earn Australian carbon credit units (ACCUs) for 

emissions reductions. One ACCU is earned for each tonne of carbon dioxide 

equivalent (tCO2-e) stored or avoided by a project. 

› ACCUs can be sold to generate income, either to the government through a 

carbon abatement contract, or in the secondary market.

Emission Reduction Fund (ERF)

Crediting Purchasing Safeguarding  

Control-Optimization Framework: 
implementation with the ERF



Application to Australia’s Emissions Reductions Fund (ERF)  Scheme

Control-Optimization Framework: 
implementation with the ERF
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Control-Optimization Framework: 

implementation with the ERF



Application to Australia’s Emissions Reductions Fund (ERF)  Scheme

Control-Optimization Framework: 
implementation with the ERF



Conclusions/Implications

36

1. Model-based control strategies are critical to the success of carbon 

capture processes operating in a “rough sea” of dynamic variability and 

uncertainties.

2. Proposed a temporal multiscalar decision support framework for 

flexible model-based operation of carbon capture plants targeting low-

carbon management of power plant emissions. 

3. Going beyond the human capability, this framework will enhance plant 

revenue and efficiency and reduce capture costs through flexible and 

well controlled operations, especially in response to power loads, 

disturbance, market and weather conditions.

4. Implications for policy: Demonstrated the implementation of the 

framework on the Australian ERF scheme.

5. Potential for use in carbon trading for nationally or globally networked 

carbon emissions trading schemes. E.g. EU/China.

6. Implication on capital cost: use for precise sizing of the capture plant.
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