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THE UNIVERSITY OF

SYDNEY Context: A domain of operational uncertainties

Coal-fired power plant retrofitted with an absorption-
based post combustion CO, capture process (PP-PCC)
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« 19.5 % net efficiency reduction due to PCC
* High capital cost

« Large scale integration issues

+ Flexibility in operation

Rajab Khalilpour and Ali Abbas, HEN optimization for efficient retrofitting of coal-fired power plants with post-combustion carbon capture. International Journal of Greenhouse Gas Control, 2011. 5(2): p. 189-199. 3
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THE UNIVERSITY OF
SYDNEY  Context: A domain of operational uncertainties

Policy uncertainties:

» Australia:
- Carbon tax legislation started in July 2012,
- scrapped July 2014, and

- currently we have the Emissions Reduction Fund
(ERF) proposed in 2015

» China: emissions trading scheme
» Internationally: Paris Meeting December 2015
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Flexible Operation

Integration of PCC into coal-fired power plant requires understanding
dynamic and flexible operations.

The PCC plant must respond flexibly to two significant scenarios:

1. Power plant operations at full and partial loads, and
2. Considering fluctuations in electricity and carbon prices.

The objective is to develop a model-
based strategy for operational

management of flexible amine-based Green house
post combustion CO2 (PCC) process. GaS CO ntrOI
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ReCAP from previous HiPerCAP
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Dynamic modelling

Model boundaries using NARX data-based modeli? , concentration at
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Control Approach

|dentified 2 key performance metrics:

1. Carbon capture efficiency,

2. Energy performance,
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Con

trol Approach

Management Decision Support
System

l

Economic-Optimization

l

PCC
Control
System

!

PCC Plant

1. Energy performance,

Control Objective
CO; capture, 85 % < CC < 95%

3.5<EP < 4.5 MJ/kg CO,

Y
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A 4
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Control Approach — Controllability Analysis

Controllability analysis on set point changes and rejection disturbances.
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Control Approach — Controllability Analysis

Control performance under process operational constraints
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Control-optimization framework
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Control-Optimization Approach
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Control-Optimization Algorithm

The optimization formulation is summarised as:

Objective function: Maximize Revenue(t, P, X;,X,,C)
S.L.

Process model: Q_reb (X1,X,), E_AuX (X1,X5)

Initial conditions: X,= CR!, x,= PPL!

Process variables bounds: CRyin, (20%) < X; < CRyax (90%)

PPLy, (250 MW) <X, < PPLy,, (700 MW)
Constraints:

h(Xy,X,) <0
Where;
X,= the capture rate (%) P. = electricity price
X, = the power plant load (MW Gross) C, = carbon price

Q_reb = Reboiler energy

E_Aux = Auxiliary energy

CR!, CR;, and CR,,,, = the initial, lower bound and upper bound carbon capture rates

PPL!, PPL,,, and PPL,,,, = the initial, minimum and maximum power plant loads

h = the process inequality constraints (net electricity output of the power plant does not exceed the historical
net load of the power plant at a particular time.)

16
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Control-Optimization Approach

R

Rev-PP

\
( \

Revenue = f P, x (Power plant net load — PCC penalty) = dt —

ev-PP:

Ct * COZ emitted dt — Ppp — PPCC

\ Y ) l l

A B C

Revenue generated through selling of electricity
Cost of CO2 emission

Power plant operating cost (PP-OPEX)

PCC operating cost (PCC-OPEX)
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Control-Optimization Algorithm

Analysis for 24 hrs: Simulate techno-economic scenarios for:

* A 24-hour operation,

« Based on 2011 electricity prices? and at

- Constant carbon prices ($5/tonne CO,, $25/tonne CO, $50/tonne CO,)

Run analysis for 2 modes:
1. Fixed operation mode (This is the benchmarking base case which runs
at constant capture rate of 90%)

2. Flexible operation mode (variation in power plant load and carbon
capture rate)

Analysis for full year: Repeat analysis above for:

« Avyearly operation,

« Based on 2011 and forecasted 2020 electricity prices and at
« Market driven carbon price.

3 Electricity price data: AEMO (Australian Energy Market's Operator)
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Control-Optimization:

Algorithm
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Control-Optimization:

SYDNEY Algorithm
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Control-Optimization:

Algorithm
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Revenue breakdown for power plant retrofitted with PCC
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Net System Revenue = A— B —C—D

A = Revenue generated through selling of electricity B = Cost of CO, emission (carbon price paid)
C = Power plant D = PCC operational costs
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Implementation for solar-assisted carbon capture
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Flexible Operation - Objective

RESEARCH OBJECTIVE is to optimize system revenue through flexible 4 PP + PCC flowshest models N

operation of power plant load and PCC process (carbon capture rate) for the

fOHOWIng Scenarios. Perform N simulation case studies

A. Power plant and PCC process only.

. . Response Surface Modelling
B. Power plant and PCC process with solar thermal energy used in PCC process

C. Power plant and PCC process with solar thermal repowering of power plant A technical nonlinear prediction of the PCC
process Q = f(X;), Aux = f(X;)

D. Power plant and PCC process with solar thermal repowering of power plant (net

load matched with historical power plant load) Input real time-based power plant
gross load(t), Weather(t) and

Electricity price(t)

Assuming capture rate, calculate captured
Power Plant Power Plant PCC CO,, efficiency and profits

[

Profits maximized?

J C&D

Fig. 4: Algorithm for
calculating capture rate

and net profits for Cases
A-C. Case D requires an
additional step for load
matching.

= Electricity

—p Heat

Configurations of power plant and PCC plant
with solar thermal energy input.
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Flexible Operation - Methodology

Objective function
’*DNI (W/mz) —— Electricity price ($/MWh) — Electricity load (MW)’
R
systen 10001 : \P‘\ ‘(\‘ ‘A p\\ m ﬂ i
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«  25% < Capture rate < 90%

profile for a black coal power plant near Sydney.

« 250MW < Power plant load < 700MW

Case Study
«  660MW black coal power plant near Sydney, Australia.
«  Carbon tax assumed to be $25/tonne-CO., and $50/tonne-CO.,,.
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Flexible Operation - Results
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Implementation for emissions trading schemes
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SYDNEY Control-Optimization Framework:

Implementation with the ERF

Australia’s Emissions Reductions Fund (ERF) Scheme:

» Avoluntary scheme that aims to provide incentives to adopt new practices and
technologies to reduce their emissions.

» Participants in the Scheme can earn Australian carbon credit units (ACCUSs) for
emissions reductions. One ACCU is earned for each tonne of carbon dioxide
equivalent (tCO2-e) stored or avoided by a project.

» ACCUs can be sold to generate income, either to the government through a
carbon abatement contract, or in the secondary market.

Emission Reduction Fund (ERF)

| |
Crediting Purchasing Safeqguarding




% THE UNIVERSITY OF _ = - . .
SYDNEY Control-Optimization Framework:

Implementation with the ERF

Application to Australia’s Emissions Reductions Fund (ERF) Scheme

Black coal-fired
A power generator

Environmental objective :
Incentive from emission abatement
(ERF project)

Economic objective :
Revenue from selling electricity

Operational constraint:

Environmental constraint:
Power plant load

CO, capture rate

Economic objective = f (A, Pgrr)
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Opportunity

Carbon policy, |, Management Decision Support
ERF " 2 i PP GA-MILP
i REGULATORY/POLICY
$ electricity >
$ carbon > Economic Optimization GA-MILP
PP load >
R | | ENTERPRISE_ |
PP Control PCC Control MPC
System System
PLANT
PP Plant PCC Plant NARX
INSTRUMENTATION
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Control-Optimization Framework:
implementation with the ERF
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Reducing uncertainties:

1. Prediction of carbon capture
profile and power plant net
load over times (operational)

2. Frediction of net operating
revenue over time (financial)

MIMLP algorithm: Maximize
plant net cperating revenue by
predicting & scheduling the
operation of PP-PCC plant

_ subject to z constraints:

Max (Revense) = [ Py« (Power plont st loed —

PCC penalry) » 2 « Pggy = Ppp = Ppop

1. Operational constraint
2. Environmental constraint

MPC algorithm: Predicting
_ the carbon capture profile
overtime

/




T Control-Optimization Framework:

Implementation with the ERF
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Application to Australia’s Emissions Reductions Fund (ERF) Scheme
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Conclusions/Implications

1. Model-based control strategies are critical to the success of carbon
capture processes operating in a “rough sea” of dynamic variability and
uncertainties.

2. Proposed atemporal multiscalar decision support framework for
flexible model-based operation of carbon capture plants targeting low-
carbon management of power plant emissions.

3. Going beyond the human capalbility, this framework will enhance plant
revenue and efficiency and reduce capture costs through flexible and
well controlled operations, especially in response to power loads,
disturbance, market and weather conditions.

4. Implications for policy: Demonstrated the implementation of the
framework on the Australian ERF scheme.

5. Potential for use in carbon trading for nationally or globally networked
carbon emissions trading schemes. E.g. EU/China.

6. Implication on capital cost: use for precise sizing of the capture plant.
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