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Preface

There are many books that describe mathematical models for flow in porous
media and present numerical methods that can be used to discretize and solve
the corresponding systems of partial differential equations; a comprehensive
list can be found in the bibliography. However, neither of these books fully
describe how you should implement these models and numerical methods to
form a robust and efficient simulator. Some books may present algorithms and
data structures, but most leave it up to you to figure out all the nitty-gritty
details you need to get your implementation up and running. Likewise, you
may read papers that present models or computational methods that may be
exactly what you need for your work. After the first enthusiasm, however, you
very often end up quite disappointed, or at least, I do when I realize that
the authors have not presented all the details of their model, or that it will
probably take me months to get my own implementation working.

In this book, I try to be a bit different and give a reasonably self-contained
introduction to the simulation of flow and transport in porous media that
also discusses how to implement the models and algorithms in a robust and
efficient manner. In the presentation, I have tried to let the discussion of
models and numerical methods go hand in hand with numerical examples
that come fully equipped with codes and data, so that you can rerun and
reproduce the results by yourself and use them as a starting point for your
own research and experiments. All examples in the book are based on the
Matlab Reservoir Simulation Toolbox (MRST), which has been developed
by my group and published online as free open-source code under the GNU
General Public License since 2009.

The book can alternatively be seen as a comprehensive user-guide to
MRST. Over the years, MRST has become surprisingly popular (the lat-
est releases typically have from a thousand to fifteen hundred unique down-
loads each) and has expanded rapidly with new features. Unfortunately, the
manuscript has not been able to keep pace. The current version is up-to-date
with respect to the latest development in data structures and syntax, but
only includes material on single-phase flow, some workflow tools like upscal-
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2 Preface

ing and flow diagnostics, and a basic introduction to multiphase flow. However,
more material is being added whenever I have time or inspiration, and the
manuscript will hopefully be expanded to cover simulation of multiphase flow
and examples of more realistic simulations in the not too distant future.

I would like to thank my current and former colleagues at SINTEF
with whom I have collaborated over many year to develop MRST; primar-
ily B̊ard Skaflestad, Halvor Møll Nilsen, Jostein R. Natvig, Odd Andersen,
Olav Møyner, Stein Krogstad, and Xavier Raynaud. The chapter on flow di-
agnostics is the result of many discussions with Brad Mallison from Chevron.
I am also grateful to the University of Bergen and the Norwegian Univer-
sity of Science and Technology for funding through my Professor II positions.
Victor Calo and Yalchin Efendiev invited me to KAUST, where important
parts of the chapters on grids and petrophysics were written. Likewise, Mar-
got Gerritsen invited me to Stanford and gave me the opportunity to develop
Jolts videos that complement the material in the book. Last, but not least,
I would like to thank colleagues and students who have given suggestions,
pointed out errors and misprints, and given me inspiration to continue work-
ing. Even though your name is not mentioned here, I have not forgotten all
your important contributions.

Finally to the reader: I hereby grant you permission to use the manuscript
and the accompanying example scripts for your own educational purpose, but
please do not reuse or redistribute this material as a whole, or in parts, without
explicit permission. Moreover, notice that the current manuscript is a snapshot
of work in progress and is far from complete. Every now and then you may
encounter some text that has been marked in dark red color to indicate that
it needs editing. The text may also contain a number of misprints and errors,
and I would be grateful if you help to improve the manuscript by sending me
an email. Suggestions for other improvement are also much welcome.

Oslo, Knut-Andreas Lie
December 16, 2015 Knut-Andreas.Lie@sintef.no
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1

Introduction

Modelling of flow processes in the subsurface is important for many applica-
tions. In fact, subsurface flow phenomena cover some of the most important
technological challenges of our time. The road toward sustainable use and
management of the earth’s groundwater reserves necessarily involves mod-
elling of groundwater hydrological systems. In particular, modelling is used
to acquire general knowledge of groundwater basins, quantify limits of sus-
tainable use, monitor transport of pollutants in the subsurface, and appraise
schemes for groundwater remediation.

A perhaps equally important problem is how to reduce emission of green-
house gases, such as CO2, into the atmosphere. Carbon sequestration in
porous media has been suggested as a possible means. The primary concern
related to storage of CO2 in subsurface rock formations is how fast the stored
CO2 will escape back to the atmosphere. Repositories do not need to store
CO2 forever, just long enough to allow the natural carbon cycle to reduce the
atmospheric CO2 to near pre-industrial level. Nevertheless, making a quali-
fied estimate of the leakage rates from potential CO2 storage facilities is a
nontrivial task, and demands interdisciplinary research and software based on
state-of-the-art numerical methods for modelling subsurface flow. Other ques-
tions of concern is whether the stored CO2 will leak into fresh-water aquifers
or migrate to habitated or different legislative areas.

A third challenge is petroleum production. The civilized world will very
likely continue to depend on the utilization of petroleum resources both as an
energy carrier and as a raw material for consumer products in the foreseeable
future. In recent years, conventional petroleum production has declined and
the rate of new major discoveries has been significantly reduced: Optimal
utilization of current fields and new discoveries is therefore of utter importance
to meet the demands for petroleum and lessen the pressure on exploration in
vulnerable areas like in the arctic regions. Likewise, there is a strong need to
understand how unconventional petroleum resources can be produced in an
economic way that minimizes the harm to the environment.
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4 1 Introduction

Reliable computer modeling of subsurface flow is much needed to overcome
these three challenges, but is also needed to exploit deep geothermal energy,
ensure safe storage of nuclear waster, improve remediation technologies to
remove contaminants from the subsurface, etc. Indeed, the need for tools that
help us understand flow processes in the subsurface is probably greater than
ever, and increasing. More than fifty years of prior research in this area has
led to some degree of agreement in terms of how subsurface flow processes
can be modelled adequately with numerical simulation technology. Herein, we
will mainly focus on modelling flow in oil and gas reservoirs, which is often
referred to as reservoir simulation. However, the general modelling framework
and the numerical methods that are discussed also apply to modelling other
types of flow in consolidated and saturated porous media.

In the book, we will introduce and discuss basic physical properties and
mathematical models that are used to represent porous rocks and describe
flow processes on a macroscopic scale. The presentation will focus primarily
on physical processes that take place during hydrocarbon production. What
this means is that even though the mathematical models, numerical methods,
and software implementations presented can be applied to any of the appli-
cations outlined above, the specific examples use vocabulary, physical scales,
and balances of driving forces that are specific to petroleum production. As
an example of vocabulary, we can consider the ability of a porous medium
to transmit fluids. In petroleum engineer this is typically given in terms of
the ’permeability’, which is a pure rock property, whereas one in water re-
source engineering is more concerned with the ’hydraulic conductivity’ that
also takes the viscosity and density of the fluid into account; in CO2 seques-
tration you can see both quantities used. As an example of physical scales,
let us compare oil production by water flooding and the question of long-
term geological storage of CO2. The hydrocarbons that make up petroleum
resources can only accumulate when their natural upward movement relative
to water is prevented by confinements in the overlying rocks, and hence the
fluid flow in a petroleum reservoir takes place in a relatively closed system.
Hydrocarbons will typically be produced for tens of years, during which the
main driving mechanism is viscous forces induced by the pressure difference
between the points where water is injected and oil is produced, which cause
water to displace oil over distances of hundred to thousands of meters. Huge
aquifer systems that stretch out for hundreds of kilometers are currently the
most promising candidates for large-scale geological storage. During the in-
jection phase, the flow processes of CO2 storage are almost identical to those
of petroleum production, albeit the operational constraints may differ, but as
the CO2 moves into the aquifer and the effects of the injection pressure ceases,
the fluid movement will be dominated by buoyant forces that will cause the
lighter CO2 phase to migrate upward in the open aquifer system, and poten-
tially continue to do so for thousands of years. In both cases, the governing
equations of the basic flow physics are the same, but the balances between
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1.1 Petroleum production 5

physical forces are different, which should be accounted for when formulating
the overall mathematical models and appropriate numerical methods.

Techniques developed to study subsurface flow are also applicable to other
natural and man-made porous media such as soils, biological tissues and
plants, filters, fuel cells, concrete, textiles, polymer composites, etc. A par-
ticular interesting example is in-tissue drug delivery, where the challenge is to
minimize the volume swept by the injected fluid. This is the complete oppo-
site of the challenge in petroleum production, in which one seeks to maximize
the volumetric sweep of the injected fluid to push as much petroleum out as
possible.

1.1 Petroleum production

To provide context for the discussion that will follow later in the book, we will
briefly outline the various ways by which hydrocarbon can be produced from
a subsurface reservoir. Good reservoir rocks have large void spaces between
the mineral grains forming networks of connected pores that can store and
transmit large amounts of fluids. Conceptually, one can think of a hydrocarbon
reservoir as a bent, rigid sponge that is confined inside an insulating material
and has all its pores filled with hydrocarbons that may appear in the form of
oil or gas as illustrated in Figure 1.1. Natural gas will be dissolved in oil under
high pressure like carbon-dioxide inside a soda can. If the pressure inside the
pristine reservoir is below the bubble point, the oil is undersaturated and still
able to dissolve more gas. If the pressure is above the bubble point, the oil
will be fully saturated with gas and any excess gas will form a gas cap on top
of the oil since it is lighter. To extract oil from the reservoir, one drills a well
into the oil zone. The pristine pressure inside the reservoir may be sufficient
to push hydrocarbons up to the surface. Alternatively, one may have to pump
to lower the pressure beyond the point where oil starts flowing. How large the
pressure differential needs to be for oil to flow will depend on the permeability
of the rock; the higher the permeability is, the easier the hydrocarbons will
flow towards the well.

As oil is extracted, the pressure inside the reservoir will decay and the pro-
duction will gradually decline. However, declining pressure will often induce
physical processes that contribute to maintain the production:

� In a water drive, the pore space below the hydrocarbons is filled with
salt water that is slightly compressible, and hence will expand a little
as the reservoir pressure is lowered. If the total water volume is large
compared with the oil zone, even a small expansion will create significant
water volumes that will push oil towards the well and hence contribute to
maintain pressure. Sometimes the water is part of a large aquifer system
that has a natural influx that replenishes the extracted oil by water and
maintains pressure.
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Gas

Oil

Aquifer
w/brine

Caprock

Fig. 1.1. Conceptual illustration of a petroleum reservoir during primary produc-
tion. Over millions of years, hydrocarbons have accumulated under a caprock that
has low ability to transmit fluids and therefore prevents their upward movement.
Inside the trap, the fluids will be distributed according to density, with light gas on
top, oil in the middle, and brine at the bottom. If the difference in pressure between
the oil zone and the well is sufficiently high, the oil will flow naturally out of the
reservoir. As oil is produced, the pressure inside the reservoir will decline, which
in turn may introduce other mechanisms that contribute to maintain pressure and
push more oil out of the well.

� Solution gas drive works like when you shake and open a soda can. Initially,
the pristine oil will be in a pure liquid state and contain no free gas. The
extraction of fluids will gradually lower the reservoir pressure below the
bubble point, which causes free gas to develop and form expanding gas
bubbles that force oil into the well. Inside the well, the gas bubble rise
with the oil and make the combined fluid lighter and hence easier to push
upward to the surface. At a certain point, however, the bubbles may reach
a critical volume fraction and start to flow as a single gas phase that has
lower viscosity than the oil and hence moves faster. This rapidly depletes
the energy stored inside the reservoir and causes the production to falter.
Gas coming out of solution can also migrate to the top of the structure
and form a gas cap above the oil that pushes down on the liquid oil and
hence contributes to maintain pressure.

� In a gas cap drive, the reservoir contains more gas than what can be
dissolved in the oil. When pressure is lowered the gas cap expands and
pushes oil into the well. Over time, the gas cap will gradually infiltrate the
oil and cause the well to produce increasing amounts of gas.

� If a reservoir is highly permeable, gravity will force oil to move downward
relative to gas and upward relative to water. This is called gravity drive.

� In a combination drive there is water below the oil zone and a gas cap
above that both will push oil to the well at the same time as the reservoir
pressure is reduced.
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Fig. 1.2. Conceptual illustration of voidage replacement, which is an example of
a secondary production strategy in which gas and/or water is injected to maintain
the reservoir pressure.

These natural (or primary) drive mechanisms will only be able to maintain the
pressure for a limited period and the production will gradually falter as the
reservoir pressure declines. How fast the pressure declines and how much oil
one can extract before the production ceases, varies with the drive mechanism.
Solution gas drives can have a relatively rapid decline, whereas water and gas
cap drives are able to maintain production for longer periods. Normally only
30% of the oil can be extracted using primary drive mechanisms.

To keep up the production and increase the recovery factor, most reser-
voirs will use some kind of engineered drive mechanisms. Figure 1.2 illustrates
two examples of voidage replacement in which water and/or gas is injected
to support pressure in the reservoir. Water can also be injected to sweep the
reservoir, displace the oil, and push it towards the wells. In some cases, one
may choose to inject produced formation water that is contaminated with hy-
drocarbons and solid particles and hence must be disposed of in some manner.
Alternatively, or one can extract formation water from a nearby aquifer. In
offshore production it is also common to inject seawater. A common problem
for all waterflooding methods is to maximize the sweep efficiency so that wa-
ter does not move rapidly through high-flow zones in the reservoir and leaves
behind large volumes of unswept, mobile oil. Maintaining good sweep effi-
ciency is particularly challenging for reservoirs containing high-viscosity oil.
If injected water has low viscosity, it will tend to form viscous fingers that
rapidly expand through the oil and cause early water breakthrough in the
production wells. (Think of water being poured into a cup of honey). To im-
prove the sweep efficiency, one can add polymers to the water to increase its
viscosity and improve the mobility ratio between the injected and displaced
fluid. Polymers have also been used to create flow diversions by plugging high-
flow zones so that the injected fluid contacts and displaces more oil. For heavy
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8 1 Introduction

oils, adverse mobility ratios can be improved by using steam injection or some
other thermal method to heat the oil to reduce its viscosity.

Water flooding, polymer injection, and steam injection are all examples
of methods for so-called enhanced oil recovery (EOR). Another example is
miscible and chemical injection, where one uses a solvent or surfactant that
mixes with the oil in the reservoir to make it flow more readily. The solvent
may be a gas such as carbon dioxide or nitrogen. However, the most common
approach is to inject natural gas produced from the reservoir when there is
no market that will accept the gas. Surfactants are similar to detergents used
for laundry. Alkaline or caustic solutions, for instance, can react with organic
acids occuring naturally in the reservoir to produce soap. The effect of all
these substances is that they reduce the interfacial tension between water and
oil, which enables small droplets of oil that were previously immobile to flow
(more) freely. This is the same type of process that takes place when you use
detergent to remove vaxy and greasy stains from textiles. A limiting factor
of these methods is that the chemicals are quickly adsorbed and lost into the
reservoir rock

Often, one will want to combine methods that improve the sweep efficiency
of mobile oil with methods the mobilize immobile oil. Miscible gas injection,
for instance, can be used after a waterflood to flush out residually trapped
oil and establish new pathways to the production wells. Water-alternating-
gas (WAG) is the most successful and widely used EOR method. Injecting
large volumes of gas is expensive, and by injecting alternating slugs of water,
one reduces the injected volume of gas required to maintain pressure. Sim-
ilarly, presence of mobile water reduces the tendency of the injected gas to
finger through the less mobile oil. In polymer flooding, it is common to add
surfactants to mobilize immobile oil by reducing or removing the interface
tension between oil and water, and likewise, add alkaline solutions to reduce
the adsorption of chemicals onto the rock faces.

While the mechanisms of all the above methods for enhanced oil recovery
are reasonably well studied and understood, there are other methods whose
mechanisms are much debated. This includes injection of low-salinity water,
which is not well understood even though it has proved to be highly effective in
certain cases. Another example is microbial enhanced oil recovery which relies
on microbes that digest long hydrocarbon molecules to form biosurfactants or
emit carbon dioxide that will reduce interfacial tension and mobilize immobile
oil. Microbial activity can either by achieved by injecting bacterial cultures
mixed with a food source, or by injecting nutrients that will activate microbes
that already reside in the reservoir.

Use of secondary recovery mechanisms has been highly successful. On the
Norwegian Continental Shelf, for instance, the average recovery factor is now
almost 50%, which can be attributed mainly to water flooding and miscible
gas injection. In other parts of the world, chemical methods have proved to be
very efficient for onshore reservoirs having relatively short distances between
wells. For offshore fields, however, the potential benefits of using chemical
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1.2 Reservoir simulation 9

methods are much debated. First of all, it is not obvious that such methods
will be effective for reservoirs characterized by large inter-well distances as
rapid adsorption onto the pore walls generally makes it difficult to transport
the active ingredients long distances into a reservoir. Chemicals are also costly,
need to be transported in large quantities, and may consume space on the
platforms.

Even small improvements in recovery rates can lead to huge economic
benefits for the owners of a petroleum asset and for this reason much research
and engineering work is devoted to improve the understanding of mobilization
and displacement mechanisms and to design improved methods for primary
and enhanced oil recovery. Mathematical modeling and numerical reservoir
simulation play key roles in this endeavor.

1.2 Reservoir simulation

Reservoir simulation is the means by which we use a numerical model of the
petrophysical characteristics of a hydrocarbon reservoir to analyze and predict
fluid behavior in the reservoir over time. Simulation of petroleum reservoirs
started in the mid 1950’s and has become an important tool for qualitative
and quantitative prediction of the flow of fluid phases. Reservoir simulation is
a complement to field observations, pilot field and laboratory tests, well test-
ing and analytical models and is used to estimate production characteristics,
calibrate reservoir parameters, visualize reservoir flow patterns, etc. The main
purpose of simulation is to provide an information database that can help oil
companies position and manage wells and well trajectories to maximize recov-
ery of oil and gas. Generally, the value of simulation studies depends on what
kind of extra monetary or other profit they will lead to, e.g., by increasing the
recovery from a given reservoir. However, even though reservoir simulation
can be an invaluable tool to enhance oil-recovery, the demand for simulation
studies depends on many factors. For instance, petroleum discoveries vary in
size from small pockets of hydrocarbon that may be buried just a few meters
beneath the surface of the earth and can easily be produced, to huge reser-
voirs1 stretching out several square kilometers beneath remote and stormy
seas, for which extensive simulation studies are inevitable to avoid making
suboptimal and costly decisions.

To describe the subsurface flow processes mathematically, two types of
models are needed. First, one needs a mathematical model that describes how
fluids flow in a porous medium. These models are typically given as a set of
partial differential equations describing the mass-conservation of fluid phases,
accompanied by a suitable set of constitutive relations that describe the re-
lationship among different physical quantities. Second, one needs a geological

1 The largest reservoir in the world is found in Ghawar in the Saudi Arabian desert
and is approximately 230 km long, 30 km wide, and 90 m thick.
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10 1 Introduction

model that describes the given porous rock formation (the reservoir). The
geological model is realized as a grid populated with petrophysical properties
that are used as input to the flow model, and together they make up the
reservoir simulation model.

Unfortunately, obtaining an accurate prediction of reservoir flow scenarios
is a difficult task. One reason is that we can never get a complete and accurate
characterization of the rock parameters that influence the flow pattern. Even
if we did, we would not be able to run simulations that exploit all available
information, since this would require a tremendous amount of computer re-
sources that far exceed the capabilities of modern multi-processor computers.
On the other hand, we do not need, nor do we seek a simultaneous description
of the flow scenario on all scales down to the pore scale. For reservoir man-
agement it is usually sufficient to describe the general trends in the reservoir
flow pattern.

In the early days of the computer, reservoir simulation models were built
from two-dimensional slices with 102–103 Cartesian grid cells representing the
whole reservoir. In contrast, contemporary reservoir characterization methods
can model the porous rock formations by the means of grid-blocks down to
the meter scale. This gives three-dimensional models consisting of millions of
cells. Stratigraphic grid models, based on extrusion of 2D areal grids to form
volumetric descriptions, have been popular for many years and are the current
industry standard. However, more complex methods based on unstructured
grids are gaining in popularity.

Despite an astonishing increase in computer power, and intensive research
on computation techniques, commercial reservoir simulators can seldom run
simulations directly on geological grid models. Instead, coarse grid models
with grid-blocks that are typically ten to hundred times larger are built using
some kind of upscaling of the geophysical parameters. How one should perform
this upscaling is not trivial. In fact, upscaling has been, and probably still is,
one of the most active research areas in the oil industry. This effort reflects
the general opinion that with the ever increasing size and complexity of the
geological reservoir models one cannot generally expect to run simulations
directly on geological models in the foreseeable future.

Along with the development of better computers, new and more robust
upscaling techniques, and more detailed reservoir characterizations, there has
also been an equally significant development in the area of numerical methods.
State-of-the-art simulators employ numerical methods that can take advan-
tage of multiple processors, distributed memory workstations, adaptive grid
refinement strategies, and iterative techniques with linear complexity. For the
simulation, there exists a wide variety of different numerical schemes that all
have their pros and cons. With all these techniques available we see a trend
where methods are being tuned to a special set of applications and mathe-
matical models, as opposed to traditional methods that were developed for a
large class of differential equations.
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1.3 Outline of the book

The book is intended to serve several purposes. First of all, you can use the
book as a self-contained introduction to the basic theory of flow in porous
media and the numerical methods used to solve the underlying differential
equations. Hopefully, the book will also give you a hands-on introduction to
practical modeling of flow in porous media, focusing in particular on models
and problems that are relevant to the petroleum industry. The discussion
of mathematical models and numerical methods is accompanied by a large
number of illustrative examples, ranging from idealized and highly simplified
examples to cases involving models of real-life reservoirs.

All examples in the book have been created using the MATLAB Reservoir
Simulation Toolbox (MRST), which we will discuss in more detail in Chap-
ter 2. MRST is an open-source software that can either be used as a set of
gray-box reservoir simulators and workflow tools you can modify to suit your
own purposes, or as a collection of flexible and efficient software libraries and
data structures you can use to design your own simulators or computational
workflows. The use of MRST permeates more traditional textbook material,
and the book can therefore be seen as a user guide to MRST, or alternatively
as a discussion, in terms of a large number of detailed examples, of how a
scripting language like MATLAB can for be used for rapid prototyping, test-
ing, and verification on realistic problems with a high degree of complexity.
Through the many examples, we also try to gradually teach you some of the
techniques and programming concepts that have been used to create MRST,
which you can use to ensure flexibility and high efficiency in your own pro-
grams.

The first part of the book discusses how to represent a geological medium
as a discrete model that can subsequently be used to study the flow of one or
more fluid phases. The resulting volumetric grid, in which each cell is equipped
with a set of petrophysical properties, is used as input to the mathematical
models that describe the macroscopic physics of one or more fluid phases
flowing through the microscopic network of pores and throats between mineral
grains in the porous rock. As part of this discussion, you will be introduced to
the data structures for unstructured grids and petrophysical. Understanding
these data structures is fundamental if you want to use MRST to create your
own computational methods or understand the inner workings of a majority of
the routines implemented in the software. Through the many examples, you
will also be introduced to various functionality in MRST for plotting data
associated with cells and faces (interface between two neighboring cells).

In the second part of the book, we discuss the special case of incompress-
ible fluids flowing in a completely rigid medium. We start by considering
the single-phase case, for which the pressure distribution can be modeled
by a Poisson-type partial differential equation (PDE) with a varying coeffi-
cient that describes the interaction between the rigid rock and the flowing
fluid. To form a full model, this second-order, elliptic PDE must be equipped
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with extra equations describing the external forces that drive the fluid flow;
these can either be boundary conditions and/or wells that inject or produce
fluids. To better understand the complex flow patterns that arise even for
steady-state flow, the basic model can be extended to include equations for
non-physical quantities like time-of-flight, which defines natural time lines in
the porous medium, and steady-state distribution of numerical tracers, which
can be used to determine communication patterns and delineate the reservoir
into sub-regions that can be uniquely associated with distinct parts of the in-
flow/outflow boundaries. To discretize the mathematical models, we introduce
a classical two-point finite-volume method, which is the current industry stan-
dard. Although the mathematical model and the numerical discretizations are
quite simple, computing accurate solutions can be quite challenging. Primarily
this can be attributed to the strongly heterogeneous structure of the porous
rocks, which introduces a multiscale structure in the elliptic equation so that
the variable coefficient spans many orders of magnitude and has a wide spec-
trum of spatial correlation lengths. A second challenge comes from the grids
that are used to describe real reservoirs, which typically have an unstructured
topology with irregular cells with high aspect ratios. To improve the spatial
discretization, we introduce and discuss a few recent methods for consistent
discretization on general polyhedral grids that are still being researched by
academia. We also describe upscaling methods that can be used to develop
reduced models by coarsening the grid and computing new effective proper-
ties on a coarser scale. We end the second part of the book by discussing how
the multiphase effects can be incorporated into the incompressible models us-
ing the so-called fractional-flow formulation and simulated using sequential
methods in which pressure effects and transport of fluid saturations and/or
component concentrations are computed in separate steps.

The third part of the book is devoted to compressible, transient flow. We
start by discussing compressible single-phase flow, which in the general case is
modelled by a nonlinear, time-dependent, parabolic PDE. Using this relatively
simple model, we introduce many of the concepts that will later be used to de-
velop multiphase simulators of full industry-standard complexity. To discretize
the single-phase equation, we combine the two-point method introduced for
incompressible flow with an implicit temporal discretization. The standard
approach for solving the nonlinear system of discrete equations arising from
complex multiphase models is to compute the Jacobian matrix of first deriva-
tives for the nonlinear system and use Newton’s method to successively find
a better approximations to the solution. Deriving and implementing analytic
expressions for Jacobian matrices is both error-prone and time-consuming, in
particular if the flow equations contain complex fluid model, well descriptions,
thermodynamical behavior, etc.

In MRST, we have chosen to construct Jacobian matrices using automatic
differentiation, which is a technique to numerically evaluate the derivatives
of functions specified by a computer program to working precision accuracy.
Combining automatic differentiation with discrete averaging and differential
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operators enables you to write very compact simulator codes in which the
flow models are implemented almost in the same form as they are written in
the corresponding mathematical equations. This opens up for a simple way of
writing new simulators: all the use has to do is to implement the new model
equations in residual form and specify which variables should be used in the
linearization of the resulting nonlinear system, and then the software com-
putes the corresponding derivatives and assemble them into a correct block
matrix. To demonstrate the utility and power the resulting framework, we
show how one can quickly change functional dependencies in the single-phase
pressure solver and extend it to include thermal and non-Newtonian fluid ef-
fects. Once this is done, we move on to discuss more advanced multiphase
flow models, focusing primarily on the black-oil formulation and extensions
thereof for enhanced oil recovery that can be found in contemporary commer-
cial simulators.

In the introductory examples in the book, we present and discuss in detail
the code lines necessary to produce the numerical results and figures pre-
sented. We have tried to make these examples as self-contained as possible,
but sometimes we omit minor details that either have been discussed else-
where or should be part of your basic MATLAB repertoire. As we move to
more complex examples, in particular for multiphase flow, it is no longer ex-
pedient to discuss MATLAB scripts in full details. In most cases, however,
complete scripts that contain all code lines necessary to run the examples
can be found in a dedicated book module that is part MRST. We strongly
encourage you to use your own computer to run the examples in the book
and other examples and tutorials that are distributed with the software. Your
understanding will be further enhanced if you also modify the examples, e.g.,
by changing the input parameters, or extend them to solve problems that are
related, but (slightly) different. MRST is an open-source software, and if read-
ing this book gives you ideas about new functionality, or you discover things
that are not working as they should or could, you are welcome to contribute
to improve the toolbox and extend it in new directions.
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2

The MATLAB Reservoir Simulation Toolbox

Practical computer modeling of porous media constitutes an important part
of the book and is presented through a series of examples that are intermin-
gled with more traditional textbook material. All examples discussed in the
book rely on the MATLAB Reservoir Simulation Toolbox (MRST), which
is an open-source software that can be used for any purpose under the GNU
General Public License (GPLv3). The basic part of MRST contains a compre-
hensive set of data structures and routines for representing and manipulating
the primary input parameters that make up a simulation model of a porous
medium: grids representing geometry of the porous domain, petrophysical rock
properties, properties, and forcing terms such as gravity, boundary conditions,
source terms, and well models. In addition, there are routines for reading and
processing input files and plotting quantities defined over cells and cell inter-
faces, as well as functionality for automatic differentiation. On top of this,
MRST provides a set of add-on modules that supply a wide range of dis-
cretizations, solvers, simulators, and workflow tools that can be combined to
perform various tasks in reservoir modeling. By carefully documenting and
releasing this software as free, open source, we hope to contribute to give a
head start to students about to embark on a master or PhD project, as well
as to researchers working on similar problems.

This chapter will provide you with a brief overview of MRST and the
philosophy underlying its design. We show you how to obtain and install
the software and explain its terms of use, as well as how we recommend
that you use the software as a companion to the textbook. We also briefly
discuss how you can use a scripted, numerical programming environment like
MATLAB to increase the productivity of your experimental programming
and give a few examples of tricks and ways of working with MATLAB that
we have found particularly useful. We end the chapter by introducing you to
automatic differentiation, which is one of the key aspects that make MRST
a powerful tool for rapid prototyping and enable us to write compact and
quite self-explanatory codes that are well suited for pedagogical purposes.
As a complement to the material presented in this chapter, you should also
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consult the first section [113] of the just-in-time online learning tools (Jolts)
developed in collaboration with Stanford University. This Jolt gives a brief
overview of the software, tells you why and how it was created, and shows you
how to download and install it on your computer. If you are not interested
in programming at all, you can jump directly to Chapter 3. However, if you
choose to not work with the software alongside the textbook material, be
warned, you might miss a lot of valuable insight.

Before we dive into more details about the MATLAB Reservoir Simulation
Toolbox, we present a simple example that will give you a first a taste of
simulating flow in porous media and a feel of the software

2.1 The first encounter with MRST

The purpose of this first example is to show the basic steps for setting up, solv-
ing, and visualizing a simple flow problem using MRST. To this end, we will
compute a known analytical solution: the linear pressure solution describing
hydrostatic equilibrium for an incompressible, single-phase fluid. The basic
model in subsurface flow consists of an equation expressing conservation of
mass and a constitutive relation called Darcy’s law that relates the volumetric
flow rate to the gradient of flow potential

∇ · ~v = 0, ~v = −K
µ

[
∇p+ ρg∇z

]
, (2.1)

where the unknowns are the pressure p and the flow velocity ~v. By eliminating
~v, we can reduce (2.1) to the elliptic Poisson equation. In (2.1), the rock is
characterized by the permeability K that gives the rock’s ability to transmit
fluid. Here, K is set to 100 millidarcy (mD). The fluid has a density ρ of 1000
kg/m3 and viscosity µ equal one centipoise (cP), g is the gravity constant,
and z is the depth. More details on these flow equations, the rock and fluid
parameters, the computational method, and its MATLAB implementation
will be given throughout the book.

The computational domain is a square column, [0, 1] × [0, 1] × [0, 30] m3,
which we discretize using a regular 1× 1× 30 Cartesian grid. The simulation
model is set up by constructing a grid and assigning the rock permeability,
and setting boundary conditions:

gravity reset on

G = cartGrid([1, 1, 30], [1, 1, 30]*meterˆ3);
G = computeGeometry(G);
rock.perm = repmat(0.1*darcy(), [G.cells.num, 1]);

MRST works in SI units and we must therefore be careful to specify the
correct units for all physical quantities. To solve (2.1), we will use a standard
two-point finite-volume scheme, that relates the flux between cells to their
pressure difference, vij = −Tij(pi − pj). For Cartesian grids, this scheme
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coincides with the classical seven-point scheme for Poisson’s problem and is
the only discretization that is available in the basic parts of MRST. More
advanced discretizations can be found in the add-on modules. To define the
two-point discretization, we compute therefore compute the transmissibilities
Tij , which can be defined independent of the particular flow model once we
have defined the grid and petrophysical parameters:

T = computeTrans(G, rock);

Since we are solving (2.1) on a finite domain, we must also describe conditions
on all boundaries. To this end, we prescribe p = 100 bar at the top of the
column and no-flow conditions (~v · n = 0) elsewhere:

bc = pside([], G, 'TOP', 100.*barsa());

The next thing we need to define is the fluid properties. Unlike grids, petro-
physical data, and boundary conditions, data structures for representing fluid
properties are not part of the basic functionality of MRST. The reason is that
the way fluid properties are specified is tightly coupled with the mathematical
and numerical formulation of the flow equations, and may differ a lot between
different types of simulators. Here, we have assumed incompressible flow and
can therefore use fluid models from the incomp add-on module,

mrstModule add incomp;
fluid = initSingleFluid('mu' , 1*centi*poise, ...

'rho' , 1014*kilogram/meterˆ3);

As a final step, we use the transmissibilities, the fluid object, and the boundary
conditions to assemble and solve the discrete system:

sol = incompTPFA(initResSol(G, 0.0), G, T, fluid,'bc', bc);

Having computed the solution, we plot the pressure given in units ’bar’, which
equals 0.1 mPa and is referred to as ’barsa’ in MRST since ’bar’ is a built-in
command in MATLAB:

plotFaces(G, 1:G.faces.num, convertTo(sol.facePressure, barsa()));
set(gca, 'ZDir', ' reverse ' ), title('Pressure [bar] ' )
view(3), colorbar, set(gca,'DataAspect',[1 1 10])

From the plot shown in Figure 2.1, we see that our solution correctly repro-
duces the linear pressure increase with depth one would expect to find inside
a column consisting of a single fluid phase.

2.2 Downloading and installing the software

The main parts of MRST are hosted as a collection of private software reposi-
tories on Bitbucket. Public releases are provided as self-contained archive files
that can be downloaded from the webpage:
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Fig. 2.1. Hydrostatic pressure distribution in a gravity column computed by MRST.
This is example is taken from the MRST tutorial gravityColumn.m

http://www.sintef.no/MRST/

Assuming that you have downloaded the tarball of one of the recent releases,
here we will use MRST R2015a as an example, issuing the following command

untar mrst−2015a.tar.gz

in MATLAB will create a new directory mrst−2015a in you current working
director that contains all parts of the software. Once MRST has been ex-
tracted to some directory, which we henceforth will refer to as the MRST root
directory, you must navigate MATLAB there, either using the built-in file
browser, or by using the cd command. Assuming that the files were extracted
to the home directory, this would amount to the following on Linux/Mac OS,

cd /home/username/mrst−2015a/ % on Linux/Mac OS
cd C:\Users\username\mrst−2015a\ % on Windows

Once you are in the directory that contains the software, you need to run the
following command to activate it

startup;

The whole procedure of downloading and installing MRST, step by step, can
be seen in the first MRST Jolt [113].

At this point, a word of caution is probably in order. Throughout the
book, we will refer to the software as a toolbox. By this we mean that MRST
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is a collection of data structures and routines that can be used alongside with
MATLAB. It is, however, not a toolbox in the same sense as those that can
be purchased from the official vendors of MATLAB. This means, for instance,
that MRST is not automatically loaded unless you start MATLAB from the
MRST root directory, or make this directory your standing directory and
manually issue the startup command. Alternatively, if do not want to navigate
to the MRST root directory, for instance in an automated script, you can call
startup directly

run /home/username/mrst−2015b/startup

To verify that MRST is active, you can run the simple example discussed in
the previous section by writing gravityColumn. This should produce the same
plot as shown in Figure 2.1.

The minimal requirement is MATLAB version 7.4 (R2007a). However,
certain parts of the software use features that were not present in R2007a:

� The functionality for automatic differentiation uses new-style classes (class-
def) that were introduced in R2008a.

� Various scripts and examples use new syntax for random numbers intro-
duced in R2007b.

� Some script may use the tilde operator to ignore return values (e.g.,
[~,i]=max(X,1)) that was introduced in R2009b.

� Some routines, like the fully-implicit simulators for black-oil models, rely
on accessing sub-blocks of large sparse matrices. Although these routines
will run on any version from R2007a and onward, they may not be efficient
on versions older than R2011b.

Large parts of MRST can also be used with GNU Octave, which is an open-
source numerical programming environment that is designed to be compatible
with MATLAB. However, there are two main difficulties: GNU Octave has
less (stable) functionality for 3D visualization, which is used a lot throughout
this book, and does not yet offer the new-style classes (classdef) used in the
implementation of automatic differentiation.

Although MRST is designed to only use functionality available in standard
MATLAB, there are a few third-party packages and libraries that we have
found to be quite useful:

� MATLAB-BGL: MATLAB does not yet have extensive support for graph
algorithms. The Boost Graph Library (BGL) is a generic interface for
traversing graphs. The MATLAB Boost Graph Library contains binaries
for useful algorithms in BGL such as depth-first search, computation of
connected components, etc. MATLAB-BGL is freely available under the
BSD License from the Mathwork File Exchange1. MRST has a particular
module, see Section 2.5, that downloads and installs this library.

1 http://www.mathworks.com/matlabcentral/fileexchange/10922
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� METIS: is a widely used library for partitioning graphs, partitioning finite
element meshes, and producing fill reducing orderings for sparse matrices
[97]. The library is released2 under a permissive Apache License 2.0.

� AGMG: For large problems, the linear solvers available in MATLAB are not
always sufficient, and it may be necessary to use an iterative algebraic
multigrid method. AGMG [150] has MATLAB bindings included and was
originally published as free open-source. The latest releases have unfortu-
nately only offered free licenses for academic research and teaching3.

MATLAB-BGL is required by several of the more advanced solvers that are not
part of the basic functionality in MRST. Installing the other two packages is
recommended by not required. When installing extra libraries or third-party
toolboxes that you want to integrate with MRST, you must make the software
aware of them. To this end, you should add a new script called startup_user.m

and use the built-in command mrstPath to make sure that they are on the
search path used by MRST and MATLAB to find functions and scripts.

2.3 Terms of usage

The MRST software is distributed as free, open-source software under the
GNU Public License (GPLv3)4. This license is a widely used example of a so-
called copyleft license that offers the right to distribute copies and modified
versions of copyrighted creative work, provided the same rights are preserved
in modified and extended versions of the work. For MRST, this means that
you can use the software for any purpose, share it with anybody, modify it
to suit your needs, and share the changes you make. However, if you share
any version of the software, modified or unmodified, you must grant others
the same rights to distribute and modify it as in the original version. By
distributing MRST as free software under the GPLv3 license, the developers
of MRST have made sure that the software will stay free, no matter who
changes or distributes it.

The development of the MRST toolbox has to a large extent been funded
by strategic research grants awarded from the Research Council of Norway.
Dissemination of research results is an important evaluation criterion for these
types of research grants. To provide us with an overview of some usage statis-
tics for the software, you are kindly asked to register your affiliation/country
upon download. This information is only used when reporting impact of the
creative work to agencies co-funding the development of MRST. If you also
leave an email address, we will notify you when a new releases or critical bug-
fixes are available. Your e-mail address will under no circumstances be shared
with any third party.

2 http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
3 http://homepages.ulb.ac.be/∼ynotay/AGMG/
4 See http://www.gnu.org/licenses/gpl.html for more details.
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Finally, if you use MRST in any scholar work, we require that the creative
work of the MRST developers is courteously and properly acknowledged by
referring to the MRST webpage or by citing this book or one of the overview
papers that describe MRST [115, 112, 104].

2.4 Getting started with the software

The open-source MRST toolbox was originally developed to support research
on consistent discretization and multiscale solvers on unstructured, polyhe-
dral grids, but has over the years developed into an efficient platform for rapid
prototyping and efficient testing of new mathematical models and simulation
methods. A particular aim of MRST is to accelerate the process of moving
from simplified and conceptual testing to validation and verification on prob-
lems with a high degree of realism, and in many cases, full industry-standard
complexity.

To make the software as flexible as possible, MRST is organized quite
similar to MATLAB and consists of a collection of core routines and a set of
add-on modules, see Figure 2.2. The core contains routines and data struc-
tures for creating and manipulating grids and physical properties, utilities for
performing automatic differentiation (you write the formulas and specify the
independent variables, the software computes the corresponding Jacobians),
as well as a few routines for plotting cell and face data defined over a grid.
The functionality in the core module is considered to be stable and not ex-
pected to change significantly in future releases. The introductory parts of
the book relies almost entirely on general routines from the core module. In
addition, we will sometimes use functionality from the incomp add-on module
that implements basic solvers for incompressible, immiscible, single-phase and
two-phase flow.

Routines in the core and incomp modules are generally well documented
in a format that follows the MATLAB standard, see Figure 2.3. In addition,
there are several worked tutorials highlighting key functionality that will be
needed by most users; the tutorials are distributed as part of the MRST
release and a subset of the tutorials are also available on the MRST webpage.
These examples are designed using cell-mode scripts, which can be seen as a
type of “MATLAB workbook” that allows you break the scripts down into
smaller pieces that can be run individually to perform a specific task such
as creating parts of a model or making an illustrative plot; see Figure 2.4
for an illustration. In our opinion, the best way to understand the examples
is to go through the corresponding scripts, evaluating one cell at the time.
Alternatively, you can set a breakpoint on the first line, and step through the
script in debug mode, e.g., as shown in the fourth video of the first MRST
Jolt [113]. Some of the example scripts in MRST contain quite a lot of text
and are designed to make easily published documents. If you are not familiar

Page: 21 job: mrst-book macro: svmono.cls date/time: 16-Dec-2015/16:31



22 2 The MATLAB Reservoir Simulation Toolbox

CO2 saturation
at 500 years

16%

12%

3%

56%

12%

Injected volume:

2.185e+07 m
3

 

 

Height of CO2−column

 

 

Residual (traps)

Residual

Residual (plume)

Movable (traps)

Movable (plume)

Leaked

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

x 10
7

co2lab

multiscale methods

discretizations

fully implicit

flow diagnostics

grid coarsening

Original permeability Upscaled (x−direction) Upscaled (y−direction)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

 

 

Original

Upscaled (x)

upscaling

visualization
input decks

... ...

A
d
d
-o
n
m
od
u
le
s

MRST core

1

2

3

4

5

6

7

8

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

1

2

3

4

5

6

7

cells.faces = faces.nodes = faces.neighbors =

1 10 1 1 0 2

1 8 1 2 2 3

1 7 2 1 3 5

2 1 2 3 5 0

2 2 3 1 6 2

2 5 3 4 0 6

3 3 4 1 1 3

3 7 4 7 4 1

3 2 5 2 6 4

4 8 5 3 1 8

4 12 6 2 8 5

4 9 6 6 4 7

5 3 7 3 7 8

5 4 7 4 0 7

5 11 8 3

6 9 8 5

6 6 9 3

6 5 9 6

7 13 10 4

7 14 10 5

: : : :

Fig. 2.2. The Matlab Reservoir Simulation Toolbox consists of a core module that
provides basic data structures and utility functions, and a set of add-on modules
that offer discretizations and solvers, simulators for incompressible and compressible
flow, and various workflow tools such as flow diagnostics, grid coarsening, upscaling,
visualization of simulation output, and so on.

with cell-mode scripts, or debug mode, we strongly urge you to learn these
useful features in MATLAB as soon as possible.

Over the last few years, key parts of MRST have become relatively mature
and well tested. This has enabled a stable release policy with two releases per
year, one in the spring and one in the fall. Throughout the releases, the ba-
sic functionality like grid structures has remained largely unchanged, except
for occasional and inevitable bugfixes, and the primary focus has been on
expanding functionality by maturing and releasing in-house prototype mod-
ules. However, MRST is mainly developed and maintained as an efficient pro-
totyping tool to support contract research carried out by SINTEF for the
energy-resource industry and public research agencies. Fundamental changes
will therefore occur from time to time, e.g., like when automatic differentia-
tion was introduced in 2012. Likewise, parts of the software may sometimes
be reorganized like when the basic incompressible solvers were taken out of
MRST core and put in a separate module in 2015. In writing this, we (regret-
fully) acknowledge the fact that specific code details and examples in books
that describe evolving software tend to become somewhat outdated. To coun-
termand this, complete codes for almost all examples presented in the book
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>> help computeTrans
Compute transmissibilities.

SYNOPSIS:
T = computeTrans(G, rock)
T = computeTrans(G, rock, ’pn’, pv, ...)

PARAMETERS:
G - Grid structure as described by grid_structure.

rock - Rock data structure with valid field ’perm’. The permeability
is assumed to be in measured in units of metres squared (m^2).
Use function ’darcy’ to convert from darcies to m^2, e.g.,

perm = convertFrom(perm, milli*darcy)
if the permeability is provided in units of millidarcies.
:
:

RETURNS:
T - half-transmissibilities for each local face of each grid cell

in the grid. The number of half-transmissibilities equals
the number of rows in G.cells.faces.

COMMENTS:
PLEASE NOTE: Face normals are assumed to have length equal to
the corresponding face areas. ..

SEE ALSO:
computeGeometry, computeMimeticIP, darcy, permTensor.

Fig. 2.3. Most functions in MRST are documented in a standard format that gives
a one-line summary of what the function does, specifies the synopsis (e.g., how the
function should be called), explains the input and out parameters, and points to
related functions.

Fig. 2.4. Illustration of the MATLAB workbook concept. The editor window shows
part of the source code for the simpleBC tutorial. Notice how cells are separated
by horizontal lines and how each cell has a header and a text that describes what
the cell does. The exception is the first cell, which summarizes the content of the
whole tutorial. The right window shows the result of publishing the workbook as a
webpage.
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24 2 The MATLAB Reservoir Simulation Toolbox

Fig. 2.5. Volumetric grids for three standard data sets used in the book: SPE10,
SAIGUP, and Johansen.

are contained in a separate book module that accompanies MRST 2015a and
later releases.

These examples either use MRST to create their input data or rely on
public data sets that can be downloaded freely from the internet – examples
of such data sets are shown in Figure 2.5. Herein, we use the convention that
such data sets are stored in sub-directories of a standard path, which you can
retrieve by issuing the following query

mrstDataDirectory()

We recommend that you adhere to this convention when using the software as
a supplement to the book. If you insist on placing standard data sets elsewhere,
we suggest that you use mrstDataDirectory() to reset the default data path.
To simplify the process dataset management, MRST offers a graphical user
interface, mrstDatasetGUI, that lists all public data sets known MRST, gives
a short description of each, and provides functionality for downloading and
unpacking them to the correct sub-directory of the standard path. For some
data sets, you may have to register your email address or fill in a license form,
and in this case we provide a link to the correct webpage. In addition standard
datasets, the book contains a few examples, particularly in Chapter 4, that are
based on data that cannot be publicly disclosed. For these examples, we only
discuss the salient points and do not supply full details of the corresponding
source codes.

At this point, we should also add a word of caution about exact repro-
ducibility of the examples. Whereas the grid-factory routines in MRST are
mostly deterministic and should enable you to create the exact same grids
that are discussed in the book, the routines for generating petrophysical data
rely on random numbers and will not give the same results in repeated runs.
Hence, you can only expect to reproduce plots and numbers that are qualita-
tively similar whenever these are used.

Computer exercises:

1. Download and install the software
2. Run the gravityColumn tutorial from the command line to verify that your

installation is working
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3. Load the gravityColumn tutorial in the editor (edit gravityColumn.m)
and run it in cell model (evaluating one cell at the time). Use help or doc

to inspect the documentation for the various functions that are used in the
script.

4. Run the graavityColumn tutorial line-by-line: Set a breakpoint on the first
executable line by clicking on the small symbol next to line 27, push the
’play button’, and then use the ’step’ button to advance a single line at the
time. Change the grid size to 10× 10× 25 and .

5. Examine the simpleBC tutorial in the same way as you did for
gravityColumn. Publish the workbook to reproduce the contents of Fig-
ure 2.4.

6. Replace the constant permeability in the simpleBC tutorial by a random
permeability field

rock.perm = logNormLayers(G.cartDims,[100 10 100])*milli*darcy;

Can you explain the changes in the pressure field?

2.5 More advanced solvers and workflow tools

Most of the material presented in the book relies on functionality that is either
found in the core module of MRST or in the incomp module that implements
flow and transport solvers for incompressible fluid models based on standard
two-point discretizations. Notable exceptions are Chapters 5 and 8, which
discuss grid coarsening and consistent discretizations, respectively, and are
based on functionality that can be found in other the add-on modules. These
modules contain routines and functionality that extend, complement, and
override existing MRST features, typically in the form of specialized or more
advanced solvers and workflow tools like upscaling, grid coarsening, etc. In
addition, there are modules that contain support for special input formats,
Octave support, C-acceleration of selected routines from the core module,
etc. Some of these modules are robust, well-documented, and contain features
that will likely not change in future releases. As such, they could have been
included in the core module if we had not decided to keep it as small as
possible. Examples of such modules are:

� consistent discretizations on general polyhedral grids (mimetic and MPFA−O
methods) as discussed in [112] and Chapter 8;

� a small module for downloading and setting up flow models based on the
SPE10 data set [49], which are commonly used benchmarks encountered
in a multitude of papers;

� upscaling, including methods for flow-based single-phase upscaling as well
as steady-state methods for two-phase upscaling, see e.g., [82];
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� extended data structures for representing coarse grids as well as routines
for partitioning grids with an underlying Cartesian topology, as discussed
in Chapter 5;

� agglomeration-based grid coarsening [79, 78, 117]: methods for defining
coarse grids that adapt to geological features, flow patterns, etc;

� multiscale mixed finite-element methods for incompressible flow on strati-
graphic and unstructured grids [46, 1, 2, 3, 5, 101, 141, 13, 117, 152];

� multiscale finite-volume methods for incompressible flow [92], which ex-
tends the original operator formulation [122] from Cartesian grids to strati-
graphic and unstructured grids that are not too complex [130, 133];

� a simplified reader that can take data describing the input parameters
for a simulation given in the industry-standard ECLIPSE format, convert
physical quantities to SI units, and construct MRST objects for grids,
fluids, rock properties, and wells;

� C-acceleration of grid processing and basic solvers for incompressible flow;
� GUI-based tools for interactive visualization of geological models and sim-

ulation results.

Other modules and workflow tools, on the other hand, are constantly changing
to support ongoing research:

� fully-implicit solvers based on automatic differentiation [104]: rapid pro-
totyping of flow models of industry-standard complexity;

� flow diagnostics [137, 162]: simple, controlled numerical experiments that
are run to probe a reservoir model and establish connections and basic vol-
ume estimates to compare, rank, and cluster models, or used as simplified
flow proxies

� a numerical CO2 laboratory [171] that offers a chain of simulation tools
of increasing complexity [147, 118, 16, 119, 17]: geometrical methods for
identifying structural traps [148], percolation type methods for identifying
potential spill paths, and vertical-equilibrium methods that can efficiently
simulate structural, residual, and solubility trapping in a thousand-year
perspective [15, 145, 146];

� adjoint equations for computing gradients and sensitivities that can e.g.,
be used for optimization of well rates, well placement, etc

All these modules are distributed as part of the standard MRST release and
have some kind of documentation on the webpage. To find out which modules
that are part of your current installation, you use the function

mrstPath

which will list all modules that MRST is aware of and can load. This function
can be used to search for specific modules, register new ones, etc. To load a
particular module, you use the function mrstModule. As an example, calling

mrstModule add mimetic mpfa
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will load the two modules that contain the consistent discretization meth-
ods discussed in Chapter 8. The software also provides a graphical interface,
moduleGUI, for those who prefer to load and unload modules using check-boxes.

In addition to the modules that are part of the official MRST releases,
there are several third-party modules that are available courtesy of their de-
velopers, as well as in-house prototype modules and workflow examples that
are available upon request:

� two-point and multipoint solvers for discrete fracture-matrix systems
[167, 179], including multiscale methods, developed by researchers at the
University of Bergen;

� an ensemble Kalman filter module developed by researchers at TNO
[109, 108] that contains EnKF and EnRML schemes, localization, inflation,
asynchronous data, production and seismic data, updating of conventional
and structural parameters;

� multiscale finite-volume methods for simulation of ’full physics’ on strati-
graphic and unstructured grids [132, 131, 134, 135, 136];

� polymer flooding based on a Todd–Longstaff model with adsorption and
dead pore space, permeability reduction, shear thinning, near-well (radial)
and standard grids;

� geochemistry with conventional and structural parameters and without
chemical equilibrium and coupling with fluid flow;

� geomechanics discretized by virtual element methods and multipoint finite-
volume discretizations;

Discussing all these modules in detail is beyond the scope of the book.
As should be evident from the overview of current modules, MRST does

not have strict requirements on what becomes a module and what does not.
The concept of semi-independent modules is simply a way to organize the
software development that promotes software reuse. If you start to make what
should eventually become a module, you will probably be a bit more careful to
distinguish parts of your development that have generic value from parts that
are case specific or of temporary value only. Moreover, the fact that others
or your future self may want to reuse your functionality will hopefully also
motivate you to put in the extra effort on documenting your routines and
making examples and tutorials that later decided whether somebody wants
to use or continue to develop the functionality you have implemented or not.

Computer exercises:

7. Try to run the following tutorials and examples from various modules
� simpleBCmimetic from the mimetic module.
� simpleUpscaleExample from the upscaling module
� gravityColumnMS from the msmfem module
� example2 from the diagnostics module
� firstTrappingExample from the co2lab module (notice that this ex-

ample does not work unless you have MATLAB−BGL installed).
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2.6 Rapid prototyping using MATLAB and MRST

How can you reduce the time span from the moment you get a new idea to
when you have demonstrated that it works well for realistic reservoir engi-
neering problems?

In our experience, prototyping and validating new numerical methods is
painstakingly slow. There are many reasons for this. First of all, there is of-
ten a strong disconnect between the mathematical abstractions and equations
used to express models and numerical algorithms and the syntax of the com-
puter language you use to implement your algorithms. This is particularly
true for compiled languages, where you typically end up spending most of
your time writing and tweaking loops that perform operations on individ-
ual members of arrays or matrices. Object-oriented languages like C++ offer
powerful functionality that can be used to make abstractions that are both
flexible and computationally efficient and enable you to design your algorithms
using high-level mathematical constructs. However, these advanced features
are usually alien and unintuitive to those who do not have extensive training
in computer sciences. If you are familiar with such concepts and are in the
possession of a flexible framework, you still face the never-ending frustration
caused by different versions of compilers and (third-party) libraries that seems
to be an integral part of working with compiled languages.

Based on the experience of a large number of researchers and students over
the past twenty years, we claim that using a numerical computing environment
based on a scripting language like MATLAB (or Python) to prototype, test,
and verify new models and computational algorithms is significantly more ef-
ficient than using a compiled language like Fortran, C, and C++. Not only
is the syntax intuitive and simple, but there are many mechanisms that help
to boost your productivity and you avoid some of the frustrations that come
with compiled languages: there is no complicated build process or handling of
external libraries and your implementation is inherently cross-platform com-
patible.

MATLAB, for instance, provides mathematical abstractions for vectors
and matrices and built-in functions for numerical computations, data analy-
sis, and visualization that enable you to quickly write codes that are not only
compact and readable, but also efficient and robust. On top of this, MRST
provides additional functionality that has been developed especially for com-
putational modeling of flow in porous media:

� an unstructured grid format that enables you to implement algorithms
without knowing the specifics of the grid;

� discrete operators, mappings, and forms that are not tied to specific flow
equations, and hence can be precomputed independently and used to write
discretized flow equations in a very compact form that is close to the
mathematical formulations of the same;

� automatic differentiation which enables you to compute the values of gra-
dients, Jacobians, and sensitivities of any programmed function without
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having to compute the necessary partial derivatives analytically; this can,
in particular, be used to automate the formulation of fully implicit dis-
cretizations of time-dependent and coupled systems of equations

� data structures that provide unified access and enable you to hide specific
details of constitutive laws, fluid and rock properties, boundary conditions,
wells, etc;

This functionality will be gradually introduced and described in detail through-
out the book.

An equally important aspect of using a numerical environment like MAT-
LAB is that you can develop your program differently than what you would
do in a compiled language. Using the interactive environment, you can in-
teractively analyse, change and extend data objects, try out each operation,
include new functionality, and build your program as you go. This feature is
essential in a debugging process, when one tries to understand why a given
numerical method fails to produce the results one excepts it to give. In fact,
you can easily continue to change and extend your program during a test run:
the debugger enables you to run the code line by line and inspect and change
variables at any point. You can also easily step back and rerun parts of the
code with changed parameters that may possibly change the program flow.
Since MATLAB uses dynamic type-checking you can also add new behav-
ior and data members while executing a program. However, how to do this
in practice is difficult to teach in a textbook. Instead, you should run and
modify the various examples that come with MRST and the book. We also
recommend that you try to solve the computer exercises that are suggested
at the end of several of the chapters and sections in the book.

Unfortunately, all this flexibility and productivity comes at a price: it is
very easy to develop programs that are not very efficient. In the book, we
therefore try to teach programming concepts that can be used to ensure flexi-
bility and high efficiency of your programs. These include, in particular, pow-
erful mechanisms for traversing data structures like vectorization, indirection
maps, and logical indexes, as well as use of advanced MATLAB functions like
accumarray, bsxfun, etc. Although these will be presented in the context of
reservoir simulation, we think the techniques should be of interest for readers
working with lower-order finite-volume discretizations on general polyhedral
grids. As an illustration of the type of MATLAB programming that will be
used, let us consider a simple example. The following code generates one mil-
lion random points in 3D and counts the number of points that lie inside each
of the eight octants:

n = 1000000;
pt = randn(n,3);
I = sum(bsxfun(@times, pt>0, [1 2 4]),2)+1;
num = accumarray(I,1);
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The third line computes the sign of the x, y, and z coordinates and maps
each of the resulting one million triples of logical values to an integer number
between 1 and 8 that represents each of the octants. To count the number of
points inside each octant, we use the function accumarray that groups elements
from a data set and applies a function to each group. The default function is
summation, and by setting a unit value in each element, we count the entries.

Next, let us compute the mean point inside each octant. A simple loop-
based solution could be something like:

avg = zeros(8,3);
for i=1:1000000

quad = sum((pt(i,:)>0).*[1 2 4])+1;
avg(quad,:) = avg(quad,:)+pt(i,:);

end
avg = bsxfun(@rdivide, avg, num);

Use of loops should generally be avoided since the tend to be slow in MATLAB.
On the author’s computer, it took 0.09 seconds to count the number of points
within each octant, but 2.6 seconds to compute the mean points. So let us try
to do something more clever and utilize vectorization. The accumarray function
cannot be used since it only works for scalar values. Instead, we can build a
sparse matrix that we multiply with the pt array to sum the coordinates of the
points. The matrix will have one row per octant and one column per point.
Now, all we have to do is to use our indicator I to assign a unit value in the
correct row for each column use bsxfun to divide the sum of the coordinates
with the number of points inside each octant:

avg = bsxfun(@rdivide, sparse(I,1:n,1)*pt, num);

On the author’s computer this operation took 0.05 seconds, which is fifty
times faster than the loop-based solution. In fact, summing all coordinates
inside each octant is faster than counting the number of points. Let us try to
utilize this to speed up the computation of mean points. This is quite simple:
we expand each coordinate to a quadruple (x, y, z, 1), multiply by the same
sparse matrix, and use bsxfun to divide the first three columns by the fourth
column to compute the average:

avg = sparse(I,1:n,1)*[pt, ones(n ,1)];
avg = bsxfun(@rdivide, avg(:,1:end−1), avg(:,end));

The overall operation ran in 0.07 seconds, which not only is two times faster
than our previous solution, but perhaps also a bit more elegant.

Hopefully, this simple example has inspired you to learn a bit more about
efficient programming tricks if you do not already speak MATLAB fluently.
MRST is generally full of tricks like this, and in the book we will occasionally
show a few of them. However, if you really want to learn the tricks of the
trade, the best way is to dig deep into the actual codes.
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2.7 Automatic differentiation in MRST

Automatic differentiation is a technique that exploits the fact that any com-
puter code, regardless of complexity, can be broken down to a limited set of
arithmetic operations (+, −, ∗, /, etc), and, in our case, more or less elemen-
tary MATLAB functions (exp, sin, power, interp, etc). In automatic differen-
tiation (AD) the key idea is to keep track of quantities and their derivatives
simultaneously; every time an operation is applied to a quantity, the corre-
sponding differential operation is applied to its derivative. Consider a scalar
primary variable x and a function f = f(x). Their AD-representations would
then be the pairs 〈x, 1〉 and 〈f, fx〉, where 1 is the derivative dx/dx and fx
is the numerical value of the derivative df/dx. Accordingly, the action of the
elementary operations and functions must be defined for such pairs, e.g.,

〈f, fx〉+ 〈g, gx〉 = 〈f + g, fx + gx〉 ,
〈f, fx〉 ∗ 〈g, gx〉 = 〈fg, fgx + fxg〉 ,

〈f, fx〉 / 〈g, gx〉 =

〈
f

g
,
fxg − fgx

g2

〉
exp(〈f, fx〉) = 〈exp(f), exp(f)fx〉 ,
sin(〈f, fx〉) = 〈sin(f), cos(f)fx〉 .

In addition to this, one needs to use the chain rule to accumulate derivatives;
that is, if f(x) = g(h(x)), then fx(x) = dg

dhhx(x). This more or less summarizes
the key idea behind automatic differentiation, the remaining and difficult part
is how to implement the idea as efficient computer code that has a low user-
threshold and minimal computational overhead.

As the above example illustrates, it is straightforward to write down all
elementary rules needed to differentiate a program or piece of code. To be
useful, however, these rules should not be implemented as standard functions,
so that you need to write something like myPlus(a, myTimes(b,c)) when you want
to evaluate a+ bc. An elegant solution is to instead use classes and operator
overloading. When MATLAB encounters an expression a+b, the software will
choose one out of several different addition functions depending on the data
types of a and b. All we now have to do is introduce new addition functions
for the various classes of data types that a and b may belong to. Neidinger
[143] gives a nice introduction to how to implement this in MATLAB. .

There are many automatic differentiation libraries for MATLAB, e.g., ADi-
Mat [173, 29], ADMAT [38, 181], MAD [176, 169, 71], or from MATLAB Cen-
tral [70, 128]. The AD class in MRST uses operator overloading as suggested
in [143] and uses a relatively simple forward accumulation, but differs from
other libraries in a subtle, but important way. Instead of working with a sin-
gle Jacobian of the full discrete system as one matrix, MRST uses a list of
matrices that represent the derivatives with respect to different variables that
will constitute sub-blocks in the Jacobian of the full system. The reason for
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this choice is two-fold: computational performance and user utility. In typical
simulation, and particularly for complex model, the mathematical model will
consist of several equations (continuum equations, Darcy’s law, equations of
state, other constitutive relationships, control equations for wells, etc) that
have different characteristics and play different roles in the overall equation
system. In typical cases, we will use fully-implicit discretizations in which one
seeks to solve for all state variables simultaneously, but we may still want
to manipulate parts of the full equation system that represents specific sub-
equations. This is not practical if the Jacobian of the system is represented as
a single matrix; manipulating subsets of large sparse matrices is currently not
very efficient in MATLAB, and keeping track of the necessary index sets may
also be quite cumbersome from a user’s point-of-view. Accordingly, our cur-
rent choice is to let the MRST AD-class represent the derivatives of different
primary variable as a list of matrices.

In the rest of the section, we will go through two simple examples that
demonstrate how the AD class works. Later in the book we demonstrate how
automatic differentiation can be used to set up simulations in a (surprisingly)
few number of code lines.

Example 2.1. As a first example, let us say we want to compute the expression
z = 3e−xy and its partial derivatives ∂z/∂x and ∂z/∂y for the values x = 1
and y = 2. This is done with the following two lines:

[x,y] = initVariablesADI(1,2);
z = 3*exp(−x*y)

The first line tells MRST that x and y are independent variables and initializes
their values. The second line is what you normally would write in MATLAB
to evaluate the given expression. After the second line has been executed, you
have three AD variables (pairs of values and derivatives):

x = ADI Properties:
val: 1
jac: {[1] [0]}

y = ADI Properties:
val: 2
jac: {[0] [1]}

z = ADI Properties:
val: 0.4060
jac: {[-0.8120] [-0.4060]}

∂x

∂x

∂x

∂y

∂y

∂x

∂y

∂y

∂z

∂x

∣∣∣
x=1,y=2

∂z

∂y

∣∣∣
x=1,y=2

If we now go on computing with these variables, each new computation will
lead to a result that contains the value of the computation as well as the
derivatives with respect to x and y.

Let us look a bit in detail on what happens behind the curtain. We start by
observing that the operation 3*exp(−x*y) in reality consists of a sequence of
elementary operations: −, ∗, exp, and ∗, executed in that order. In MATLAB,
this corresponds to the following sequence of call to elementary functions
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u = uminus(x);

v = mtimes(u,y);

w = exp(u);

z = mtimes(3,w);

Calling sequence

function h = uminus(u)

h = ADI(-u.val, uminusJac(u.jac));

function J = uminusJac(J1)

J = cellfun(@uminus, J1, ’UniformOutput’, false);

function h = mtimes(u,v)% ’*’

if ~isa(u,’ADI’)

h = ADI(u*v.val, mtimesJac(u, v.jac));

elseif ~isa(v,’ADI’)

h = mtimes(v,u);

else

if numel(u.val) == 1

h = times(repmat(u, [numel(v.val), 1]), v);

elseif numel(v.val) == 1

h = times(u, repmat(v, [numel(u.val), 1]));

else

error(’Operation not supported’);

end

end

function h = repmat(u, varargin)

h = ADI(repmat(u.val, varargin{:}), ...

repmatJac(u.jac, varargin{:}));

function J = repmatJac(J1, varargin)

J = cell(1, numel(J1));

for k = 1:numel(J)

J{k} = repmat(J1{k}, varargin{:});

end

function h = times(u,v)% ’.*’

if ~isa(u,’ADI’) %u is a scalar/vector

if numel(u)==numel(v.val)

h = ADI(u.*v.val, lMultDiag(u, v.jac));

else

h = mtimes(u,v);

end

elseif ~isa(v,’ADI’) %v is a scalar/vector

h = times(v,u);

else

if numel(u.val)==numel(v.val)

h = ADI(u.val.*v.val, ...

timesJac(u.val, v.val, u.jac, v.jac));

elseif numel(v.val)==1||numel(u.val)==1

h = mtimes(u,v);

else

error(’Operation not supported’);

end

end

function J = timesJac(v1, v2, J1, J2)

n = numel(v1);

D1 = sparse((1:n)’, (1:n)’, v1, n, n);

D2 = sparse((1:n)’, (1:n)’, v2, n, n);

J = cell(1, numel(J1));

for k = 1:numel(J)

J{k} = D1*J2{k} + D2*J1{k};

end

function h = exp(u)

eu = exp(u.val);

h = ADI(eu, lMultDiag(eu, u.jac));

function J = lMultDiag(d, J1)

n = numel(d);

D = sparse((1:n)’, (1:n)’, d, n, n);

J = cell(1, numel(J1));

for k = 1:numel(J)

J{k} = D*J1{k};

end

function h = mtimes(u,v)% ’*’

if ~isa(u,’ADI’)

h = ADI(u*v.val, mtimesJac(u, v.jac));

elseif ~isa(v,’ADI’)

:

function J = mtimesJac(M, J1)

J = cell(1, numel(J1));

for k = 1:numel(J)

J{k} = M*J1{k};

end

Fig. 2.6. Complete set of functions invoked to evaluate 3*exp(−x*y) when x and
y are AD variables. For brevity, we have not included details of the constructor
function ADI(val,Jac), which constructs an AD pair with the value val and list of
Jacobi matrices Jac.

u = uminus(x);
v = mtimes(u,y);
w = exp(u);
z = mtimes(3,w);

To see this, you can enter the command into a file, set a breakpoint in front of
the assignment to z, and use the ’Step in’ button to step through all details.
The AD class overloads these three functions by new functions that have the
same names, but operate on an AD pair for uminus and exp, and on two AD
pairs or a combination of a double and an AD pair for mtimes. Figure 2.6
gives an overview of the sequence of calls that are invoked within the AD
implementation to evaluate 3*exp(−x*y) when x and y are AD variables5.

As you can see from the above example, use of automatic differentiation
will give rise to a whole new set of function calls that are not executed if one
only wants to evaluate a mathematical expression and not find its derivatives.
Apart from the cost of the extra code lines one has to execute, user-defined
classes are fairly new in MATLAB and there is still some overhead in using

5 The observant reader may notice that some computational saving could have been
obtained if we had been careful to replace the call to matrix multiply (*=mtimes)
by a call to vector multiply (+.*=times), which are mathematically equivalent
for scalar quantities.
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class objects and accessing their properties (e.g., val and jac) compared to the
built-in struct-class. The reason why AD still pays off in most examples, is
that the cost of generating derivatives is typically much smaller than the cost
of the solution algorithms they will be used in, in particular when working
with equations systems consisting of large sparse matrices with more than one
row per cell in the computational grid. However, one should still seek to limit
the number of calls involving AD-class functions (including the constructor).
We let the following example be a reminder that vectorization is of particular
importance when using AD classes in MRST:

Example 2.2. To investigate the efficiency of vectorization versus serial exe-
cution of the AD objects in MRST, we consider the inner product of two
vectors

z = x.*y;

We will compare the cost of computing z, ∂z/∂x, and ∂z/∂y using four dif-
ferent approaches:

1. analytical expressions zx = y and zy = x and standard MATLAB vectors
of doubles,

2. the overloaded vector multiply (.*) with AD-vectors for x and y
3. a loop over all vector elements with matrix multiply (*=mtimes) and x

and y represented as scalar AD variables
4. same as 3, but with vector multiply (.*=times)

This is implemented as follows:

[n,t1,t2,t3,t4] = deal(zeros(m,1));
for i = 1:m

n(i) = 2ˆ(i−1);
xv = rand(n(i),1); yv=rand(n(i),1);
[x,y] = initVariablesADI(xv,yv);
tic, z = xv.*yv; zx=yv; zy = xv; t1(i)=toc;
tic, z = x.*y; t2(i)=toc;
tic, for k =1:n(i), z(k)=x(k)*y(k); end; t3(i)=toc;
tic, for k =1:n(i), z(k)=x(k).*y(k); end; t4(i)=toc;

end

Figure 2.7 shows a plot of the corresponding runtimes as function of the num-
ber elements in the vector. For this simple function, using AD is a factor 20-40
times more expensive than using direct evaluation of z and the analytical ex-
pressions for zx and zy. Using a loop will on average be more than three orders
more expensive than using vectorization. Since the inner iterations multiplies
scalars, many programmers would implement it using matrix multiply * with-
out a second thought. Replacing * by vector multiply .* reduces the cost by
30% on average, but the factor diminishes as the number of elements increases
in the vector.
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Fig. 2.7. Comparison of the time required for computing z=x.*y and derivatives
as function of the number of elements in the vectors x and y.

While for-loops in many cases will be quite efficient in MATLAB (contrary
to common belief), one should always try to avoid loops that call functions
with non-negligible overhead. The AD class in MRST has been designed to
work on long vectors and lists of (sparse) Jacobian matrices and has not been
optimized for scalar variables. As a result, there is considerable overhead when
working with small AD objects.

Beyond the examples and the discussion above, we will not go more into
details about the technical considerations that lie behind the implementation
of AD in MRST. If you want a deeper understanding of how the AD class
works, the source code is fully open, so you are free to dissect the details to
the level of your own choice.

Computer exercises:

8. As an alternative to using automatic differentiation, one can use finite dif-
ferences, f ′(x) ≈ [f(x + h) − f(x)]/h, or a complex extension to compute
f ′(x) ≈ Im(f(x+ ih))/h. Use automatic differentiation and the function

f = @(x) exp((x-.05).*(x-.4).*(x-.5).*(x-.7).*(x-.95));

to assess how accurate the two methods approximate f ′(x) at n equidistant
points in the interval x ∈ [0, 1] for different values of h.

9. While the AD class supports log and exp, it does not yet support log2,
log10, and logm. Study ADI.m and see if you can implement the missing
functions. What about trignometric functions?

10. Can automatic differentiation be used to compute higher-order derivatives?
How or why not?
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Geological Models and Grids
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3

Modelling Reservoir Rocks

Aquifers and natural petroleum reservoirs consist of a subsurface body of sedi-
mentary rock having sufficient porosity and permeability to store and transmit
fluids. In this chapter, we will given an overview of how such rocks are mod-
elled to become part of a simulation model. We start by describing briefly
how sedimentary rocks and hydrocarbons are formed. In doing so, we intro-
duce some geological concepts that you may encounter while working with
subsurface modelling. We then move on to describe how rocks that contain
hydrocarbons or aquifer systems are modelled. Finally, we discuss how rock
properties are represented in MRST and show several examples of rock mod-
els with varying complexity, ranging from an idealized shoe-box rock body
with homogeneous properties, via the widely used SPE 10 model, to two re-
alistic models, one synthetic and one representing a large-scale aquifer from
the North Sea.

3.1 Formation of sedimentary rocks

Sedimentary rocks are created by mineral or organic particles that are de-
posited and accumulated on the Earth’s surface or within bodies of water to
create layer upon layer of sediments. The sedimentary rocks that are found
in reservoirs come from sedimentary basins, inside which large-scale sedimen-
tation processes have taken place. Sedimentary basis are formed as the result
of stretching and breaking of the continental crust. As the crust is stretched,
hot rocks deeper in the earth come closer to the surface. When the stretching
stops, the hot rocks start to cool, which causes the crustal rock to gradually
subside and move downward to create a basin. Such processes are also taking
place today. The Great Rift Valley of Africa is a good example of a so-called
rift basin, where a rift splits the continental plate so that opposite sides of the
valley are moving a millimeter apart each year. This gradually creates a basin
inside which a new ocean may appear over the next hundred million years.
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3.3 Multiscale modelling of permeable rocks

All sedimentary rocks consist of a solid matrix with an interconnected void.
The void pore space allows the rocks to store and transmit fluids. The ability to
store fluids is determined by the volume fraction of pores (the rock porosity),
and the ability to transmit fluids (the rock permeability) is given by the
interconnection of the pores.

Rock formations found in natural petroleum reservoirs are typically het-
erogeneous at all length scales, from the micrometer scale of pore channels
between the solid particles making up the rock to the kilometer scale of a
full reservoir formation. On the scale of individual grains, there can be large
variation in grain sizes, giving a broad distribution of void volumes and inter-
connections. Moving up a scale, laminae may exhibit large contrasts on the
mm-cm scale in the ability to store and transmit fluids because of alternating
layers of coarse and fine-grained material. Laminae are stacked to form beds,
which are the smallest stratigraphic units. The thickness of beds varies from
millimeters to tens of meters, and different beds are separated by thin layers
with significantly lower permeability. Beds are, in turn, grouped and stacked
into parasequences or sequences (parallel layers that have undergone similar
geologic history). Parasequences represent the deposition of marine sediments,
during periods of high sea level, and tend to be somewhere in the range from
1–100 meters thick and have a horizontal extent of several kilometers.

The trends and heterogeneity of parasequences depend on the deposi-
tional environment. For instance, whereas shallow-marine deposits may lead
to rather smoothly varying permeability distributions with correlation lengths
in the order 10–100 meters, fluvial reservoirs may contain intertwined patterns
of sand bodies on a background with high clay content, see Figure 3.12. The
reservoir geology can also consist of other structures like for instance shale
layers (impermeable clays), which are the most abundant sedimentary rocks.
Fractures and faults, on the other hand, are created by stresses in the rock
and may extend from a few centimeters to tens or hundreds of meters. Faults
may have a significantly higher or lower ability to transmit fluids than the
surrounding rocks, depending upon whether the void space has been filled
with clay material.

All these different length scales can have a profound impact on fluid flow.
However, it is generally not possible to account for all pertinent scales that
impact the flow in a single model. Instead, one has to create a hierarchy of
models for studying phenomena occurring at reduced spans of scales. This is il-
lustrated in Figure 3.7. Microscopic models represent the void spaces between
individual grains and are used to provide porosity, permeability, electrical and
elastic properties of rocks from core samples and drill cuttings. Mesoscopic
models are used to upscale these basic rock properties from the mm/cm-scale
of internal laminations, through the lithofacies scale (∼ 50 cm), to the macro-
scopic facies association scale (∼ 100 m) of geological models. In this book,
we will primarily focus on another scale, simulation models, which represent
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Fig. 3.7. Illustration of the hierarchy of flow models used in subsurface modeling.
The length scales are the vertical sizes of typical elements in the models.

the last scale in the model hierarchy. Simulation models are obtained by up-
scaling geological models and are either introduced out of necessity because
geological models contain more details than a flow simulator can cope with,
or out of convenience to provide faster calculation of flow responses.

3.3.1 Macroscopic models

To model a reservoir on a macroscopic scale, we basically need to represent its
geology at a level of detail that is sufficient for the purpose the model is built
to serve: to visualize how different experts perceive the reservoir, to provide
estimates of hydrocarbon volumes, to assist well planning and geosteering, or
as input to geophysical analysis (seismic modeling, rock mechanics) or flow
simulations. For flow simulation, which is our primary concern in this book,
we need a volumetric description that decomposes the reservoir into a set
of grid cells (small 3D polygonal volumes) that are petrophysically and/or
geometrically distinct from each other. With a slight abuse of terminology,
we will in the following refer to this as the geological model, which we will
distinguish from the models that describe the reservoir fluids and the forces
that cause their movement.

Geological models are generally built in a sequence of steps, using a com-
bination of stratigraphy (the study of rock layers and layering), sedimentol-
ogy (study of sedimentary rocks), structural geology (the study of how rock
layers are deformed over time by geological activity), diagenesis (the study
of chemical, physical, and biological processes that transform sediments to
rock), and interpretation of measured data. The starting point is usually a
seismic interpretation, from which one obtains a representation of faults and
geological horizons that bound different geological units. The seismic inter-
pretation is used alongside a conceptual model in which geologists express
how they believe the reservoir looks like based on studies of geological history
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and geological outcrops. The result can be expressed as a geometric model
that consists of vertical or inclined surfaces representing faults and horizontal
or slightly sloping surfaces representing horizons that subdivide the reser-
voir volume into different geological units (zones). This zonation is obtained
by combining seismic interpretation that describes the gross geometry of the
reservoir with stratigraphic modelling and thickness information (isochores)
obtain from well logs that defines the internal layering. Once a model of the
structural and stratigraphic architecture of the reservoir is established, the
surface description can be turned into a 3D grid that is populated with cell
and face properties that reflect the geological framework.

Unfortunately, building a geological model for a reservoir is like finishing
a puzzle where most of the pieces are missing. The amount of data available
is limited due to the costs of acquiring them, and the data that is obtained is
measured on scales that may be quite disparate from the geological features
one needs to model. Seismic surveys give a sort of X–ray image of the reser-
voir, but are both expensive and time consuming and can only give limited
resolution; you cannot expect to see structures thinner than ten meters from
seismic data. Information on finer scales is available from various measuring
tools lowered into the wells to gather information of the rock in near-well
region, e.g., by radiating the reservoir and measuring the response. Well-logs
have quite limited resolution, rarely down to centimeter scale. The most de-
tailed information is available from rock samples (cores) extracted from the
well. The industry uses X-ray, CT-scan, as well as electron microscopes to
gather high resolution information from the cores, and the data resolution
is only limited by the apparatus at hand. However, information from cores
and well-logs can only tell you how the rock looks like near the well, and
extrapolating this information to the rest of the reservoir is subject to great
uncertainty. Moreover, due to high costs, one cannot expect well-logs and
cores to be taken from every well. All these techniques give separately small
contributions that can help build a geological model. However, in the end
we still have very limited information available considering that a petroleum
reservoir can have complex geological features that span across all types of
length scales from a few millimeters to several kilometers.

In summary, the process of making a geological model is generally strongly
under-determined. It is therefore customary to use a combination of deter-
ministic and probabilistic modeling to estimate the subsurface characteristics
between the wells. Deterministic modeling is used to specify large-scale struc-
tures such as faults, correlation, trends, and layering, which are used as input
and controls to geostatistical techniques that build detailed grid models satis-
fying statistical properties assumed for the petrophysical heterogeneity. Since
trends and heterogeneity in petrophysical properties depend strongly on the
structure of sedimentary deposits, high-resolution petrophysical realizations
are in many cases not built directly. Instead, one starts by building a rock
model that is based on the structural model and consists of a set of discrete
rock bodies (facies) that are specified to improve petrophysical classification
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and spatial shape. For carbonates, the modelled facies are highly related to
diagenesis, while the facies modelled for sandstone reservoirs are typically de-
rived from the depositional facies. By supplying knowledge of the depositional
environment (fluvial, shallow marine, deep marine, etc.) and conditioning to
observed data, one can determine the geometry of the facies and how they are
mixed.

To populate the modelled facies with properties it is common to use
stochastic simulation techniques are that simulate multiple realizations of
the petrophysical properties represented as cell and face properties in high-
resolution grid models. Each grid model has a plausible heterogeneity and
can contain from a hundred thousand to a hundred million cells. The col-
lection of all realizations gives a measure of the uncertainty involved in the
modelling. Hence, if the sample of realizations (and the upscaling procedure
that converts the geological models into simulation models) is unbiased, then
it is possible to supply predicted production characteristics, such as the cu-
mulative oil production, obtained from simulation studies with a measure of
uncertainty.

This cursory overview of different models is all that is needed for what fol-
lows in the next few chapters, and the reader can therefore skip to Section 3.4
which discusses macroscopic modelling of reservoir rocks. The remains of this
section will discuss microscopic and mesoscopic modelling in some more detail.
First, however, we will briefly discuss the concept of representative elementary
volumes, which underlies the continuum models used to describe subsurface
flow and transport.

3.3.2 Representative elementary volumes

Choosing appropriate modelling scales is often done by intuition and expe-
rience, and it is hard to give very general guidelines. An important concept
in choosing model scales is the notion of representative elementary volumes
(REVs), which is the smallest volume over which a measurement can be made
and be representative of the whole. This concept is based on the idea that
petrophysical flow properties are constant on some intervals of scale, see Fig-
ure 3.8. Representative elementary volumes, if they exist, mark transitions
between scales of heterogeneity, and present natural length scales for mod-
elling.

To identify a range of length scales where REVs exist, e.g., for porosity,
we move along the length-scale axis from the micrometer-scale of pores to-
ward the kilometer-scale of the reservoir. At the pore scale, the porosity is a
rapidly oscillating function equal to zero (in solid rock) or one (in the pores).
Hence, obviously no REVs can exist at this scale. At the next characteristic
length scale, the core scale level, we find laminae deposits. Because the lami-
nae consist of alternating layers of coarse and fine grained material, we cannot
expect to find a common porosity value for the different rock structures. Mov-
ing further along the length-scale axis, we may find long thin layers, perhaps

Page: 50 job: mrst-book macro: svmono.cls date/time: 16-Dec-2015/16:31



3.3 Multiscale modelling of permeable rocks 51

Porosity: φ =
Vv

Vv + Vr

Fig. 3.8. The concept of a representative elementary volume (REV), here illustrated
for porosity which measures the fraction of void space to bulk volume.

extending throughout the entire horizontal length of the reservoirs. Each of
these individual layers may be nearly homogeneous because they are created
by the same geological process, and probably contain approximately the same
rock types. Hence, at this scale it sounds reasonable to speak of an REV. If
we move to the high end of the length-scale axis, we start to group more and
more layers into families with different sedimentary structures, and REVs for
porosity will probably not exist.

The previous discussion gives some grounds to claim that reservoir rock
structures contain scales where REVs may exist. From a general point of
view, however, the existence of REVs in porous media is highly disputable. A
faulted reservoir, for instance, can have faults distributed continuously both
in length and aperture throughout the reservoir, and will typically have no
REVs. Moreover, no two reservoirs are identical, so it is difficult to capitalize
from previous experience. Indeed, porous formations in reservoirs may vary
greatly, also in terms of scales. Nevertheless, the concept of REVs can serve
as a guideline when deciding what scales to model.

3.3.3 Microscopic models: The pore scale

Pore-scale model, as illustrated to the left in Figure 3.7, may be about the size
of a sugar cube and are based on measurements from core plugs obtained from
well trajectories during drilling. These rock samples are necessarily confined
(in dimension) by the radius of the well, although they lengthwise are only
confined by the length of the well. Three such rock samples are shown in
Figure 3.9. The main methods for obtaining pore-scale models from a rock
sample is by studying thin slices using an electron microscope with micrometer
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Fig. 3.9. Three core plugs with diameter of one and a half inches, and a height of
five centimeters.

resolution or by CT-scans. In the following, we will give a simplified overview
of flow modelling on this scale.

At the pore scale, the porous medium is either represented by a volumetric
grid or by a graph (see e.g., [151]). A graph is a pair (V,E), where V is a set
whose elements are called vertices (or nodes), and E is a subset of V × V
whose elements are called edges. The vertices are taken to represent pores,
and the edges represent pore-throats (i.e., connections between pores).

The flow process, in which one fluid invades the void space filled by another
fluid, is generally described as an invasion–percolation process. This process
is mainly dominated by capillary forces, although gravitational forces can
still be important. In the invasion, a fluid phase can invade a pore only if a
neighboring pore is already invaded. For each pore, there is an entry pressure,
i.e., the threshold pressure needed for the invading phase to enter the pore,
that depends on the size and shape of pores, the size of pore throats, as well
as other rock properties. The invading phase will first invade the neighboring
pore that has the lowest threshold pressure. This gives a way of updating
the set of pores that are neighbors to invaded ones. Repeating the process
establishes a recursive algorithm to determine the flow pattern of the invading
phase. In the invasion process, we are interested in whether a phase has a path
through the model, i.e., percolates, or not, and the time variable is often not
modelled at all. For pore networks, this is misleading because we are also
interested in modelling the flow after the first path through the model has
been established. After a pore has been invaded, the saturations in the pore
will vary with pressures and saturations in the neighboring pores (as well
as in the pore itself). New pores may also be invaded after the first path is
formed, so that we may get several paths through the model through which
the invading phase can flow. Once the invading phase percolates (i.e., has
a path through the model), one can start estimating flow properties. As the
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simulation progresses, the saturation of the invading phase will increase, which
can be used to estimate flow properties at different saturation compositions
in the model.

In reality, the process is more complicated that explained above because of
wettability. When two immiscible fluids (such as oil and water) contact a solid
surface (such as the rock), one of them tends to spread on the surface more
than the other. The fluid in a porous medium that preferentially contacts the
rock is called the wetting fluid. Note that wettability conditions are usually
changing throughout a reservoir. The flow process where the invading fluid
is non-wetting is called drainage and is typically modelled with invasion–
percolation. The flow process where the wetting fluid displaces the non-wetting
fluid is called imbibition, and is more complex, involving effects termed film
flow and snap-off.

Another approach to multiphase modelling is through the use of the lattice
Boltzmann method that represents the fluids as a set of particles that prop-
agate and collide according to a set of rules defined for interactions between
particles of the same fluid phase, between particles of different fluid phases,
and between the fluids and the walls of the void space. A further presentation
of pore-scale modelling is beyond the scope here, but the interested reader is
encouraged to consult, e.g., [151] and references therein.

From an analytical point of view, pore-scale modelling is very important
as it represents flow at the fundamental scale (or more loosely, where the flow
really takes place), and hence provides the proper framework for understand-
ing the fundamentals of porous media flow. From a practical point of view,
pore-scale modelling has a huge potential. Modelling flow at all other scales
can be seen as averaging of flow at the pore scale, and properties describing
the flow at larger scales are usually a mixture of pore-scale properties. At
larger scales, the complexity of flow modelling is often overwhelming, with
large uncertainties in determining flow parameters. Hence being able to single
out and estimate the various factors determining flow parameters is invalu-
able, and pore-scale models can be instrumental in this respect. However, to
extrapolate properties from the pore scale to an entire reservoir is very chal-
lenging, even if the entire pore space of the reservoir was known (of course, in
real life you will not be anywhere close to knowing the entire pore space of a
reservoir).

3.3.4 Mesoscopic models

Models based on flow experiments on core plugs is by far the most common
mesoscopic models. The fundamental equations describing flow are continu-
ity of fluid phases and Darcy’s law, which basically states that flow rate is
proportional to pressure drop. The purpose of core-plug experiments is to de-
termine capillary pressure curves and the proportionality constant in Darcy’s
law that measures the ability to transmit fluids, see (2.1) in Section 2.1. To
this end, the sides of the core are insulated and flow is driven through the
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core. By measuring the flow rate versus pressure drop, one can estimate the
proportionality constant for both single-phase or multi-phase flows.

In conventional reservoir modelling, the effective properties from core-scale
flow experiments are extrapolated to the macroscopic geological model, or di-
rectly to the simulation model. Cores should therefore ideally be representative
for the heterogeneous structures that one may find in a typical grid block in
the geological model. However, flow experiments are usually performed on rel-
atively homogeneous cores that rarely exceed one meter in length. Cores can
therefore seldom be classified as representative elementary volumes. For in-
stance, cores may contain a shale barrier that blocks flow inside the core, but
does not extend much outside the well-bore region, and the core was slightly
wider, there would be a passage past the shale barrier. Flow at the core scale
is also more influenced by capillary forces than flow on a reservoir scale.

As a supplement to core-flooding experiments, it has in recent years be-
come popular to build 3D grid models to represent small-scale geological de-
tails like the bedding structure and lithology (composition and texture). One
example of such a model is shown in Figure 3.7. Effective flow properties for
the 3D model can now be estimated in the same way as for core plugs by
replacing the flow experiment by flow simulations using rock properties that
are e.g., based on the input from microscopic models. This way, one can incor-
porate fine-scale geological details from lamina into the macroscopic reservoir
models.

This discussion shows that the problem of extrapolating information from
cores to build a geological model is largely under-determined. Supplementary
pieces of information are also needed, and the process of gathering geological
data from other sources is described next.

3.4 Modelling rock properties

Describing the flow through a porous rock structure is largely a question of the
scale of interest, as we saw in the previous section. The size of the rock bodies
forming a typical petroleum reservoir will be from ten to hundred meters in
the vertical direction and several hundred meters or a few kilometers in the
lateral direction. On this modelling scale, it is clearly impossible to describe
the storage and transport in individual pores and pore channels as discussed
in Section 3.3.3 or the through individual lamina as in Section 3.3.4. To ob-
tain a description of the reservoir geology, one builds models that attempt
to reproduce the true geological heterogeneity in the reservoir rock at the
macroscopic scale by introducing macroscopic petrophysical properties that
are based on a continuum hypothesis and volume averaging over a sufficiently
large representative elementary volume (REV), as discussed in Section 3.3.2.
These petrophysical properties are engineering quantities that are used as in-
put to flow simulators and are not geological or geophysical properties of the
underlying media.
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A geological model is a conceptual, three-dimensional representation of
a reservoir, whose main purpose is therefore to provide the distribution of
petrophysical parameters, besides giving location and geometry of the reser-
voir. The rock body itself is modelled in terms of a volumetric grid, in which
the layered structure of sedimentary beds and the geometry of faults and large-
scale fractures in the reservoir are represented by the geometry and topology
of the grid cells. The size of a cell in a typical geological grid-model is in the
range of 0.1–1 meters in the vertical direction and 10–50 meters in the hori-
zontal direction. The petrophysical properties of the rock are represented as
constant values inside each grid cell (porosity and permeability) or as values
attached to cell faces (fault multipliers, fracture apertures, etc). In the fol-
lowing, we will describe the main rock properties in more detail. More details
about the grid modelling will follow in Chapter 4.

3.4.1 Porosity

The porosity φ of a porous medium is defined as the fraction of the bulk
volume that is occupied by void space, which means that 0 ≤ φ < 1. Likewise,
1−φ is the fraction occupied by solid material (rock matrix). The void space
generally consists of two parts, the interconnected pore space that is available
to fluid flow, and disconnected pores (dead-ends) that is unavailable to flow.
Only the first part is interesting for flow simulation, and it is therefore common
to introduce the so-called “effective porosity” that measures the fraction of
connected void space to bulk volume.

For a completely rigid medium, porosity is a static, dimensionless quantity
that can be measured in the absence of flow. Porosity is mainly determined
by the pore and grain-size distribution. Rocks with nonuniform grain size
typically have smaller porosity than rocks with a uniform grain size, because
smaller grains tend to fill pores formed by larger grains. Similarly, for a bed
of solid spheres of uniform diameter, the porosity depends on the packing,
varying between 0.2595 for a rhomboidal packing to 0.4764 for cubic packing.
When sediments are first deposited in water, they usually have a porosity of
approximately 0.5, but as they are buried, the water is gradually squeezed out
and the void space between the mineral particles decreases as the sediments
are consolidated into rocks. For sandstone and limestone, φ is in the range
0.05–0.5, although values outside this range may be observed on occasion.
Sandstone porosity is usually determined by the sedimentological process by
which the rock was deposited, whereas for carbonate porosity is mainly a
result of changes taking place after deposition. Increase compaction (and ce-
mentation) causes porosity to decrease with depth in sedimentary rocks. The
porosity can also be reduced by minerals that are deposited as water moves
through the pore spaces. For sandstone, the loss in porosity is small, whereas
shales loose their porosity very quickly. Shales are therefore unlikely to be
good reservoir rocks, and will instead act like caprocks having porosities that
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are orders of magnitude lower than those found in good sandstone and car-
bonates.

For non-rigid rocks, the porosity is usually modelled as a pressure-dependent
parameter. That is, one says that the rock is compressible, having a rock com-
pressibility defined by

cr =
1

φ

dφ

dp
=
d ln(φ)

dp
, (3.1)

where p is the overall reservoir pressure. Compressibility can be significant
in some cases, e.g., as evidenced by the subsidence observed in the Ekofisk
area in the North Sea. For a rock with constant compressibility, (3.1) can be
integrated to give

φ(p) = φ0e
cr(p−p0), (3.2)

and for simplified models, it is common to use a linearization so that:

φ = φ0

[
1 + cr(p− p0)

]
. (3.3)

Because the dimension of the pores is very small compared to any interesting
scale for reservoir simulation, one normally assumes that porosity is a piece-
wise continuous spatial function. However, ongoing research aims to under-
stand better the relation between flow models on pore scale and on reservoir
scale.

3.4.2 Permeability

The permeability is the basic flow property of a porous medium and measures
its ability to transmit a single fluid when the void space is completely filled
with this fluid. This means that permeability, unlike porosity, is a parameter
that cannot be defined apart from fluid flow. The precise definition of the
(absolute, specific, or intrinsic) permeability K is as the proportionality factor
between the flow rate and an applied pressure or potential gradient ∇Φ,

~u = −K
µ
∇Φ. (3.4)

This relationship is called Darcy’s law after the french hydrologist Henry
Darcy, who first observed it in 1856 while studying flow of water through beds
of sand [51]. In (3.4), µ is the fluid viscosity and ~u is the superficial velocity,
i.e., the flow rate divided by the cross-sectional area perpendicular to the flow.
This should not be confused with the interstitial velocity ~v = φ−1~u, i.e., the
rate at which an actual fluid particle moves through the medium. We will
come back to a more detailed discussion of Darcy’s law in Section 6.2.

The SI-unit for permeability is m2, which reflects the fact that perme-
ability is determined entirely by the geometric characteristics of the pores.
However, it is more common to use the unit ’darcy’ (D). The precise defini-
tion of 1D ≈ 0.987 · 10−12 m2 involves transmission of a 1 cP fluid through
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a homogeneous rock at a speed of 1 cm/s due to a pressure gradient of 1 at-
m/cm. Translated to reservoir conditions, 1 D is a relatively high permeability
and it is therefore customary to specify permeabilities in millidarcys (mD).
Rock formations like sandstones tend to have many large or well-connected
pores and therefore transmit fluids readily. They are therefore described as
permeable. Other formations, like shales, may have smaller, fewer or less in-
terconnected pores and are hence described as impermeable. Conventional
reservoirs typically have permeabilities ranging from 0.1 mD to 20 D for liq-
uid flow and down to 10 mD for gases. In recent years, however, there has
been an increasing interest in unconventional resources, that is, gas and oil
locked in extraordinarily impermeable and hard rocks, with permeability val-
ues ranging from 0.1 mD and down to 1 µD or lower. ’Tight’ reservoirs are
defined as those having permeability less than 0.1 mD. Compared with con-
ventional resources, the potential volumes of tight gas, shale gas, shale oil are
enormous, but cannot be easily produced at economic rates unless stimulated,
e.g., using a pressurized fluid to fracture the rock (hydraulic fracturing). In
this book, our main focus will be on simulation of conventional resources.

In (3.4), we tacitly assumed that the permeability K is a scalar quantity.
However, the permeability will generally be a full tensor,

K =

Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

 . (3.5)

Here, the diagonal terms {Kxx,Kyy,Kzz} represent how the flow rate in one
axial direction depends on the pressure drop in the same direction. The off-
diagonal terms {Kxy,Kxz,Kyx,Kyz,Kzx,Kzy} account for dependence be-
tween flow rate in one axial direction and the pressure drop in perpendicular
directions. A full tensor is needed to model local flow in directions at an
angle to the coordinate axes. Let us for instance consider a layered system,
for which the dominant direction of flow will generally be along the layers.
However, if the layers form an angle to the coordinate axes, a pressure drop
in one coordinate direction will produce flow at an angle to this direction.
This type of flow can only be modelled correctly with a permeability tensor
with nonzero off-diagonal terms. If the permeability can be represented by a
scalar function K(~x), we say that the permeability is isotropic as opposed to
the anisotropic case where we need a full tensor K(~x). To model a physical
system, the anisotropic permeability tensor must be symmetric because of the
Onsager principle of reciprocal relations and positive definite because the flow
component parallel to the pressure drop should be in the same direction as the
pressure drop. As a result, a full-tensor permeability K may be diagonalized
by a change of basis.

Since the porous medium is formed by deposition of sediments over thou-
sands of years, there is often a significant different between permeability in
the vertical and lateral directions, but no difference between the permeabilities
in the two lateral directions. The permeability is obviously also a function of
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porosity. Assuming a laminar flow (low Reynolds numbers) in a set of capillary
tubes, one can derive the Carman–Kozeny relation,

K =
1

8τA2
v

φ3

(1− φ)2
, (3.6)

which relates permeability to porosity φ, but also shows that the permeability
depends on local rock texture described by tortuosity τ and specific surface
area Av. The tortuosity is defined as the squared ratio of the mean arc-chord
length of flow paths, i.e., the ratio between the length of a flow path and the
distance between its ends. The specific surface area is an intrinsic and char-
acteristic property of any porous medium that measures the internal surface
of the medium per unit volume. Clay minerals, for instance, have large spe-
cific surface areas and hence low permeability. The quantities τ and Av can
be calculated for simple geometries, e.g., for engineered beds of particles and
fibers, but are seldom measured for reservoir rocks. Moreover, the relation-
ship in (3.6) is highly idealized and only gives satisfactory results for media
that consist of grains that are approximately spherical and have a narrow
size distribution. For consolidated media and cases where rock particles are
far from spherical and have a broad size-distribution, the simple Carman–
Kozeny equation does not apply. Instead, permeability is typically obtained
through macroscopic flow measurements.

Permeability is generally heterogeneous in space because of different sort-
ing of particles, degree of cementation (filling of clay), and transitions between
different rock formations. Indeed, the permeability may vary rapidly over sev-
eral orders of magnitude, local variations in the range 1 mD to 10 D are not
unusual in a typical field. The heterogeneous structure of a porous rock for-
mation is a result of the deposition and geological history and will therefore
vary strongly from one formation to another, as we will see in a few of the
examples in Section 3.5.

Production of fluids may also change the permeability. When temperature
and pressure is changed, microfractures may open and significantly change
the permeability. Furthermore, since the definition of permeability involves a
certain fluid, different fluids will experience different permeability in the same
rock sample. Such rock-fluid interactions are discussed in Chapter 11.

3.4.3 Other parameters

Not all rocks in a reservoir zone are reservoir rocks. To account for the fact
that some portion of a cell may consist of impermeable shale, it is common
to introduce the so-called “net-to-gross” (N/G) property, which is a number
in the range 0 to 1 that represents the fraction of reservoir rock in the cell.
To get the effective porosity of a given cell, one must multiply the porosity
and N/G value of the cell. (The N/G values also act as multipliers for lateral
transmissibilities, which we will come back to later in the book). A zero value

Page: 58 job: mrst-book macro: svmono.cls date/time: 16-Dec-2015/16:31



3.5 Property modelling in MRST 59

means that the corresponding cell only contains shale (either because the
porosity, the N/G value, or both are zero), and such cells are by convention
typically not included in the active model. Inactive cells can alternatively be
specified using a dedicated field (called ’actnum’ in industry-standard input
formats).

Faults can either act as conduits for fluid flow in subsurface reservoirs or
create flow barriers and introduce compartmentalization that severely affects
fluid distribution and/or reduces recovery. On a reservoir scale, faults are gen-
erally volumetric objects that can be described in terms of displacement and
petrophysical alteration of the surrounding host rock. However, lack of geo-
logical resolution in simulation models means that fault zones are commonly
modelled as surfaces that explicitly approximate the faults’ geometrical prop-
erties. To model the hydraulic properties of faults, it is common to introduce
so-called multipliers that alter the ability to transmit fluid between two neigh-
boring cells. Multipliers are also used to model other types of subscale features
that affect communication between grid blocks, e.g., thin mud layers result-
ing from flooding even which may partially cover the sand bodies and reduce
vertical communication. It is also common to (ab)use multipliers to increase
or decrease the flow in certain parts of the model to calibrate the simulated
reservoir responses to historic data (production curves from wells, etc). More
details about multipliers will be given later in the book.

3.5 Property modelling in MRST

All flow and transport solvers in MRST assume that the rock parameters
are represented as fields in a structure. Our naming convention is that this
structure is called rock, but this is not a requirement. The fields for porosity
and permeability, however, must be called poro and perm, respectively. The
porosity field rock.poro is a vector with one value for each active cell in
the corresponding grid model. The permeability field rock.perm can either
contain a single column for an isotropic permeability, two or three columns
for a diagonal permeability (in two and three spatial dimensions, respectively,
or six columns for a symmetric, full-tensor permeability. In the latter case,
cell number i has the permeability tensor

Ki =

[
K1(i) K2(i)
K2(i) K3(i)

]
, Ki =

K1(i) K2(i) K3(i)
K2(i) K4(i) K5(i)
K3(i) K5(i) K6(i)

 ,
where Kj(i) is the entry in column j and row i of rock.perm. Full-tensor, non-
symmetric permeabilities are currently not supported in MRST. In addition
to porosity and permeability, MRST supports a field called ntg that represents
the net-to-gross ratio and consists of either a scalar or a single column with
one value per active cell.
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In the rest of the section, we present a few examples that demonstrate how
to generate and specify permeability and porosity values. In addition, we will
briefly discuss a few models with industry-standard complexity. Through the
discussion, you will also be exposed to a lot of the visualization capabilities
of MRST. Complete scripts necessary to reproduce the results and the figures
presented can be found in various scripts in the rock subdirectory of the
software module that accompanies the book.

3.5.1 Homogeneous models

Homogeneous models are very simple to specify, as is illustrated by a simple
example. We consider a square 10× 10 grid model with a uniform porosity of
0.2 and isotropic permeability equal 200 mD:

G = cartGrid([10 10]);
rock.poro = repmat( 0.2, [G.cells.num,1]);
rock.perm = repmat( 200*milli*darcy, [G.cells.num,1]);

Because MRST works in SI units, it is important to convert from the field
units ’darcy’ to the SI unit ’meters2’. Here, we did this by multiplying with
milli and darcy, which are two functions that return the corresponding con-
version factors. Alternatively, we could have used the conversion function
convertFrom(200, milli*darcy). Homogeneous, anisotropic permeability can be
specified in the same way:

rock.perm = repmat( [100 100 10].*milli*darcy, [G.cells.num,1]);

3.5.2 Random and lognormal models

Given the difficulty of measuring rock properties, it is common to use geo-
statistical methods to make realizations of porosity and permeability. MRST
contains two very simplified methods for generating geostatistical realizations.
For more realistic geostatistics, the reader should use GSLIB [56] or a com-
mercial geomodelling software.

In our first example, we will generate the porosity φ as a Gaussian field.
To get a crude approximation to the permeability-porosity relationship, we
assume that our medium is made up of uniform spherical grains of diame-
ter dp = 10µm, for which the specific surface area is Av = 6/dp. Using the
Carman–Kozeny relation (3.6), we can then calculate the isotropic permeabil-
ity K from

K =
1

72τ

φ3d2
p

(1− φ)2
,

where we further assume that τ = 0.81. As a simple approximation to a Gaus-
sian field, we generate a field of independent normally distributed variables
and convolve it with a Gaussian kernel.
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plotCellData (G , rock.poro , 'EdgeColor','none');
colorbar ( 'horiz ' ); axis equal tight ;
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plotCellData (G , convertTo ( rock.perm , milli* darcy ));
colorbar ( 'horiz ' ); axis equal tight ; view (3);

Fig. 3.10. The left plot shows a 50× 20 porosity field generated as a Gaussian field
with a larger filter size in x-direction than in the y-direction. The right plot shows
the permeability field computed from the Carman–Kozeny relation for a similar
50× 20× 10 porosity realization computed with filter size [3, 3, 3].

G = cartGrid([50 20]);
p = gaussianField(G.cartDims, [0.2 0.4], [11 3], 2.5);
K = p.ˆ3.*(1e−5)ˆ2./(0.81*72*(1−p).ˆ2);
rock.poro = p(:);
rock.perm = K(:);

The resulting porosity field is shown in the left plot of Figure 3.10. The right
plot shows the permeability obtained for a 3D realization generated in the
same way.

In the second example, we use the same methodology as above to generate
layered realizations, for which the permeability in each geological layer is
independent of the other layers and lognormally distributed. Each layer can
be represented by several grid cells in the vertical direction. Rather than
using a simple Cartesian grid, we will generate a stratigraphic grid with wavy
geological faces and a single fault. Such grids will be described in more detail
in Chapter 4.

G = processGRDECL(simpleGrdecl([50 30 10], 0.12));
K = logNormLayers(G.cartDims, [100 400 50 350], 'indices', [1 2 5 7 11]);

Here, we have specified four geological layers of different thickness. From top to
bottom (stratigraphic grids are often numbered from the top and downward),
the first layer is one cell thick and has a mean permeability value of 100 mD,
the second layer is three cells thick and has mean permeability of 400 mD, the
third layer is two cells thick and has mean value 50 mD, and the fourth layer
is four cells thick and has mean value 350 mD . To specify this, we have used
an indirection map. That is, if Km is the n-vector of mean permeabilities and
L is the (n+ 1)-vector of indices, the value Km(i) is assigned to vertical layers
number L(i) to L(i+1)−1. The resulting permeability is shown in Figure 3.11.
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plotCellData (G , log10 (K ), 'EdgeColor','k'); view (45,30);
axis tight off , set(gca , 'DataAspect',[0.5 1 1])
h=colorbar( 'horiz ' ); ticks=25*2.ˆ[0:5];
set(h , 'XTick',log10 ( ticks ), 'XTickLabel',ticks);

Fig. 3.11. A stratigraphic grid with a single fault and four geological layers, each
with a lognormal permeability distribution.

3.5.3 10th SPE Comparative Solution Project: Model 2

Society of Petroleum Engineers (SPE) has developed a series of benchmarks
that can be used to independently compare computational methods and sim-
ulators. The first nine benchmarks focus on black-oil, compositional, dual-
porosity, thermal, and miscible simulations, as well as horizontal wells and
gridding techniques. The 10th SPE Comparative Solution Project [49] was
posed as a benchmark for upscaling methods, but the second data set of this
benchmark has later become very popular within the academic community as
a benchmark for comparing different computational methods. The data set is
a 3-D geostatistical realization from the Jurassic Upper Brent formations, in
which one can find the giant North Sea fields of Statfjord, Gullfaks, Oseberg,
and Snorre. The main feature of the model is a permeability and porosity
fields given on a 60 × 220 × 85 Cartesian grid, in which each cells is of size
20ft × 10ft × 2ft. In this specific model, the top 35 cell layers having a total
height of 70 ft represent the shallow-marine Tarbert formation and the lower
50 layers having a height of 100 ft represent the fluvial Ness formation. The
model is structurally simple but is highly heterogeneous, and, for this reason,
some describe it as a ’simulator-killer’. On the other hand, the fact that the
flow is dictated by the strong heterogeneity means that streamline methods
will be particularly efficient for this model [2].

The SPE 10 data set is used in a large number of publications and is
publicly available from the SPE website

http://www.spe.org/web/csp/
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MRST supplies a module called spe10 that downloads, reorganizes, and stores
the data set in a file for later use. The module also contains routines that
extract (subsets of) the petrophysical data and set up simulation models and
appropriate data structures representing grids and wells. Alternatively, the
data set can be downloaded using mrstDatasetGUI.

Because the geometry is a simple Cartesian grid, we can use standard
MATLAB functionality to visualize the heterogeneity in the permeability and
porosity (full details can be found in the script rocks/showSPE10.m)

% load SPE 10 data set
mrstModule add spe10;
rock = SPE10_rock(); p=rock.poro; K=rock.perm;

% show p
slice( reshape(p,60,220,85), [1 220], 60, [1 85]);
shading flat, axis equal off, set(gca,'zdir', ' reverse ' ), box on;
colorbar('horiz' );

% show Kx
slice( reshape(log10(K(:,1)),60,220,85), [1 220], 60, [1 85]);
shading flat, axis equal off, set(gca,'zdir', ' reverse ' ), box on;
h=colorbar('horiz');
set(h,'XTickLabel',10.ˆ[get(h,'XTick')]);
set(h,'YTick',mean(get(h,'YLim')),'YTickLabel','mD');

Figure 3.12 shows porosity and permeability; the permeability tensor is
diagonal with equal permeability in the two horizontal coordinate directions.
Both formations are characterized by large permeability variations, 8–12 or-
ders of magnitude, but are qualitatively different. The Tarbert consists of
sandstone, siltstone, and shales and comes from a tidally influenced, trans-
gressive, shallow-marine deposit; in other words, a deposit that has taken place
close to the coastline, see Figure 3.1. The formation has good communication
in the vertical and horizontal directions. The fluvial Ness formation has been
deposited by rivers or running water in a delta-plain continental environment
(see Figures 3.1 and 3.2), leading to a spaghetti of well-sorted high-permeable
sandstone channels with good communication (long correlation lengths) im-
posed on a low-permeable background of shales and coal, which gives low
communication between different sand bodies. The porosity field has a large
span of values and approximately 2.5% of the cells have zero porosity and
should be considered as being inactive.

Figure 3.13 shows histograms of the porosity and the logarithm of the
horizontal and vertical permeabilities. The nonzero porosity values and the
horizontal permeability of the Tarbert formation appear to follow a normal
and lognormal distribution, respectively. The vertical permeability follows a
bi-modal distribution. For the Ness formation, the nonzero porosities and the
horizontal permeability follow bi-modal normal and lognormal distributions,
respectively, as is to be expected for a fluvial formation. The vertical perme-
ability is trimodal.
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Fig. 3.12. Rock properties for the SPE 10 model. The upper plot shows the porosity,
the lower left the horizontal permeability, and the lower right the vertical perme-
ability. (The permeabilities are shown using a logarithmic color scale).
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Fig. 3.13. Histogram of rock properties for the SPE 10 model: φ (upper plot),
logKx (lower left), and logKz (lower right) The Tarbert formation is shown in blue
and the Ness formation in red.
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3.5.4 The Johansen Formation

The Johansen formation is located in the deeper part of the Sognefjord delta,
40–90 km offshore Mongstad on the west coast of Norway. A few years ago,
a gas-power plant with carbon capture and storage was planned at Mongstad
and the water-bearing Johansen formation was a possible candidate for storing
the captured CO2. The Johansen formation is part of the Dunlin group, and
is interpreted as a large sandstone delta 2200–3100 meters below sea level that
is limited above by the Dunlin shale and below by the Amundsen shale. The
average thickness of the formation is roughly 100 m and the lateral extensions
are up to 100 km in the north-south direction and 60 km in the east-west
direction. The aquifer has good sand quality and lies at a depth where CO2

would undoubtedly be in supercritical phase, and would thus be ideal for
carbon storage. With average porosities of approximately 25 percent, this
implies that the theoretical storage capacity of the Johansen formation is
more than one gigatonne of CO2 [65]. The Troll field, one of the largest gas
field in the North Sea, is located some 500 meters above the north-western
parts of the Johansen formation. A set of geological models of Johansen is
publicly available from the url:

http://www.sintef.no/Projectweb/MatMorA/Downloads/Johansen/

and can be downloaded using the mrstDatasetGUI function. Altogether, there
are five models: one full-field model (149× 189× 16 grid), three homogeneous
sector models (100×100×n for n = 11, 16, 21), and one heterogeneous sector
model (100× 100× 11). Herein, we consider the latter. All statements used to
analyze the model are found in the script rocks/showJohansenNPD5.m.

The grid consists of hexahedral cells and is given on the industry-standard
corner-point format, which will be discussed in details in Section 4.3.1. A
more detailed discussion of how to input the grid will be given in the next
section. The rock properties are given as plain ASCII files, with one entry per
cell. In the model, the Johansen formation is represented by five grid layers,
the low-permeable Dunlin shale above is represented by five layers, and the
Amundsen shale below is represented as one layer. The Johansen formation
consists of approximately 80% sandstone and 20% claystone, whereas the
Amundsen formation consists of siltstones and shales, see [65, 64, 11] for more
details.

We start by loading the data and visualizing the porosity, which is straight-
forward once we remember to use G.cells.indexMap to extract rock properties
only for active cells in the model.

G = processGRDECL(readGRDECL('NPD5.grdecl'));
p = load('NPD5 Porosity.txt')'; p = p(G.cells.indexMap);

Figure 3.14 shows the porosity field of the model. The left plot shows the Dun-
lin shale, the Johansen sand, and the Amundsen shale, where the Johansen
sand is clearly distinguished as a wedge shape that is pinched out in the front
part of the model and splits the shales laterally in two at the back. In the
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right plot, we only plot the good reservoir rocks distinguished as the part of
the porosity field that has values larger than 0.1.

The permeability tensor is assumed to be diagonal with the vertical per-
meability equal one-tenth of the horizontal permeability. Hence, only the x-
component Kx is given in the data file

K = load('NPD5 Permeability.txt')'; K=K(G.cells.indexMap);

Figure 3.15 shows three different plots of the permeability. The first plot shows
the logarithm of whole permeability field. In the second plot, we have filtered
out the Dunlin shale above Johansen but not the Amundsen shale below. The
third plot shows the permeability in the Johansen formation using a linear
color scale, which clearly shows the depth trend that was used to model the
heterogeneity.

3.5.5 SAIGUP: shallow-marine reservoirs

Most commercial simulators use a combination of an ’input language’ and a
set of data files to describe and set up a simulation model of a reservoir. How-
ever, although the principles for the input description has much in common,
the detail syntax is obviously unique to each simulator. Herein, we will mainly
focus on the ECLIPSE input format, which has emerged as an industry stan-
dard for describing static and dynamic properties of a reservoir system, from
the reservoir rock, via production and injection wells and up to connected
top-side facilities. ECLIPSE input decks use keywords to signify and separate
the different data elements that comprise a full model. These keywords de-
fine a detailed language that can be used to specify how the data elements

args = {'EdgeAlpha'; 0.1; 'EdgeColor'; 'k'};
plotCellData (G , p , args {:}); view(−45,15),
axis tight off , zoom (1.15 ),
caxis ([0 .1 0.3 ]), colorbar ;

plotGrid (G , 'FaceColor','none', args {:});
plotCellData (G , p , find (p>0.1), args{:})
view(−15,40); axis tight off , zoom (1.15 ),
caxis ([0 .1 0.3 ]), colorbar ;

Fig. 3.14. Porosity for the Johansen data set ’NPD5’. The left plot shows porosity
for the whole model, whereas in the right plot we have masked the low-porosity cells
in the Amundsen and Dunlin formations.
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Fig. 3.15. Permeability for the Johansen data set ’NPD5’. The upper-left plot shows
the permeability for the whole model, the upper-right plot shows the Johansen sand
and the Amundsen shale, whereas the lower plot only shows the permeability of the
Johansen sand.

should be put together, and modify each other, to form a full spatio-temporal
model of a reservoir. In the most general form, an ECLIPSE input file consists
of eight sets of keywords, which are organized into eight sections that must
come in a prescribed order. However, some of the sections are optional and
may not always be present. The order of the keywords within each section is
arbitrary, except in the section that defines wells and gives operating schedule,
etc. Altogether, the ECLIPSE format consists of thousands of keywords, and
describing them all is far beyond the scope of this book.

In the following, we will instead briefly outline some of the most common
keywords used in the GRID section that describes the reservoir geometry and
petrophysical properties. The purpose is to provide you with a basic under-
standing of the required input for simulations of real-life reservoir models. Our
focus is mainly on the ingredients of a model and not on the specific syntax.
For brevity, we will therefore not go through all MATLAB and MRST state-
ments used to visualize the different data elements. All details necessary to
reproduce the results can be found in the script rocks/showSAIGUP.m.

As our primary example of a realistic petroleum reservoir, we will use a
model from the SAIGUP study [124], whose purpose was to conduct a sensitiv-
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ity analysis of the impact of geological uncertainties on production forecasting
in clastic hydrocarbon reservoirs. As part of this study, a broad suite of geo-
statistical realizations and structural models were generated to represent a
wide span of shallow-marine sedimentological reservoirs. The SAIGUP mod-
els mainly focus on shoreface reservoirs in which the deposition of sediments
is caused by variation in sea level, so that facies are forming belts in a sys-
tematic pattern (river deposits create curved facies belts, wave deposits create
parallel belts, etc). Sediments are in general deposited when the sea level is
increasing. No sediments are deposited during decreasing sea levels; instead,
the receding sea may affect the appearing shoreline and cause the creation of
a barrier. All models are synthetic, but contain representative examples of the
complexities seen in real-life reservoirs.

One of the many SAIGUP realizations is publicly available from:

http://www.sintef.no/MRST

The specific realization comes in the form of a GZip-compressed TAR file
(SAIGUP.tar.gz) that contains the structural model as well as petrophysical
parameters, represented in the ECLIPSE format. The data set can be down-
loaded using the mrstDatasetGUI function. Here, however, we unpack the data
set manually for completeness of presentation. Assuming that the archive file
SAIGUP.tar.gz that contains the model realization has been downloaded as
described on the webpage, we extract the data set and place it in a standard-
ized path relative to the root directory of MRST:

untar('SAIGUP.tar.gz', fullfile(ROOTDIR, 'examples', 'data', 'SAIGUP'))

This will create a new directory containing seventeen data files that comprise
the structural model, various petrophysical parameters, etc:

028_A11.EDITNNC 028.MULTX 028.PERMX 028.SATNUM SAIGUP.GRDECL
028_A11.EDITNNC.001 028.MULTY 028.PERMY SAIGUP_A1.ZCORN
028_A11.TRANX 028.MULTZ 028.PERMZ SAIGUP.ACTNUM
028_A11.TRANY 028.NTG 028.PORO SAIGUP.COORD

The main file is SAIGUP.GRDECL, which lists the sequence of keywords that
specifies how the data elements found in the other files should be put together
to make a complete model of the reservoir rock. The remaining files repre-
sent different keywords: the grid geometry is given in files SAIGUP_A1.ZCORN

and SAIGUP.COORD, the porosity in 028.PORO, the permeability tensor in the
three 028.PERM* files, net-to-gross properties in 028.NTG, the active cells in
SAIGUP.ACTNUM, transmissibility multipliers that modify the flow connections
between different cells in the model are given in 028.MULT*, etc. For now, we
will rely entirely on MRST’s routines for reading ECLIPSE input files; more
details about corner-point grids and the ECLIPSE input format will follow
later in the book, starting in Chapter 4.

The SAIGUP.GRDECL file contains seven of the eight possible sections that
may comprise a full input deck. The deckformat module in MRST contains
a comprehensive set of input routines that enable the user to read the most
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important keywords and options supported in these sections. Here, however,
it is mainly the sections describing static reservoir properties that contain
complete and useful information, and we will therefore use the much simpler
function readGRDECL from MRST core to read and interprets the GRID section
of the input deck:

grdecl = readGRDECL(fullfile(ROOTDIR, 'examples', ...
'data' , 'SAIGUP','SAIGUP.GRDECL'));

This statement parses the input file and stores the content of all keywords it
recognizes in the structure grdecl:

grdecl =
cartDims: [40 120 20]

COORD: [29766x1 double]
ZCORN: [768000x1 double]

ACTNUM: [96000x1 int32]
PERMX: [96000x1 double]
PERMY: [96000x1 double]
PERMZ: [96000x1 double]
MULTX: [96000x1 double]
MULTY: [96000x1 double]
MULTZ: [96000x1 double]
PORO: [96000x1 double]
NTG: [96000x1 double]

SATNUM: [96000x1 double]

The first four data fields describe the grid, and we will come back to these
in Chapter 4.3.1. In the following, we will focus on the next eight data fields,
which contain the petrophysical parameters. We will also briefly look at the
last data field, which delineates the reservoir into different (user-defined) rock
types that can used to associated different rock-fluid properties.

Recall that MRST uses the strict SI conventions in all of its internal calcu-
lations. The SAIGUP model, however, is provided using the ECLIPSE ’MET-
RIC’ conventions (permeabilities in mD and so on). We use the functions
getUnitSystem and convertInputUnits to assist in converting the input data
to MRST’s internal unit conventions.

usys = getUnitSystem('METRIC');
grdecl = convertInputUnits(grdecl, usys);

Having converted the units properly, we generate a space-filling grid and ex-
tract petrophysical properties

G = processGRDECL(grdecl);
G = computeGeometry(G);
rock = grdecl2Rock(grdecl, G.cells.indexMap);

The first statement takes the description of the grid geometry and constructs
an unstructured MRST grid represented with the data structure outlined in
Section 4.4. The second statement computes a few geometric primitives like
cell volumes, centroids, etc., as discussed on page 116. The third statement
constructs a rock object containing porosity, permeability, and net-to-gross.
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Fig. 3.16. The structural SAIGUP model. The left plot shows the full model with
faults marked in red and inactive cells marked in yellow, whereas the right plot
shows only the active parts of the model seen from the opposite direction.

For completeness, we first show a bit more details of the structural model
in Figure 3.16. The left plot shows the whole 40 × 120 × 20 grid model1,
where we in particular should note the disconnected cells marked in yellow
that are not part of the active model. The relatively large fault throw that
disconnects the two parts is most likely a modelling artifact introduced to
clearly distinguish the active and inactive parts of the model. A shoreface
reservoir is bounded by faults and geological horizons, but faults also appear
inside the reservoir as the right plot in Figure 3.16 shows. Faults and barriers
will typically have a pronounced effect on the flow pattern, and having an
accurate representation is important to produce reliable flow predictions.

The petrophysical parameters for the model were generated on a regular
40× 120× 20 Cartesian grid, as illustrated in the left plot of Figure 3.17, and
then mapped onto the structural model, as shown in the plot to the right. A
bit simplified, one can view the Cartesian grid model as representing the rock
body at geological ’time zero’ when the sediments have been deposited and
have formed a stack of horizontal grid layers. From geological time zero and
up to now, geological activity has introduced faults and deformed the layers,
resulting in the structural model seen in the left plot of Figure 3.17.

Having seen the structural model, we continue to study the petrophysical
parameters. The grid cells in our model are thought to be larger than the
laminae of our imaginary reservoir and hence each grid block will generally
contain both reservoir rock (with sufficient permeability) and impermeable
shale. This is modelled using the net-to-gross ratio, rock.ntg, which is shown
in Figure 3.18 along with the horizontal and vertical permeability. The plotting
routines are exactly the same as for the porosity in Figure 3.17, but with
different data and slightly different specification of the colorbar. From the
figure, we clearly see that the model has a large content of shale and thus low

1 To not confuse the reader, we emphasize that only the active part of the model
is read with the MRST statements given above. How to also include the inactive
part, will be explained in more details in Chapter 4.
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p = reshape ( grdecl.PORO , G.cartDims );
slice (p , 1, 1, 1); view(−135,30), shading flat ,
axis equal off ,
set(gca , 'ydir ' , ' reverse ' , 'zdir ' , ' reverse ')
colorbar ( 'horiz ' ); caxis ([0 .01 0.3 ]);

args = {'EdgeAlpha'; 0.1; 'EdgeColor'; 'k'};
plotCellData (G , rock.poro , args {:});
axis tight off ; set(gca , 'DataAspect',[1 1 0.1 ]);
view(−65,55); zoom(1.4 ); camdolly (0,−0.2,0)
colorbar ( 'horiz ' ); caxis ([0 .1 0.3 ])

Fig. 3.17. Porosity for the SAIGUP model. The left plot shows porosity as generated
by geostatistics in logical ijk space. The right plot shows the porosity mapped to
the structural model shown in Figure 3.16.

permeability along the top. However, we also see high-permeable sand bodies
that cut through the low-permeable top. In general, the permeabilities seem
to correlate well with the sand content given by the net-to-gross parameter.

Some parts of the sand bodies are partially covered by mud that strongly
reduces the vertical communication, most likely because of flooding events.
These mud-draped surfaces occur on a sub-grid scale and are modelled through
a multiplier value (MULTZ) associated with each cell, which takes values be-
tween zero and one and can be used to manipulate the effective communication
(the transmissibility) between a given cell (i, j, k) and the cell immediately
above (i, j, k+ 1). For completeness, we remark that the horizontal multiplier
values (MULTX and MULTY) play a similar role for vertical faces, but are equal
one in (almost) all cells for this particular realization.

To further investigate the heterogeneity of the model, we next look at
histograms of the porosity and the permeabilities, as we did for the SPE 10
example (the MATLAB statements are omitted since they are almost iden-
tical). In Figure 3.19, we clearly see that the distributions of porosity and
horizontal permeability are multi-modal in the sense that five different modes
can be distinguished, corresponding to the five different facies used in the
petrophysical modelling.

It is common modelling practice that different rock types are assigned
different rock-fluid properties (relative permeability and capillary functions),
more details about such properties will be given later in the book. In the
ECLIPSE input format, these different rock types are represented using the
SATNUM keyword. By inspection of the SATNUM field in the input data, we
see that the model contains six different rock types as depicted in Figure 3.20.
For completeness, the figure also shows the permeability distribution inside
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Fig. 3.18. The upper plots show the permeability for the SAIGUP model, using
a logarithmic color scale, with horizontal permeability to the left and vertical per-
meability to the right. The lower-left plot shows net-to-gross, i.e., the fraction of
reservoir rock per bulk volume. The lower-right plot shows regions of the reservoir
where reduced vertical communication is modelled by vertical multiplier values less
than unity.
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Fig. 3.19. Histogram of the porosity (left) and the logarithm of the horizontal
and vertical permeability (right) for the shallow-marine SAIGUP model. Since the
reservoir contains five different facies, the histograms are multi-modal. See also Fig-
ure 3.20.
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% Key statements
SN = grdecl.SATNUM ( G.cells.indexMap );
plotCellData (G , SN , args {:});
colorbar ( 'horiz ' ); caxis ([0 .5 6.5 ])
j = jet(60); colormap (j (1:10:end,:))
plotCellData (G , SN , find (SN==1), args{:});
plotCellData (G , SN , find (SN==5), args{:});
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Fig. 3.20. The upper-left plot shows the rock type distribution for the SAIGUP
model. The right column shows the six rock types grouped in pairs; from top to
bottom, rock types number 1 and 5, 2 and 4, and 3 and 6. The bottom part of the
figure shows histograms of the lateral permeability in units [mD] for each of the six
rock types found in the SAIGUP model.

each rock type. Interestingly, the permeability distribution is multi-modal for
at least two of the rock types.

Finally, to demonstrate the large difference in heterogeneity resulting from
different depositional environment, we compare the realization we have stud-
ied above with another realization. In Figure 3.21 we show porosities and
rock-type distributions. Whereas our original realization seems to correspond
to a depositional environment with a flat shoreline, the other realization cor-
responds to a two-lobed shoreline, giving distinctively different facies belts.
The figure also clearly demonstrates how the porosity (which depends on the
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Fig. 3.21. Comparison of porosity (left) and the distribution of rock types (right)
for two different SAIGUP realizations.

grain-size distribution and packing) varies with the rock types. This can be
confirmed by a quick analysis:

for i=1:6, pavg(i) = mean(rock.poro(SN==i));
navg(i) = mean(rock.ntg(SN==i)); end

pavg = 0.0615 0.1883 0.1462 0.1145 0.0237 0.1924

navg = 0.5555 0.8421 0.7554 0.6179 0.3888 0.7793

In other words, rock types two and six are good sands with high porosity,
three and four have intermediate porosity, whereas one and five correspond
to less quality sand with a high clay content and hence low porosity.

Computer exercises:

11. Look at the correlation between the porosity and the permeability for the
SPE 10 data set. Do you see any artifacts, and if so, how would you explain
them? (Hint: plot φ versus logK)

12. Download the CaseB4 models that represent a simple box geometry with
intersecting faults. Pick at least one of the model realizations and try to set
homogeneous and random petrophysical data as discussed in Sections 3.5.1
and 3.5.2.
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13. The permeability field given in rock1.mat in the book module contains an
unusual geological structure. Can you find what it is?

14. Download the BedModels1 and BedModel2 data sets that represent sedi-
mentary beds similar to the facies model shown in Figure 3.7. Use the
techniques introduced in Sections 3.5.3 to 3.5.5 to familiarize yourself with
these models:
� look at porosities and permeabilities in physical space
� compare with the same quantities in ijk space
� find models that have facies information and look at the distribution of

petrophysical properties inside each facies
15. Modify the simpleGravityColumn example from Section 2.1 so that it

uses the geometry and petrophysical data in the mortarTestModel or
periodicTilted models from the BedModels1 data set instead. Can you
explain what you observe?
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4

Grids in Subsurface Modeling

The basic geological description of a petroleum reservoir or an aquifer system
will typically consist of two sets of surfaces. Geological horizons are lateral
surfaces that describe the bedding planes that delimit the rock strata, whereas
faults are vertical or inclined surfaces along which the strata may have been
displaced by geological processes. In this chapter, we will discuss how to turn
the basic geological description into a discrete model that can be used to
formulate various computational methods, e.g., for solving the equations that
describe fluid flow.

A grid is a tessellation of a planar or volumetric object by a set of contigu-
ous simple shapes referred to as cells. Grids can be described and distinguished
by their geometry, reflected by the shape of the cells that form the grid, and
their topology that tells how the individual cells are connected. In 2D, a cell is
in general a closed polygon for which the geometry is defined by a set of ver-
tices and a set of edges that connect pairs of vertices and define the interface
between two neighboring cells. In 3D, a cell is a closed polyhedron for which
the geometry is defined by a set of vertices, a set of edges that connect pairs of
vertices, and a set of faces (surfaces delimited by a subset of the edges) that
define the interface between two different cells, see Figure 4.1. Herein, we will
assume that all cells in a grid are non-overlapping, so that each point in the
planar/volumetric object represented by the grid is either inside a single cell,
lies on an interface or edge, or is a vertex. Two cells that share a common
face are said to be connected. Likewise, one can also define connections based
on edges and vertices. The topology of a grid is defined by the total set of
connections, which is sometimes also called the connectivity of the grid.

When implementing grids in modeling software, one always has the choice
between generality and efficiency. To represent an arbitrary grid, it is necessary
to explicitly store the geometry of each cell in terms of vertices, edges, and
faces, as well as storing the connectivity among cells, faces, edges, and vertices.
However, as we will see later, huge simplifications can be made for particular
classes of grids by exploiting regularity in the geometry and structures in
the topology. Consider, for instance, a planar grid consisting of rectangular
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Fig. 4.1. Illustration of a single cell (left), vertices and edges (middle), and cell
faces (right).

cells of equal size. Here, the topology can be represented by two indices and
one only needs to specify a reference point and the two side lengths of the
rectangle to describe the geometry. This way, one ensures minimal memory
usage and optimal efficiency when accessing the grid. On the other hand,
exploiting the simplified description explicitly in your flow or transport solver
inevitably means that the solver must be reimplemented if you later decide
to use another grid format.

The most important goal for our development of MRST is to provide a
toolbox that both allows and enables the use of various grid types. To avoid
having a large number of different, and potentially incompatible, grid repre-
sentations, we have therefore chosen to store all grid types using a general
unstructured format in which cells, faces, vertices, and connections between
cells and faces are explicitly represented. This means that we, for the sake of
generality, have sacrificed some of the efficiency one can obtain by exploiting
special structures in a particular grid type and instead have focused on ob-
taining a flexible grid description that is not overly inefficient. Moreover, our
grid structure can be extended by other properties that are required by var-
ious discretization schemes for flow and transport simulations. A particular
discretization may need the volume or the centroid (grid-point, midpoint, or
generating point) of each cell. Likewise, for cell faces one may need to know the
face areas, the face normals, and the face centroids. Although these proper-
ties can be computed from the geometry (and topology) of the grid, it is often
useful to precompute and include them explicitly in the grid representation.

The first third of this chapter is devoted to standard grid formats that
are available in MRST. We introduce examples of structured grids, including
regular Cartesian, rectilinear, and curvilinear grids, and briefly discuss un-
structured grids, including Delaunay triangulations and Voronoi grids. The
purpose of our discussion is to demonstrate the basic grid functionality in
MRST and show some key principles that can be used to implement new
structured and unstructured grid formats. In the second part of the chap-
ter, we discuss industry-standard grid formats for stratigraphic grids that are
based on extrusion of 2D shapes (corner-point, prismatic, and 2.5D PEBI
grids). Although these grids have an inherent logical structure, representation
of faults, erosion, pinch-outs, and so on lead to cells that can have quite ir-
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regular shapes and an (almost) arbitrary number of faces. In the last part of
the chapter, we discuss how the grids introduced in the first two parts of the
chapter can be partitioned to form flexible coarse descriptions that preserve
the geometry of the underlying fine grids. The ability to represent a wide
range of grids, structured or unstructured on the fine and/or coarse scale, is
a strength of MRST compared to the majority of research codes arising from
academic institutions.

A number of videos that complement the material presented in this chap-
ter can be found in the second MRST Jolt [114]. This Jolt introduces different
types of grids, discusses how such grids can be represented, and outlines func-
tionality in MRST you can use to generate your own grids.

4.1 Structured grids

As we saw above, a grid is a tessellation of a planar or volumetric object by
a set of simple shapes. In a structured grid, only one basic shape is allowed
and this basic shape is laid out in a regular repeating pattern so that the
topology of the grid is constant in space. The most typical structured grids
are based on quadrilaterals in 2D and hexahedrons in 3D, but in principle it
is also possible to construct grids with a fixed topology using certain other
shapes. Structured grids can be generalized to so-called multiblock grids (or
hybrid grids), in which each block consists of basic shapes that are laid out
in a regular repeating pattern.

Regular Cartesian grids

The simplest form of a structured grid consists of unit squares in 2D and
unit cubes in 3D, so that all vertices in the grid are integer points. More
generally, a regular Cartesian grid can be defined as consisting of congruent
rectangles in 2D and rectilinear parallelepipeds in 3D, etc. Hence, the vertices
have coordinates (i1∆x1, i2∆x2, . . . ) and the cells can be referenced using the
multi-index (i1, i2, . . . ). Herein, we will only consider finite Cartesian grids
that consist of a finite number n2×n2×· · ·×nk of cells that cover a bounded
domain [0, L1]× [0, L2]× · · · × [0, Lk].

Regular Cartesian grids can be represented very compactly by storing ni
and Li for each dimension. In MRST, however, Cartesian grids are represented
as if they were fully unstructured using a general grid structure that will be
described in more detail in Section 4.4. Cartesian grids therefore have special
constructors,

G = cartGrid([nx, ny], [Lx Ly ]);
G = cartGrid([nx, ny, nz], [Lx Ly Lz ]);

that set up the data structures representing the basic geometry and topology
of the grid. The second argument is optional.
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Fig. 4.2. Example of a rectilinear grid.

Rectilinear grids

A rectilinear grid (also called a tensor grid) consists of rectilinear shapes (rect-
angles or parallelepipeds) that are not necessarily congruent to each other. In
other words, whereas a regular Cartesian grid has a uniform spacing between
its vertices, the grid spacing can vary along the coordinate directions in a rec-
tilinear grid. The cells can still be referenced using a multi-index (i1, i2, . . . )
but the mapping from indices to vertex coordinates is nonuniform.

In MRST, one can construct a rectilinear grid by specifying the vectors
with the grid vertices along the coordinate directions:

G = tensorGrid(x, y);
G = tensorGrid(x, y, z);

This syntax is the same as for the MATLAB functions meshgrid and ndgrid.
As an example of a rectilinear grid, we construct a 2D grid that covers

the domain [−1, 1]× [0, 1] and is graded toward x = 0 and y = 1 as shown in
Figure 4.2.

dx = 1−0.5*cos((−1:0.1:1)*pi);
x = −1.15+0.1*cumsum(dx);
y = 0:0.05:1;
G = tensorGrid(x, sqrt(y));
plotGrid(G); axis([−1.05 1.05 −0.05 1.05]);

Curvilinear grids

A curvilinear grid is a grid with the same topological structure as a regular
Cartesian grid, but in which the cells are quadrilaterals rather than rectangles
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in 2D and cuboids rather than parallelepipeds in 3D. The grid is given by the
coordinates of the vertices but there exists a mapping that will transform
the curvilinear grid to a uniform Cartesian grid so that each cell can still be
referenced using a multi-index (i1, i2, . . . ).

For the time being, MRST has no constructor for curvilinear grids. Instead,
the user can create curvilinear grids by first instantiating a regular Cartesian
or a rectilinear grid and then manipulating the vertices, as we will demonstrate
next. This method is quite simple as long as there is a one-to-one mapping
between the curvilinear grid in physical space and the logically Cartesian grid
in reference space. The method will not work if the mapping is not one-to-one
so that vertices with different indices coincide in physical space. In this case,
the user should create an Eclipse input file with keywords COORD[XYZ], see
Section 4.3.1, and use the function buildCoordGrid to create the grid.

To illustrate the discussion, we show two examples of how to create curvi-
linear grids. In the first example, we create a rough grid by perturbing all
internal nodes of a regular Cartesian grid (see Figure 4.3):

nx = 6; ny=12;
G = cartGrid([nx, ny]);
subplot(1,2,1); plotGrid(G);
c = G.nodes.coords;
I = any(c==0,2) | any(c(:,1)==nx,2) | any(c(:,2)==ny,2);
G.nodes.coords(~I,:) = c(~I,:) + 0.6*rand(sum(~I),2)−0.3;
subplot(1,2,2); plotGrid(G);
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Fig. 4.3. The middle plot shows a rough grid created by perturbing all internal
nodes of the regular 6 × 12 Cartesian grid in the left plot. The right plot shows a
curvilinear grid created using the function twister that uses a combination of sin
functions to perturb a rectilinear grid. The color is determined by the cell volumes.

In the second example, we use the MRST example routine twister to perturb
the internal vertices. The function maps the grid back to the unit square,
perturbs the vertices according to the mapping

(xi, yi) 7→
(
xi+f(xi, yi), yi−f(xi, yi)

)
, f(x, y) = 0.03 sin(πx) sin

(
3π(y− 1

2 )
)
,
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and then maps the grid back to its original domain. The resulting grid is
shown in the right plot of Figure 4.3. To illuminate the effect of the mapping,
we have colored the cells according to their volume, which has been computed
using the function computeGeometry, which we will come back to below.

G = cartGrid([30, 20]);
G.nodes.coords = twister(G.nodes.coords);
G = computeGeometry(G);
plotCellData(G, G.cells.volumes, 'EdgeColor', 'k'), colorbar

Fictitious domains

One obvious drawback with Cartesian and rectilinear grids, as defined above,
is that they can only represent rectangular domains in 2D and cubic domains
in 3D. Curvilinear grids, on the other hand, can represent more general shapes
by introducing an appropriate mapping, and can be used in combination with
rectangular/cubic grids in multiblock grids for efficient representation of re-
alistic reservoir geometries. However, finding a mapping that conforms to a
given boundary is often difficult, in particular for complex geologies, and us-
ing a mapping in the interior of the domain will inadvertently lead to cells
with rough geometries that deviate far from being rectilinear. Such cells may
in turn introduce problems if the grid is to be used in a subsequent numerical
discretization, as we will see later.

As an alternative, complex geometries can be easily modelled using struc-
tured grids by a so-called fictitious domain method. In this method, the com-
plex domain is embedded into a larger ”fictitious” domain of simple shape (a
rectangle or cube) using, e.g., a boolean indicator value in each cell to tell
whether the cell is part of the domain or not. The observant reader will notice
that we already have encountered the use of this technique for the SAIGUP
dataset (Figure 3.16) and the Johansen dataset in Chapter 3. In some cases,
one can also adapt the structured grid by moving the nearest vertices to the
domain boundary.

MRST has support for fictitious domain methods through the function
removeCells, which we will demonstrate in the next example, where we create
a regular Cartesian grid that fills the volume of an ellipsoid:

x = linspace(−2,2,21);
G = tensorGrid(x,x,x);
subplot(1,2,1); plotGrid(G);view(3); axis equal

subplot(1,2,2); plotGrid(G,'FaceColor','none');
G = computeGeometry(G);
c = G.cells.centroids;
r = c(:,1).ˆ2 + 0.25*c(:,2).ˆ2+0.25*c(:,3).ˆ2;
G = removeCells(G, r>1);
plotGrid(G); view(−70,70); axis equal;
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Fig. 4.4. Example of a regular Cartesian grid representing a domain in the form of
an ellipsoid. The underlying logical Cartesian grid is shown in the left plot and as
a wireframe in the right plot. The active part of the model is shown in yellow color
in the right plot.

Worth observing here is the use of computeGeometry to compute cell cen-
troids which are not part of the basic geometry representation in MRST.
Plots of the grid before and after removing the inactive parts are shown in
Figure 4.4. Because of the fully unstructured representation used in MRST,
calling computeGeometry actually removes the inactive cells from the grid struc-
ture, but from the outside, the structure behaves as if we had used a fictitious
domain method.

You can find more examples of how you can make structured grids and
populate them with petrophysical properties in the fourth video of the second
MRST Jolt [114].

Computer exercises:

16. Make the grid shown below:

Hint: the grid spacing in the x-direction is given by ∆x(1− 1
2

cos(πx)) and
the colors signify cell volumes.
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17. Metaballs are commonly used in computer graphics to generate organic-
looking objects. Each metaball is defined as a smooth function that has
finite support. One example is

m(~x, r) =
[
1−min

( |~x|2
r2

, 1
)]4

.

Metaballs can be used to define objects implicitly, e.g., as all the points ~x
that satisfy ∑

i

m(~x− ~xi, ri) ≤ C, C ∈ IR+

Use this approach and try to make grids similar to the ones shown below:

18. A simple way to make test models with funny geometries is to use the
method of fictitious and let an image define the domain of interest. In
the example below, the image was taken from penny, which is one of the
standard data sets that are distributed with MATLAB, and then used to
define the geometry of the grid and assign permeability values

Pick your own favorite image or make one in a drawing program and use
imread to load the image into MATLAB as a 3D array, which you can
use to define your geometry and petrophysical values. If you do not have
an image at hand, you can use penny or spine. For penny, in particular,
you may have to experiment a bit with the threshold used to define your
domain to ensure that all cells are connected, i.e., that the grid you obtain
consists of only one piece.
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4.2 Unstructured grids

An unstructured grid consists of a set of simple shapes that are laid out in an
irregular pattern so that any number of cells can meet at a single vertex. The
topology of the grid will therefore change throughout space. An unstructured
grid can generally consist of a combination of polyhedral cells with varying
number of faces, as we will see below. However, the most common forms of
unstructured grids are based on triangles in 2D and tetrahedrons in 3D. These
grids are very flexible and are relatively easy to adapt to complex domains
and structures or refine to provide increased local resolution.

Unlike structured grids, unstructured grids cannot generally be efficiently
referenced using a structured multi-index. Instead, one must describe a list of
connectivities that specifies the way a given set of vertices make up individual
element and element faces, and how these elements are connected to each
other via faces, edges, and vertices.

To understand the properties and construction of unstructured grids, we
start by a brief discussion of two concepts from computational geometry: De-
launay tessellation and Voronoi diagrams. Both these concepts are supported
by standard functionality in MATLAB.

4.2.1 Delaunay tessellation

A tessellation of a set of generating points P = {xi}ni=1 is defined as a set of
simplices that completely fills the convex hull of P. The convex hull H of P is
the convex minimal set that contains P and can be described constructively
as the set of convex combinations of a finite subset of points from P,

H(P) =
{∑̀
i=1

λixi
∣∣ xi ∈ P, λi ∈ R, λi ≥ 0,

∑̀
i=1

λi = 1, 1 ≤ ` ≤ n
}
.

Delaunay tessellation is by far the most common method of generating a tes-
sellation based on a set of generating points. In 2D, the Delaunay tessellation
consists of a set of triangles defined so that three points form the corners of a
Delaunay triangle only when the circumcircle that passes through them con-
tains no other points, see Figure 4.5. The definition using circumcircles can
readily be generalized to higher dimensions using simplices and hyperspheres.

The center of the circumcircle is called the circumcenter of the triangle. We
will come back to this quantity when discussing Voronoi diagrams in the next
subsection. When four (or more) points lie on the same circle, the Delaunay
triangulation is not unique. As an example, consider four points defining a
rectangle. Using either of the two diagonals will give two triangles satisfying
the Delaunay condition.

The Delaunay triangulation can alternatively be defined using the so-called
max-min angle criterion, which states that the Delaunay triangulation is the
one that maximizes the minimum angle of all angles in a triangulation, see
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Fig. 4.5. Two triangles and their circumcircles.

Fig. 4.6. Example of two triangulations of the same five points; the triangulation
to the right satisfies the min-max criterion.

Figure 4.6. Likewise, the Delaunay triangulation minimizes the largest circum-
circle and minimizes the largest min-containment circle, which is the smallest
circle that contains a given triangle. Additionally, the closest two generating
points are connected by an edge of a Delaunay triangulation. This is called
the closest-pair property, and such two neighboring points are often referred
to as natural neighbors. This way, the Delaunay triangulation can be seen as
the natural tessellation of a set of generating points.

Delaunay tessellation is a popular research topic and there exists a large
body of literature on theoretical aspects and computer algorithms. Likewise,
there are a large number of software implementations available on the net.
For this reason, MRST does not have any routines for generating tessellations
based on simplexes. Instead, we have provided simple routines for mapping a
set of points and edges, as generated by MATLAB’s Delaunay triangulation
routines, to the internal data structure used to represent grids in MRST. How
they work, will be illustrated in terms of a few simple examples.

In the first example, we use routines from MATLAB’s polyfun toolbox to
triangulate a rectangular mesh and convert the result using the MRST routine
triangleGrid:

[x,y] = meshgrid(1:10,1:8);
t = delaunay(x(:),y (:));
G = triangleGrid([x(:) y(:)],t);
plot(x(:),y (:), 'o' , 'MarkerSize',8);
plotGrid(G,'FaceColor','none');
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Depending on what version you have of MATLAB, the 2D Delaunay routine
delaunay will produce one of the triangulations shown in Figure 4.7. In older
versions of MATLAB, the implementation of delaunay was based on ’QHULL’
(see http://www.qhull.org), which produces the unstructured triangulation
shown in the right plot. MATLAB 7.9 and newer has improved routines for
2-D and 3-D computational geometry, and here delaunay will produce the
structured triangulation shown in the left plot. However, the n-D tessellation
routine delaunayn([x(:) y (:)]) is still based on ’QHULL’ and will generally
produce an unstructured tessellation, as shown in the right plot.

If the set of generating points is structured, e.g., as one would obtain by
calling either meshgrid or ndgrid, it is straightforward to make a structured
triangulation. The following skeleton of a function makes a 2D triangulation
and can easily be extended by the interested reader to 3D:

function t = mesh2tri(n,m)
[I,J]=ndgrid(1:n−1, 1:m−1); p1=sub2ind([n,m],I(:),J(:));
[I,J]=ndgrid(2:n , 1:m−1); p2=sub2ind([n,m],I(:),J (:));
[I,J]=ndgrid(1:n−1, 2:m ); p3=sub2ind([n,m],I(:),J (:));
[I,J]=ndgrid(2:n , 1:m−1); p4=sub2ind([n,m],I(:),J (:));
[I,J]=ndgrid(2:n , 2:m ); p5=sub2ind([n,m],I(:),J (:));
[I,J]=ndgrid(1:n−1, 2:m ); p6=sub2ind([n,m],I(:),J (:));
t = [p1 p2 p3; p4 p5 p6 ];

In Figure 4.8, we have used the demo case seamount that is supplied with
MATLAB as an example of a more complex unstructured grid

load seamount;
plot(x(:),y (:), 'o' );
G = triangleGrid([x(:) y (:)]);
plotGrid(G,'FaceColor',[.8 .8 .8 ]); axis off;

The observant reader will notice that here we do not explicitly generate a
triangulation before calling triangleGrid; if the second argument is omitted,
the routine uses MATLAB’s built-in delaunay triangulation as default.

For 3D grids, MRST supplies a conversion routine tetrahedralGrid(P, T)

that constructs a valid grid definition from a set of points P (m × 3 array

Fig. 4.7. Two different Delaunay tessellations of a rectangular point mesh.
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88 4 Grids in Subsurface Modeling

Fig. 4.8. The left plot shows the triangular grid from the seamount demo case. The
right plot shows a tetrahedral tessellation of a 3D point mesh.

of node coordinates) and a tetrahedron list T (n array of node indices). The
tetrahedral tessellation shown to the right in Figure 4.8 was constructed from
a set of generating points defined by perturbing a regular hexahedral point
mesh:

N=7; M=5; K=3;
[x,y,z] = ndgrid(0:N,0:M,0:K);
x(2:N ,2:M ,:) = x(2:N,2:M ,:) + 0.3*randn(N−1,M−1,K+1);
y(2:N ,2:M ,:) = y(2:N,2:M ,:) + 0.3*randn(N−1,M−1,K+1);
G = tetrahedralGrid([x(:) y(:) z (:)]);
plotGrid(G, 'FaceColor' ,[.8 .8 .8 ]); view(−40,60); axis tight off

4.2.2 Voronoi diagrams

The Voronoi diagram of a set of points P = {xi}ni=1 is the partitioning of Eu-
clidean space into n (possibly unbounded) convex polytopes1 such that each
polytope contains exactly one generating point xi and every point inside the
given polytope is closer to its generating point than any other point in P.
The convex polytopes are called Voronoi cells (or Voronoi regions). Mathe-
matically, the Voronoi cell V (xi) of generating point xi in P can be defined
as

V (xi) =
{
x
∣∣ ‖x− xi‖ < ‖x− xj‖ ∀j 6= i

}
. (4.1)

A Voronoi region is not closed in the sense that a point that is equally close
to two or more generating points does not belong to the region defined by
(4.1). Instead, these points are said to lie on the Voronoi segments and can
be included in the Voronoi cells by defining the closure of V (xi), using “≤”
rather than “<” in (4.1).

1 A polytope is a generic term that refers to a polygon in 2D, a polyhedron in 3D,
and so on.
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Fig. 4.9. Duality between Voronoi diagrams and Delaunay triangulation. From top
left to bottom right: generating points, Delaunay triangulation, Voronoi diagram,
and Voronoi diagram (thick lines) and Delaunay triangulation (thin lines).

The Voronoi cells for all generating points lying at the convex hull of P are
unbounded, all other Voronoi cells are bounded. For each pair of two points
xi and xj , one can define a hyperplane with co-dimension one consisting of
all points that lie equally close to xi and xj . This hyperplane is the perpen-
dicular bisector to the line segment between xi and xj and passes through
the midpoint of the line segment. The Voronoi diagram of a set of points
can be derived directly as the dual of the Delaunay triangulation of the same
points. To understand this, we consider the planar case, see Figure 4.9. For
every triangle, there is a polyhedron in which vertices occupy complementary
locations:

� The circumcenter of a Delaunay triangle corresponds to a vertex of a
Voronoi cell.

� Each vertex in the Delaunay triangulation corresponds to, and is the center
of, a Voronoi cell.

Moreover, for locally orthogonal Voronoi diagrams, an edge in the Delaunay
triangulation corresponds to a segment in the Voronoi diagram and the two
intersect each other orthogonally. However, as we can see in Figure 4.9, this
is not always the case. If the circumcenter of a triangle lies outside the trian-
gle itself, the Voronoi segment does not intersect the corresponding Delaunay
edge. To avoid this situation, one can perform a constrained Delaunay trian-
gulation and insert additional points where the constraint is not met (i.e., the
circumcenter is outside its triangle).

Figure 4.10 shows three examples of planar Voronoi diagrams generated
from 2D point lattices using the MATLAB-function voronoi. MRST does not
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Fig. 4.10. Three examples of Voronoi diagrams generated from 2D point lattices.
From left to right: square lattice, square lattice rotated 45 degrees, lattice forming
equilateral triangles.

Fig. 4.11. Two examples of Voronoi grids. The left plot shows a honeycombed PEBI
grid and the right plot shows the PEBI grid derived from the seamount demo case.

yet have a similar function that generates a Voronoi grid from a point set,
but offers V=pebi(T) that generates a locally orthogonal, 2D Voronoi grid V

as a dual to a triangular grid T. The grids are constructed by connecting the
perpendicular bisectors of the edges of the Delaunay triangulation, hence the
name perpendicular bisector (PEBI) grids. To demonstrate the functionality,
we first generate a honeycombed grid similar to the one shown in the right
plot in Figure 4.10

[x,y] = meshgrid([0:4]*2*cos(pi/6),0:3);
x = [x (:); x(:)+cos(pi/6)];
y = [y (:); y(:)+sin(pi/6)];
G = triangleGrid([x,y]);
plotGrid(pebi(G), 'FaceColor','none'); axis equal off

The result is shown in Figure 4.11. As a second example, we reiterate the
seamount examples shown in Figure 4.8

load seamount

V = pebi(triangleGrid([x y]));
plotGrid(V,'FaceColor',[.8 .8 .8 ]); axis off;

Several of the examples discussed above can also be found in the fifth video
of the second MRST Jolt [114]. Since pebi is a 2D code, we cannot apply it
directly to the 3D tetrahedral grid shown in Figure 4.8 to generate a dual 3D
Voronoi grid. In the next section, we discuss a simple approach in geological
modeling in which we extrude 2D Voronoi grid to 3D to preserve geological
layering. The interested reader should consult [129] and references therein for
more discussion of general 3D Voroni grids.
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4.2.3 Other types of tessellations

Tessellations come in many other forms than the Delaunay and Voronoi types
discussed in the two previous sections. Tessellations are more commonly re-
ferred to as tilings and are patterns made up of geometric forms (tiles) that
are repeated over and over without overlapping or leaving any gaps. Such
tilings can be found in many patterns of nature, like in honeycombs, gi-
raffe skin, pineapples, snake skin, tortoise shells, to name a few. Tessella-
tions have also been extensively used for artistic purposes since ancient times,
from the decorative tiles of Ancient Rome and Islamic art to the amazing
artwork of M. C. Esher. For completeness (and fun), MRST offers the func-
tion tessellationGrid that can take a tessellation consisting of symmetric
n-polygonals and turn it into a correct grid structure. While this may not be
very useful in modeling petroleum reservoirs, it can easily be used to generate
irregular grids that can be used to stress-test various discretization methods.
Let us first use it to make a standard n×m Cartesian mesh:

[x,y] = meshgrid(linspace(0,1,n+1),linspace(0,1,m+1));
I = reshape(1:(n+1)*(m+1),m+1,n+1);
T = [reshape(I(1:end−1,1:end−1),[],1)'; reshape(I(1:end−1,2:end ),[],1)';

reshape(I(2:end, 2:end ),[],1)'; reshape(I(2:end, 1:end −1),[],1)']';
G = tessellationGrid([x(:) y(:)], T);

Here, the vertices and cells are numbered first in the y direction and then in the
x-direction, so that the first two lines in T read [1 m+2 m+3 2; 2 m+3 m+4 3],
and so on.

There are obviously many ways to make more general tilings. The script
showTessellation in the book module shows two slightly different ap-
proaches. To generate the alternating convex/concave hexagonal tiling illus-
trated in Figure 4.12 we first generate the convex and the concave tiles. These
will have symmetry lines that together form a triangle for each tile, which
we can use to glue the tiles together. If we glue a convex (blue) to the right
edge of the concave (yellow) tile and likewise glue a concave (yellow) tile to
the right of the upper convex (blue) tile, we get a dodecagon consisting of
two convex and two concave tiles. This composite tile can now be placed on
a regular mesh; in Figure 4.12 we have used a 4× 2 regular mesh.

To generate the tiling shown in Figure 4.13 we start from an equilateral
triangulation (p,t) covering a certain part of space. We then extract the end-
points p1 and p2 on each edge and compute the angle φ the line between them
makes with the x-axis. We will use this information to perturb the points. By
using this orientation of the lines, we can easily make sure that the original
triangles can be turned into matching 3n-polygons for n = 2, 3, . . . , if we for
each triple of new points we add, describe the point added to the original p1p2

line on the form (with α and β constants for each triplet):

x = p1 + α|p2 − p1|[cos(φ+ β), sin(φ+ β)].

Figure 4.13 shows that consecutive addition of four points on each original line
segment, thereby turning a triangulation into a pentadecagonal tessellation.
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Convex/concave tiles Tiling of space

Fig. 4.12. Tiling consisting of alternating convex and concave hexahedrons.

Triangles Hexagons Nonagons Dodecagons

Pentadecagons Tiling of space

Fig. 4.13. Gradual creation of a tiling consisting of irregular pentadecagons. (Can
you see the hen facing left and the man running towards the right?).
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4.2.4 Using an external mesh generator

Using a Delaunay triangulation as discussed above, we can generate grids that
fit a given set of vertices. However, in most applications, the vertex points are
not give a priori and all one wants is a reasonable grid that fits an exterior
boundary describing the perimeter of the domain and possibly also a set of in-
terior boundaries and/or features, which in the case of subsurface media could
be faults or major fractures. To this end, one typically will have to use a mesh
generator. There are a large number of mesh generators available online, and
in principle any of these can be used in combination with MRST’s grid factory
routines as long as they produce triangulations on the form outlined above.
My personal favorite is DistMesh by Persson and Strang [157]. While most
mesh generators tend to be complex and quite inaccessible codes, DistMesh
is a relatively short and simple MATLAB code written in the same spirit as
MRST. The performance of the code may not be optimal, but the user can go
in and inspect all algorithms and modify them to his or her purpose. In the
following, we will use DistMesh to generate a few examples of more complex
triangular and Voronoi grids in 2D.

DistMesh is distributed under the GNU GPL license (which is the same
license that MRST uses) and can be downloaded from the software’s webpage.
The simplest way to integrate DistMesh with MRST is to install it as a 3rd-
party module. Assuming that you are connected to internet, this is done as
follows:

path = fullfile(ROOTDIR,'utils','3rdparty', 'distmesh');
mkdir(path)
unzip('http://persson.berkeley.edu/distmesh/distmesh.zip', path);
mrstPath('reregister ' , 'distmesh', path);

You are now ready to start using the software. If you intend to use DistMesh

many times, you should copy the last line to the startup_user.m file in the
MRST root directory.

In DistMesh, the perimeter of the domain is represented using a signed
distance function d(x, y), which is by definition set to be negative inside the
region. The software offers a number of utility functions that makes it simple
to describe relatively complex geometries, as we shall see in the following. Let
us start with a simple example, which is taken from the DistMesh webpage:
Consider a square domain [−1, 1]× [−1, 1] with a circular cutout of radius 0.5
centered at the origin. We start by making a grid that has a uniform target
size h = 0.2

mrstModule add distmesh;
fd=@(p) ddiff(drectangle(p,−1,1,−1,1), dcircle(p,0,0,0.5));
[p,t]=distmesh2d(fd, @huniform, 0.2, [−1,−1;1,1], [−1,−1;−1,1;1,−1;1,1]);
G = triangleGrid(p, t);
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Fig. 4.14. Grids generated by the DistMesh grid generator.

Here, we have used utility functions ddif, drectangle and dcircle to com-
pute the signed distance from the outer and the inner perimeter. Likewise, the
huniform to set enforce uniform cell size equal distance between the points
in the initial, which here is 0.2. The fourth argument is the bounding box
of our domain, and the fifth argument consist of fixed points that the algo-
rithm is not allowed to move. After the triangulation has been computed by
distmesh2d we pass it to triangleGrid to make a MRST grid structure. The
resulting grid is shown to the left in Figure 4.14.

As a second test, let us make a graded grid that has a mesh size of ap-
proximately 0.05 at the inner circle and 0.2–0.35 at the outer perimeter. To
enforce this, we replace the huniform function by another function that gives
the correct mesh size distribution

fh=@(p) 0.05+0.3*dcircle(p,0,0,0.5);
[p,t]=distmesh2d(fd, fh, 0.05,[−1,−1;1,1], [−1,−1;−1,1;1,−1;1,1]);

The resulting grid is shown in the middle plot in Figure 4.14 and has the
expected grading from the inner boundary and outwards to the perimeter.

In our last example, we will create a graded triangulation of a polygonal
domain and then use pebi to compute its Voronoi diagram

pv = [−1 −1; 0 −.5; 1 −1; 1 1; 0 .5; −1 1; −1 −1];
fh = @(p,x) 0.025 + 0.375*sum(p.ˆ2,2);
[p,t] = distmesh2d(@dpoly, fh, 0.025, [−1 −1; 1 1], pv, pv);
G = pebi(triangleGrid(p, t));

Here, we use the utility function dpoly(p,pv) to compute the signed distance
of any point set p to the polygon with vertices in pv. Notice that pv must
form a closed path. Likewise, since the signed distance function and the grid
density function are assumed to take the same number of arguments, fh is
created with a dummy argument x. The argument sent to these functions are
passed as the sixth argument to distmesh2d. The resulting grid is shown to
the right in Figure 4.14.

DistMesh also has routines for creating nD triangulations and triangula-
tions of surfaces, but these are beyond the scope of the current presentation.
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Computer exercises:

19. Create MRST grids from the standard data sets trimesh2d and tetmesh.
How would you assign lognormal petrophysical parameters to these grids
so that the spatial correlation is preserved?

20. In MRST all triangular grids are assumed to be planar so that each vertex
can be given by a 2D coordinate. However, triangular grids are commonly
used to represent non-planar surfaces in 3D. Can you extend the function
triangleGrid so that it can construct both 2D and 3D grids? You can use
the data set trimesh3d as an example of a triangulated 3D surface.

21. MRST does not yet have a grid factory routine to generate structured grids
with local, nested refinement as shown in the figure to the left below.

Try to use a combination of triangleGrid and pebi to make a good approx-
imation to such a grid as shown to the right in the figure above. (Hint: to get
rid of artifacts, one layer of cells were removed along the outer boundary.)

22. The figure below shows an unstructured hexagonal grid that has been
adapted to two faults in the interior of the domain and padded with rect-
angular cells near the boundary. Try to implement a routine that generates
a similar grid.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Hint: in this case, the strike direction of the faults are ±30◦ and the start
and endpoints of the faults have been adjusted so that they coincide with
the generating points of hexagonal cells.

23. What would you do to fit the tessellations in Figures 4.12 and 4.13 so that
they fill a rectangular box without leaving any gaps along the border?

24. Download and install distmesh and try to make MRST grids from all the
triangulations shown in [157, Fig. 5.1].
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4.3 Stratigraphic grids

In the previous chapter, we saw that grid models are used as an important
ingredient in describing the geometrical and petrophysical properties of a sub-
surface reservoir. This means that the grid is closely attached to the parameter
description of the flow model and, unlike in many other disciplines, cannot be
chosen arbitrarily to provide a certain numerical accuracy. Indeed, the grid
is typically chosen by a geologist who tries to describe the rock body by as
few volumetric cells as possible and who basically does not care too much
about potential numerical difficulties his or her choice of grid may cause in
subsequent flow simulations. This statement is, of course, grossly simplified
but is important to bear in mind throughout the rest of this chapter.

The industry standard for representing the reservoir geology in a flow simu-
lator is through the use of a stratigraphic grid that is built based on geological
horizons and fault surfaces. The volumetric grid is typically built by extrud-
ing 2D tessellations of the geological horizons in the vertical direction or in
a direction following major fault surfaces. For this reason, some stratigraphic
grids, like the PEBI grids that we will meet in Section 4.3.2, are often called
2.5D rather than 3D grids. These grids may be unstructured in the lateral
direction, but have a clear structure in the vertical direction to reflect the
layering of the reservoir.

Because of the role grid models play in representing geological formations,
real-life stratigraphic grids tend to be highly complex and have unstructured
connections induced by the displacements that have occured over faults. An-
other characteristic feature is high aspect ratios. Typical reservoirs extend
several hundred or thousand meters in the lateral direction, but the zones car-
rying hydrocarbon may be just a few tens of meters in the vertical direction
and consist of several layers with (largely) different rock properties. Getting
the stratigraphy correct is crucial, and high-resolution geological modeling
will typically result in a high number of (very) thin grid layers in the vertical
direction, resulting in two or three orders of magnitude aspect ratios.

A full exposition of stratigraphic grids is way beyond the scope of this
book. In next two subsections, we will discuss the basics of the two most
commonly used forms of stratigraphic grids. A complementary discussion is
given in videos 2, 6, and 7 of the second MRST Jolt [114].

4.3.1 Corner-point grids

To model the geological structures of petroleum reservoirs, the industry-
standard approach is to introduce what is called a corner-point grid [160],
which we already encountered in Chapter 3.5. A corner-point grid consists of
a set of hexahedral cells that are topologically aligned in a Cartesian fashion
so that the cells can be numbered using a logical ijk index. In its simplest
form, a corner-point grid is specified in terms of a set of vertical or inclined
pillars defined over an areal Cartesian 2D mesh in the lateral direction. Each
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Fig. 4.15. Each cell in the corner-point grid is restricted by four pillars and two
points on each pillar.

cell in the volumetric grid has eight logical corner points that are restricted
by four pillars and specified as two depth-coordinates on each pillar, see Fig-
ure 4.15. Each grid consists of nx×ny×nz grid cells and the cells are ordered
with the i-index (x-axis) cycling fastest, then the j-index (y-axis), and finally
the k-index (negative z-direction). All cellwise property data are assumed to
follow the same numbering scheme.

As discussed previously, a fictitious domain approach is used to embed the
reservoir in a logically Cartesian shoe-box. This means that inactive cells that
are not part of the physical model, e.g., as shown in Figure 3.16, are present
in the topological ijk-numbering but are indicated by a zero porosity or net-
to-gross value, as discussed in Chapter 3.4 or marked by a special boolean
indicator (called ACTNUM in the input files).

So far, the topology and geometry of a corner-point grid have not devi-
ated from that of the mapped Cartesian grids studied in the previous section.
Somewhat simplified, one may view the logical ijk numbering as a reflection
of the sedimentary rock bodies as they may have appeared at geological ’time
zero’ when all rock facies have been deposited as part of horizontal layers in the
grid (i.e., cells with varying i and j but constant k). To model geological fea-
tures like erosion and pinch-outs of geological layers, the corner-point format
allows point-pairs to collapse along pillars. This creates degenerate hexahe-
dral cells that may have less than six faces, as illustrated in Figure 4.16. The
corner points can even collapse along all four pillars, so that a cell completely
disappears. This will implicitly introduce a new topology, which is sometimes
referred to as ’non-neighboring connections’, in which cells that are not logi-
cal k neighbors can be neighbors and share a common face in physical space.
An example of a model that contains both eroded geological layers and fully
collapsed cells is shown in Figure 4.17. In a similar manner, (simple) vertical
and inclined faults can be easily modelled by aligning the pillars with fault
surfaces and displacing the corner points defining the neighboring cells on one
or both sides of the fault. This way, one creates non-matching geometries and
non-neighboring connections in the underlying ijk topology.
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Fig. 4.16. Examples of deformed and degenerate hexahedral cells arising in corner-
point grid models.

Fig. 4.17. Side view in the xz-plane of corner-point grid with vertical pillars mod-
eling a stack of sedimentary beds (each layer indicated by a different color).

To illustrate the concepts introduced so far, we consider a low-resolution
version of the model from Figure 3.11 on page 62 created by the simpleGrdecl

grid-factory routine, which generates an input stream containing the basic
keywords that describe a corner-point grid in the Eclipse input deck

grdecl = simpleGrdecl([4, 2, 3], .12, ' flat ' , true);

grdecl =
cartDims: [4 2 3]

COORD: [90x1 double]
ZCORN: [192x1 double]

ACTNUM: [24x1 int32]

The 5 × 3 mesh of pillars are given in terms of a pair of 3D coordinates for
each pillar in the COORD field, whereas the z-values that determine vertical
positions uniquely along each pillar for the eight corner-points of the 24 cells
are given in the ZCORN field. To extract these data, we use two MRST routines

[X,Y,Z] = buildCornerPtPillars(grdecl,'Scale',true);
[x,y,z] = buildCornerPtNodes(grdecl);

Having obtained the necessary data, we plot the pillars and the corner-points
and mark pillars on which the corner-points of logical ij neighbors do not
coincide,
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Fig. 4.18. Specification of a corner-point grid. Starting from the pillars (upper left),
we add corner-points and identify pillars containing non-matching corner marked in
red (upper right). A stack of cells is created for each set of four pillars (lower left),
and then the full grid is obtained (lower right). In the last plot, the fault faces have
been marked in blue.

% Plot pillars
plot3(X',Y ',Z ', 'k' );
set(gca,'zdir ' , ' reverse ' ), view(35,35), axis off, zoom(1.2);

% Plot points on pillars , mark pillars with faults red
hold on; I=[3 8 13];
hpr = plot3(X(I ,:)',Y(I ,:)', Z(I ,:)', 'r ' , 'LineWidth',2);
hpt = plot3(x(:),y (:),z (:), 'o' ); hold off;

The resulting plots are shown in the upper row of Figure 4.18, in which we
clearly see how the pillars change slope from the east and west side toward the
fault in the middle, and how the grid points sit like beads-on-a-string along
each pillar.

Cells are now defined by connecting pairs of points from four neighboring
pillars that make up a rectangle in the lateral direction. To see this, we plot
two vertical stacks of cells and finally the whole grid with the fault surface
marked in blue:
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Fig. 4.19. Subdivision of fault face in two three-dimensional models. In the left
column, the subfaces are all rectangular. In the right columns they are not. In both
the upper plots, the faces marked in red belong only to the cells behind the fault
surface, the blue faces belong only to the cells in front of the fault surface, and the
magenta ones belong to cells on both sides. The lower plot shows the cells behind
the surface, where each cell has been given its own color.

% Create grid and plot two stacks of cells
G = processGRDECL(grdecl);
args = {'FaceColor'; 'r ' ; 'EdgeColor'; 'k'};
hcst = plotGrid(G,[1:8:24 7:8:24], 'FaceAlpha', .1, args{:});

% Plot cells and fault surface
delete([hpt; hpr; hcst]);
plotGrid(G,'FaceAlpha', .15, args{:});
plotFaces(G, G.faces.tag>0,'FaceColor','b','FaceAlpha',.4);

The upper-left plot in Figure 4.19 shows the same model sampled with even
fewer cells. To highlight the non-matching cell faces along the fault plane we
have used different coloring of the cell faces on each side of the fault. In MRST,
we have chosen to represent corner-point grids as matching unstructured grids
obtained by subdividing all non-matching cell faces, instead of using the more
compact non-matching hexahedral form. For the model in Figure 4.19, this
means that the four cells that have non-neighboring connections across the
fault plane will have seven and not six faces. For each such cell, two of the
seven faces lie along the fault plane. For the regular model studied here, the
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subdivision results in new faces that all have four corners (and are rectangu-
lar). However, this is not generally the case, as is shown in the right column
of Figure 4.19, where we can see cells with six, seven, eight faces, and faces
with three, four, and five corners. Indeed, for real-life models, subdivision of
non-matching fault faces can lead to cells that have much more than six faces.

Using the inherent flexibility of the corner-point format it is possible to
construct very complex geological models that come a long way in matching
the geologist’s perception of the underlying rock formations. Because of their
many appealing features, corner-point grids have been an industry standard
for years and the format is supported in most commercial software for reservoir
modeling and simulation.

A synthetic faulted reservoir

In our first example, we consider a synthetic model of two intersecting faults
that make up the letter Y in the lateral direction. The two fault surfaces
are highly deviated, making an angle far from 90 degrees with the horizontal
direction. To model this scenario using corner-point grids, we basically have
two different choices. The first choice, which is quite common, is to let the
pillars (and hence the extrusion direction) follow the main fault surfaces. For
highly deviated faults, like in the current case, this will lead to extruded cells
that are far fromK-orthogonal and hence susceptible to grid-orientation errors
in a subsequent simulation, as will be discussed in more detail in Chapter 8.
Alternatively, we can choose a vertical extrusion direction and replace deviated
fault surfaces by stair-stepped approximations so that the faults zigzag in
direction not aligned with the grid. This will create cells that are mostly
K-orthogonal and less prone to grid-orientation errors.

Figure 4.20 shows two different grid models, taken from the CaseB4 data
set. In the stair-stepped model, the use of cells with orthogonal faces causes
the faults to be represented as zigzag patterns. The pillar grid correctly rep-
resents the faults as inclined planes, but has cells with degenerate geometries
and cells that deviate strongly from being orthogonal in the lateral direction.
Likewise, some pillars have close to 45 degrees inclination, which will likely
give significant grid-orientation effects in a standard two-point scheme.

A simulation model of the Norne Field

Norne is an oil and gas field lies located in the Norwegian Sea. The reservoir
is found in Jurassic sandstone at a depth of 2500 meter below sea level, and
was originally estimated to contain 90.8 million m3 oil, mainly in the Ile
and Tofte formations, and 12.0 billion m3 in the Garn formation. The field
is operated by Statoil and production started in November 1997, using a
floating production, storage and offloading (FPSO) ship connected to seven
subsea templates at a water depth of 380 meters. The oil is produced with
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deviated pillars zoom of fault intersection

stair-stepped zoom of fault intersection

Fig. 4.20. Modeling the intersection of two deviated faults using deviated pillars
(top) and stair-stepped approximation (bottom). CaseB4 grids courtesy of Statoil.

water injection as the main drive mechanisms and the expected ultimate oil
recovery is more than 60%, which is very high for a subsea oil reservoir. During
thirteen years of production, five 4D seismic surveys of high quality have been
recorded. Operator Statoil and partners (ENI and Petoro) have agreed with
NTNU to release large amounts of subsurface data from the Norne field for
research and education purposes. An important objective of this agreement is
to establish a number of international benchmark cases based on real data for
the testing of reservoir characterization/history matching and/or production
optimization methodologies. More specifically, the Norne Benchmark data sets
are hosted and supported by the Center for Integrated Operations in the
Petroleum Industry (IO Center) at NTNU:

http://www.ipt.ntnu.no/~norne/

Here, we will use the simulation model released as part of “Package 2: Full field
model” (2013) as an example of a real reservoir. We emphasize that the view
expressed in the following are the views of the author and do not necessarily
reflect the views of Statoil and the Norne license partners.

The model consists of a 46×112×22 corner-point grid, given in the Eclipse
format, which can be read as discussed for the SAIGUP model in Chapter 3.5.
We start by plotting the whole model, including inactive cells. To this end,
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plotGrid (G , 'FaceColor','none', 'EdgeAlpha',.1);
plotFaces (G , G.faces.tag >0, ...

'FaceColor','red' , 'FaceAlpha',.2, ...
'EdgeColor','r' , 'EdgeAlpha',.1);

axis off ; view(−155,80); zoom(1.7 );

plotGrid (G , ~actnum ( G.cells.indexMap ), ...
'FaceColor','none', 'EdgeAlpha',.1);

plotGrid (G , actnum ( G.cells.indexMap ), ...
'FaceColor','y' , 'EdgeAlpha',.1);

axis off ; view(−155,80); zoom(1.7 );

Fig. 4.21. The Norne field, a real model from the Norwegian Sea. The plots show
the whole grid with fault faces marked in red (left) and active cells marked in yellow
(right).

we need to override2 the ACTNUM field before we start processing the input,
because if the ACTNUM flag is set, all inactive cells will be ignored when the
unstructured grid is built

actnum = grdecl.ACTNUM;
grdecl.ACTNUM = ones(prod(grdecl.cartDims),1);
G = processGRDECL(grdecl, 'checkgrid', false);

Having obtained the grid in the correct unstructured format, we first plot the
outline of the whole model and highlight all faults and the active part of the
model, see Figure 4.21. During the processing, all fault faces are tagged with
a positive number. This can be utilized to highlight the faults: we simply find
all faces with a positive tag, and color them with a specific color as shown
in the left box in the figure. We now continue with the active model only.
Hence, we reset the ACTNUM field to its original values so that inactive cells
are ignored when we process the Eclipse input stream. In particular, we will
examine some parts of the model in more detail. To this end, we will use the
function cutGrdecl that extracts a rectangular box in index space from the
Eclipse input stream, e.g., as follows

cut_grdecl = cutGrdecl(grdecl, [6 15; 80 100; 1 22]);
g = processGRDECL(cut_grdecl);

2 At this point we hasten to warn the reader that inactive cells often contain garbage
data and may generally not be inspected in this manner. Here, however, most in-
active cells are defined in a reasonable way. By not performing basic sanity checks
on the resulting grid (option 'checkgrid'=false), we manage to process the grid
and produce reasonable graphical output. In general, however, we strongly advice
that 'checkgrid' remains set in its default state of true.
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In Figure 4.22, we have zoomed in on four different regions. The first region
(red color), is sampled near a laterally stair-stepped fault, which is a curved
fault surface that has been approximated by a surface that zigzags in the
lateral direction. We also notice how the fault displacement leads to cells
that are non-matching across the fault surface and the presence of some very
thin layers (the thinnest layers may actually appear to be thick lines in the
plot). The thin layers are also clearly seen in the second region (magenta
color), which represents a somewhat larger sample from an area near the tip
of one of the ’fingers’ in the model. Here, we clearly see how similar layers
have been strongly displaced across the fault zone. In the third (blue) region,
we have colored the fault faces to clearly show the displacement and the hole
through the model in the vertical direction, which likely corresponds to a shale
layer that has been eliminated from the active model. Gaps and holes, and
displacement along fault faces, are even more evident for the vertical cross-
section (green region) for which the layers have been given different colors as
in Figure 4.17. Altogether, the four views of the model demonstrate typical
patterns that can be seen in realistic models.

Extensions, difficulties, and challenges

The original corner-point format has been extended in several directions, for
instance to enable vertical intersection of two straight pillars in the shape of
the letter Y. The pillars may also be piecewise polynomial curves, resulting
in what is sometimes called S-faulted grids. Likewise, two neighboring pillars
can collapse so that the basic grid shape becomes a prism rather than a hex-
ahedron. However, there are several features that cannot easily be modelled,
including multiple fault intersections (e.g., as in the letter ’F’) and for this
reason, the industry is constantly in search for improved gridding methods.
One example will be discussed in the next subsection. First, however, we will
discuss some difficulties and challenges, seen from the side of a computational
scientist seeking to use corner-point grids for computations.

The flexible cell geometry of the corner-point format poses several chal-
lenges for numerical implementations. Indeed, a geocellular grid is typically
chosen by a geologist who tries to describe the rock body by as few volumetric
cells as possible and who basically does not care too much about potential
numerical difficulties his or her choice of geometries and topologies may cause
in subsequent flow simulations.

Writing a robust grid-processing algorithm to compute geometry and
topology or determine an equivalent matching, polyhedral grid can be quite
a challenge. Displacements across faults will lead to geometrically complex,
non-conforming grids, e.g., as illustrated in Figure 4.22. Since each face of a
grid cell is specified by four (arbitrary) points, the cell interfaces in the grid
will generally be bilinear, possibly strongly curved surfaces. Geometrically,
this can lead to several complications. Cell faces on different sides of a fault
may intersect each other so that cells overlap volumetrically. Cell faces need
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a) The whole model with active and inactive
cells and four regions of interest marked in dif-
ferent colors

b) Zoom of the red region with
pillars and corner-points shown
as red circles

c) The magenta region with col-
oring according to cell volumes,
which vary by a factor 700.

d) The blue region in which fault faces
have been colored gray and the corre-
sponding grid lines have been colored blue.

e) The green cross-section with coloring according to layer number from top to
bottom of the model.

Fig. 4.22. Detailed view of subsets from the Norne simulation model.
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a) Many faces resulting from subdivi-
sion to give matching grid at faults

b) A curved 800 × 800 × 0.25 m cell,
whose centroid lies outside the cell

c) Difficult geometries d) Small interface between two cells

Fig. 4.23. Illustration of difficulties and challenges associated with real-life corner-
point geometries.

not be matching, which may leave void spaces. There may be tiny overlap
areas between cell faces on different sides a fault, and so on. All these factors
contribute to make fault geometries hard to interpret in a consistent way: a
subdivision into triangles is, for instance, not unique. Likewise, top and bot-
tom surfaces may intersect for highly curved cells with high aspect ratios, cell
centroids may be outside the cell volume, etc.

The presence of degenerate cells, in which the corner-points collapse in
pairs, implies that the cells will generally be polyhedral and possibly con-
tain both triangular and bilinear faces (see Figure 4.16). Corner-point cells
will typically be non-matching across faults or may have zero volume, which
both introduces coupling between non-neighboring cells and gives rise to dis-
cretization matrices with complex sparsity patterns. All these facts call for
flexible discretizations that are not sensitive to the geometry of each cell or
the number of faces and corner points. Although not a problem for industry-
standard two-point discretizations, it will pose implementational challenges
for more advanced discretization methods that rely on the use of dual grids or
reference elements. Figure 4.23 illustrates some geometrical and topological
challenges seen in standard grid models.

To adapt to sloping faults, curved horizons and layers, lateral features, and
so on, cell geometries may often deviate significantly from being orthogonal,
which may generally introduce significant grid-orientation effects, in particular
for the industry-standard two-point scheme (as we will see later).

Stratigraphic grids will often have aspect ratios that are two or three
orders of magnitude. Such high aspect ratios can introduce severe numerical
difficulties because the majority of the flow in and out of a cell occurs across
the faces with the smallest area. Similarly, the possible presence of strong
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a) Triangulated point set b) Perpendicular bisector grid

c) Pillars aligned with faults d) Volumetric extrusion

Fig. 4.24. Illustration of a typical process for generating 2.5D PEBI grids.

heterogeneities and anisotropies in the permeability fields, e.g., as seen in the
SPE 10 example in Chapter 3, typically introduces large condition numbers
in the discretized flow equations.

Corner-point grids generated by geological modeling typically contain too
many cells. Once created by the geologist, the grid is handed to a reservoir
engineer, whose first job is to reduce the number of cells if he or she is to
have any hope of getting the model through a simulator. The generation of
good coarse grids for use in upscaling, and the upscaling procedure itself, is
generally work-intensive, error prone, and not always sufficiently robust, as
we will come back to later in the book.

4.3.2 2.5D unstructured grids

Corner-point grids are well suited to represent stratigraphic layers and faults
which laterally coincide with one of the coordinate directions. Although the
great flexibility inherent in the corner-point scheme can be used to adapt to
areally skewed or curved faults, or other areal features, the resulting cell ge-
ometries will typically deviate far from being orthogonal, and hence introduce
numerical problems in a subsequent flow simulation, as discussed above.

So-called 2.5D grids are often used to overcome the problem of areal adap-
tion. These grids have been designed to combine the advantages of two dif-
ferent gridding methods: the (areal) flexibility of unstructured grids and the
simple topology of Cartesian grids in the vertical direction. The 2.5D grids
are constructed in much the same way as corner-point grids, but instead of
defining pillars using a structured areal mesh, the pillars are defined based on
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Fig. 4.25. The left plot shows a 2.5D Voronoi grid derived from a perturbed 2D
point mesh extruded in the z-direction, whereas the right plot shows a radial grid.

an unstructured lateral grid. To generate such a grid, one starts by defining
an areal tessellation on a surface that either aligns with the lateral direction
or one of the major geological horizons. Then a pillar is introduced through
each vertex in the areal grid. The pillars can either be vertical, inclined to
gradually align with major fault planes as shown for the corner-point grid in
Figure 4.20, or be defined so that they connect pairs of vertices in two areal
tessellations placed above each other, e.g., so that these are aligned with two
different geological horizons. Figure 4.24 shows the key steps in the construc-
tion of a simple 2.5D PEBI grid. Starting from a set of generating points,
an areal tessellation is formed by first computing the Delaunay triangulation
and then constructing a perpendicular bisector grid. Through each vertex in
the areal tessellation, we define a pillar, whose angle of inclination will change
from 90 degrees for vertices on the far left to 45 degrees for vertices on the far
right. The pillars are then used to extrude the areal tessellation to a volumet-
ric grid. The resulting volumetric grid is unstructured in the lateral direction,
but has a layered structure in the vertical direction (and can thus be indexed
using a [I,K] index pair). Because the grid is unstructured in the lateral di-
rection, there is a quite large freedom in choosing the size and shape of the
grid cells to adapt to complex features such as curved faults or to improve the
areal resolution in near-well zones.

As a first example of a 2.5D grid, we first construct a lateral 2D Voronoi
grid from a set of generating points obtained by perturbing the vertices of a
regular Cartesian grid, then use the function makeLayeredGrid to extrude this
Voronoi grid to 3D along vertical pillars in the z-direction.

N=7; M=5; [x,y] = ndgrid(0:N,0:M);
x(2:N ,2:M) = x(2:N,2:M) + 0.3*randn(N−1,M−1);
y(2:N ,2:M) = y(2:N,2:M) + 0.3*randn(N−1,M−1);
aG = pebi(triangleGrid([x(:) y(:)]));
G = makeLayeredGrid(aG, 3);
plotGrid(G, 'FaceColor' ,[.8 .8 .8 ]); view(−40,60); axis tight off

The resulting grid is shown in the left plot of Figure 4.25 and should be
contrasted to the 3D tetrahedral tessellation shown to the right in Figure 4.8
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As a second example, we will generate a PEBI grid with radial symmetry,
which is graded towards the origin

P = [];
for r = exp(−3.5:.25:0),

[x,y,z] = cylinder(r,16); P = [P [x (1,:); y (1,:)]];
end
P = unique([P'; 0 0], 'rows');
G = makeLayeredGrid(pebi(triangleGrid(P)), 5);
plotGrid(G,'FaceColor',[.8 .8 .8 ]); view(30,50), axis tight off

Figure 4.25 shows the resulting grid. Typically, the main difficulty lies in
generating a good point set (and a set of pillars). Once this is done, the rest
of the process is almost straightforward.

Our third example is a simulation model of a real reservoir. The model
shown in Figure 4.26 consists of an unstructured areal grid that has been
extruded vertically to model different geological layers. Some of the layers
are very thin, which can be seen in particular in Figure 4.26a in which these
thin layers appear as if they were thick lines. Figure 4.26b shows part of the
perimeter of the model; we notice that the lower layers (yellow to red colors)
have been eroded away in most of the grid columns, and although the vertical
dimension is strongly exaggerated, we see that the layers contain steep slopes.
To a non-geologist looking at the plot in Figure 4.26e, it may appear as if the
reservoir was formed by sediments being deposited along a sloping valley that
ends in a flat plain. Figures 4.26c and d show more details of the permeability
field inside the model. The layering is particularly distinct in plot d, which is
sampled from the flatter part of the model. The cells in plot c, on the other
hand, show examples of pinch-outs. The layering provides a certain structure
in the model, and it is therefore common to add a logical ik index, similar
to the logical ijk index for corner-point grids, where i refers to the areal
numbering and k to the different layers. Moreover, it is common practice to
associate a virtual logically Cartesian grid as an ’overlay’ to the 2.5D grid that
can be used e.g., to simplify lookup of cells in visualization. In this setup, more
than one grid cell may be associated with a cell in the virtual grid.

4.4 Grid structure in MRST

In the two previous sections we have given an introduction to structured and
unstructured grid types that can be created using MRST. In this section, we
will go into more detail about the internal data structure used to represent
various grid types. This data structure is in many ways the most fundamental
part of MRST since almost all solvers and visualization routines require an
instance of a grid as input argument. By convention, instances of the grid
structure are denoted G. Readers who are mainly interested in using solvers
and visualization routines already available in MRST, need no further knowl-
edge of the grid structure beyond what has been encountered in the examples
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a) The whole model with three areas of interested marked in different colors.

b) Layers 41 to 99 of the red region
with colors representing the k-index.

c) Horizontal permeability in the
green region of plot a).

d) Horizontal permeability in the ma-
genta region of plot a).

e) Horizontal permeability along the
perimeter and bottom of the model.

Fig. 4.26. A real petroleum reservoir modelled by a 2.5D PEBI grid having 1174
cells in the lateral direction and 150 cells along each pillar. Only 90644 out of the
176100 cells are active. The plots show the whole model as well as selected details.

presented so far and can safely skip the remains of this section. For readers
who wish to use MRST to prototype new computational methods, however,
knowledge of the inner workings of the grid structure is essential. To read the
MRST documentation, type

help grid_structure

This will bring you an overview of all the grid structure and all its members.
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Fig. 4.27. Example of a virtual grid used for fast lookup in a 2.5D PEBI grid. The
virtual grid has dimensions 37 × 20 × 150 while the PEBI grid has ik dimensions
1174× 150.

As was stated in the introduction to the chapter, we have chosen to store
all grid types using a general unstructured grid format that represents cells,
faces, vertices, and connections between cells and faces. To this end, the main
grid structure G contains three fields—cells, faces, and nodes—that specify
individual properties for each individual cell/face/vertex in the grid. Grids in
MRST can either be volumetric or lie on a 2D or 3D surface. The field griddim

is used to distinguish volumetric and surface grids; all cells in a grid are polygo-
nal surface patches if griddim=2 and polyhedral volumetric entities otherwise.
In addition, the grid contains a field type consisting of a cell array of strings de-
scribing the history of grid-constructor and modifier functions through which
a particular grid structure has been defined, e.g., ’tensorGrid’. For grids
that have an underlying logical Cartesian structure, we also include the field
cartDims.

The cell structure, G.cells, consists of the following mandatory fields:

– num: the number nc of cells in the global grid.
– facePos: an indirection map of size [num+1,1] into the faces array. Specifi-

cally, the face information of cell i is found in the submatrix
faces(facePos(i) : facePos(i+1)−1, :)

The number of faces of each cell may be computed using the state-
ment diff(facePos) and the total number of faces is given as nf =
facePos(end)−1.

– faces: an nf ×3 array that gives the global faces connected to a given cell.
Specifically, if faces(i,1)==j, the face with global number faces(i,2) is
connected to cell number j. The last component, faces(i,3), is optional
and can for certain types of grids contain a tag used to distinguish face
directions: East, West, South, North, Bottom, Top.
The first column of faces is redundant: it consists of each cell index j re-
peated facePos(j+1)−facePos(j) times and can therefore be reconstructed
by decompressing a run-length encoding with the cell indices 1:num as en-
coded vector and the number of faces per cell as repetition vector. Hence,
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to conserve memory, only the last two columns of faces are stored, while
the first column can be reconstructed using the statement:

rldecode(1:G.cells.num, diff(G.cells.facePos), 2) .'

This construction is used a lot throughout MRST and has therefore been
implemented as a utility function inside mrst−core/utils/gridtools

f2cn = gridCellNo(G);

– indexMap: an optional nc×1 array that maps internal cell indices to external
cell indices. For models with no inactive cells, indexMap equals 1 : nc. For
cases with inactive cells, indexMap contains the indices of the active cells
sorted in ascending order. An example of such a grid is the ellipsoid in
Figure 4.4 that was created using a fictitious domain method. For logically
Cartesian grids, a map of cell numbers to logical indices can be constructed
using the following statements in 2D:

[ij{1:2}] = ind2sub(dims, G.cells.indexMap(:));
ij = [ij{:}];

and likewise in 3D:

[ijk{1:3}] = ind2sub(dims, G.cells.indexMap(:));
ijk = [ijk{:}];

In the latter case, ijk(i:) is the global (I, J,K) index of cell i.

In addition, the cell structure can contain the following optional fields that
typically will be added by a call to computeGeometry:

– volumes: an nc × 1 array of cell volumes
– centroids: an nc × d array of cell centroids in IRd

The face structure, G.faces, consists of the following mandatory fields:

– num: the number nf of global faces in the grid.
– nodePos: an indirection map of size [num+1,1] into the nodes array. Specifi-

cally, the node information of face i is found in the submatrix
nodes(nodePos(i) : nodePos(i+1)−1, :)

The number of nodes of each face may be computed using the state-
ment diff(nodePos). Likewise, the total number of nodes is given as nn =
nodePos(end)−1.

– nodes: an Nn × 2 array of vertices in the grid. If nodes(i,1)==j, the local
vertex i is part of global face number j and corresponds to global ver-
tex nodes(i,2). For each face the nodes are assumed to be oriented such
that a right-hand rule determines the direction of the face normal. As
for cells.faces, the first column of nodes is redundant and can be easily
reconstructed. Hence, to conserve memory, only the last column is stored,
while the first column can be constructed using the statement:
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rldecode(1:G.faces.num, diff(G.faces.nodePos), 2) .'

– neighbors: an nf × 2 array of neighboring information. Global face i is
shared by global cells neighbors(i,1) and neighbors(i,2). One of the entries
in neighbors(i,:), but not both, can be zero, to indicate that face i is an
external face that belongs to only one cell (the nonzero entry).

In addition to the mandatory fields, G.faces has optional fields that are typ-
ically added by a call to computeGeometry and contain geometry information:

– areas: an nf × 1 array of face areas.

– normals: an nf × d array of area weighted, directed face normals in IRd.
The normal on face i points from cell neighbors(i,1) to cell neighbors(i,2).

– centroids: an nf × d array of face centroids in IRd.

Moreover, G.faces can sometimes contain an nf ×1 (int8) array, G.faces.tag,
that can contain user-defined face indicators, e.g., to specify that the face is
part of a fault.

The vertex structure, G.nodes, consists of two fields:

– num: number Nn of global nodes (vertices) in the grid,
– coords: an Nn × d array of physical nodal coordinates in IRd. Global node

i is at physical coordinate coords(i,:).

To illustrate how the grid structure works, we consider two examples. We
start by considering a regular 3× 2 grid, where we take away the second cell
in the logical numbering,

G = removeCells( cartGrid([3,2]), 2)

This produces the output

G =

cells: [1x1 struct]

faces: [1x1 struct]

nodes: [1x1 struct]

cartDims: [3 2]

type: {’tensorGrid’ ’cartGrid’ ’removeCells’}

griddim: 2

Examining the output from the call, we notice that the field G.type con-
tains three values, ’cartGrid’ indicates the creator of the grid, which again
relies on ’tensorGrid’, whereas the field ’removeCells’ indicates that cells have
been removed from the Cartesian topology. The resulting 2D geometry con-
sists of five cells, twelve nodes, and sixteen faces. All cells have four faces
and hence G.cells.facePos = [1 5 9 13 17 21]. Figure 4.28 shows3 the geome-
try and topology of the grid, including the content of the fields cells.faces,

3 To create the plot in Figure 4.28, we first called plotGrid to plot the grid, then
called computeGeometry to compute cell and face centroids, which were used to
place a marker and a text label with the cell/face number in the correct position.
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1 2

3 4 5

 1  2  3  4

 5  6  7  8

 9 10

11 12 13

14 15 16

 1  2  3  4

 5  6  7  8

 9 10 11 12 cells.faces = faces.nodes = faces.neighbors =

1 1 1 (East) 1 1 0 1

1 9 3 (South) 1 5 1 0

1 2 2 (West) 2 2 0 2

1 11 4 (North) 2 6 2 0

2 3 1 (East) 3 3 0 3

2 10 3 (South) 3 7 3 4

2 4 2 (West) 4 4 4 5

2 13 4 (North) 4 8 5 0

3 5 1 (East) 5 5 0 1

3 11 3 (South) 5 9 0 2

3 6 2 (West) 6 6 1 3

3 14 4 (North) 6 10 0 4

4 6 1 (East) 7 7 2 5

4 12 3 (South) 7 11 3 0

4 7 2 (West) 8 8 4 0

4 15 4 (North) 8 12 5 0

5 7 1 (East) 9 2

5 13 3 (South) 9 1

5 8 2 (West) : :

5 16 4 (North) : :

Fig. 4.28. Illustration of the cell and faces fields of the grid structure: cell numbers
are marked by circles, node numbers by squares, and face numbers have no marker.

faces.nodes, and faces.neighbors. We notice, in particular, that all interior
faces (6, 7, 11, and 13) are represented twice in cells.faces as they belong
to two different cells. Likewise, for all exterior faces, the corresponding row
in faces.neighbors has one zero entry. Finally, being logically Cartesian, the
grid structure contains a few optional fields:

� G.cartDims equals [3 2],
� G.cells.indexMap equals [1 3 4 5 6] since the second cell in the logical

numbering has been removed from the model, and
� G.cells.faces contains a third column with tags that distinguish global

directions for the individual faces.

As a second example, we consider an unstructured triangular grid given
by seven points in 2D:

p = [ 0.0, 1.0, 0.9, 0.1, 0.6, 0.3, 0.75; ...
0.0, 0.0, 0.8, 0.9, 0.2, 0.6, 0.45 ]'; p = sortrows(p);

G = triangleGrid(p)

which produces the output

G =

faces: [1x1 struct]

cells: [1x1 struct]

nodes: [1x1 struct]

type: {’triangleGrid’}

griddim: 2

Because the grid contains no structured parts, G only consists of the three
mandatory fields cells, faces, and nodes that are sufficient to determine
the geometry and topology of the grid, the type tag naming its creator, and
griddim giving that it is a surface grid. Altogether, the grid consists of eight
cells, fourteen faces, and seven nodes, which are shown in Figure 4.29 along
with the contents of the fields cells.faces, faces.nodes, and faces.neighbors.
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cells.faces = faces.nodes = faces.neighbors =

1 10 1 1 0 2

1 8 1 2 2 3

1 7 2 1 3 5

2 1 2 3 5 0

2 2 3 1 6 2

2 5 3 4 0 6

3 3 4 1 1 3

3 7 4 7 4 1

3 2 5 2 6 4

4 8 5 3 1 8

4 12 6 2 8 5

4 9 6 6 4 7

5 3 7 3 7 8

5 4 7 4 0 7

5 11 8 3

6 9 8 5

6 6 9 3

6 5 9 6

7 13 10 4

7 14 10 5

: : : :

Fig. 4.29. Illustration of the cell and faces fields of the grid structure: cell numbers
are marked by circles, node numbers by squares, and face numbers have no marker.
squares.

Fig. 4.30. Example of a surface grid: 2D PEBI grid draped over the peaks surface.

Notice, in particular, the absence of the third column in cells.faces, which
generally does not make sense for a (fully) unstructured grid. Likewise, the
cells structure does not contain any indexMap as all cells in the model are
active.

Surface grids do not necessary have to follow a planar surface in 2D, but
can generally be draped over a (continuous) surface in 3D. In MRST, such
grids are used in the co2lab module for simulating CO2 storage in deep saline
aquifers using vertically-integrated models that describe the thickness of a
supercritical CO2 plume under a sealing caprock. To demonstrate the basic
feature of a surface grid, we generate a 2D PEBI grid and drape it over
MATLAB’s peaks surface.

[x,y] = meshgrid([0:6]*2*cos(pi/6),0:7);
x = [x (:); x(:)+cos(pi/6)]; x=(x − mean(x(:)))/2;
y = [y (:); y(:)+sin(pi/6)]; y=(y − mean(y(:)))/2;
G = pebi(triangleGrid([x(:),y(:)]));
G.nodes.coords(:,3) = −peaks(G.nodes.coords(:,1),G.nodes.coords(:,2));
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The resulting grid is shown in Figure 4.30. Using computeGeometry, we can also
compute cell and face centroids, cell areas, and face lengths. Face normals,
however, are generally not uniquely defined and are therefore only computed
as projections onto the horizontal plane. Likewise, it does not make sense to
use this grid together with any of the standard flow and transport solvers in
MRST, since neither of these contain discretizations that properly account for
processes taking place on non-planar surfaces.

Computing geometry information

All grid factory routines in MRST generate the basic geometry and topol-
ogy of a grid, that is, how nodes are connected to make up faces, how faces
are connected to form cells, and how cells are connected over common faces.
Whereas this information is sufficient for many purposes, more geometrical
information may be required in many cases. As explained above, such informa-
tion is provided by the routine computeGeometry, which computes cell centroids
and volumes and face areas, centroids, and normals. Whereas computing this
information is straightforward for simplexes and Cartesian grids, it is not so
for general polyhedral grids that may contain curved polygonal faces. In the
following we will therefore go through how it is done in MRST.

For each cell, the basic grid structure provides us with a list of vertices,
a list of cell faces, etc, as shown in the upper-left plots of Figures 4.31 and
4.32. The routine starts by computing face quantities (areas, centroids, and
normals). To utilize MATLAB efficiently, the computations are programmed
using vectorization so that each derived quantity is computed for all points,
all faces, and all cells in one go. To keep the current presentation as simple
as possible, we will herein only give formulas for a single face and a single
cell. Let us consider a single face given by the points ~p(i1), . . . , ~p(im) and let
α = (α1, . . . , αm) denote a multi-index that describes how these points are
connected to form the perimeter of the faces. For the face with global number
j, the multi-index is given by the vector

G.faces.nodes(G.faces.nodePos(j):G.faces.nodePos(j+1)−1)

Let us consider two faces. Global face number two in Figure 4.31 is planar
and consists of points ~p(2), ~p(4), ~p(6), ~p(8) with the ordering α = (2, 4, 8, 6).
Likewise, we consider global face number one in Figure 4.32, which is curved
and consists of points ~p(1), . . . , ~p(5) with the ordering α = (4, 3, 2, 1, 5). For
curved faces, we need to make a choice of how to interpret the surface spanned
by the node points. In MRST (and some commercial simulators) this is done
as follows: We start by defining a so-called hinge point ~ph, which is often
given as part of the input specification of the grid. If not, we use the m points
that make up the face and compute the hinge point as the center point of
the face, ~ph =

∑m
k=1 ~p(αk)/m. The hinge point can now be used to tessellate

the face into m triangles, as shown to the upper right in Figures 4.31 and
4.32. The triangles are defined by the points ~p(αk), ~p(αmod(k,m)+1), and ~ph
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a) A single cell with face numbers
(squares) and node numbers (circles)

b) Tessellation of faces with vectors
~vk1 (blue), ~vk2 (green), and ~nk (red)

c) Face centroids and normal vectors
computed from tessellation

d) Triangulation of cell volume with
vectors ~nk (blue) and ~ckr (green)

Fig. 4.31. Steps in the computation of geometry information for a single corner-
point cell using computeGeometry.

for k = 1, . . . ,m. Each triangle has a center point ~pkc defined in the usual way
as the average of its three vertexes and a normal vector and area given by

~nk =
(
~p(αmod(k,m)+1)− ~p(αk)

)
×
(
~ph − ~p(αk)

)
= ~vk1 × ~vk2

Ak =
√
~nk · ~nk.

The face area, centroid, and normal are now computed as follows

Af =

m∑
k=1

Ak, ~cf = (Af )−1
m∑
k=1

~pkcA
k, ~nf =

m∑
k=1

~nk. (4.2)

The result is shown to the lower left in Figures 4.31, where the observant
reader will see that the centroid ~cf does not coincide with the hinge point
~ph unless the planar face is a square. This effect is more pronounced for the
curved faces of the PEBI cell in Figure 4.32.
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a) A single cell with face numbers
(squares) and node numbers (circles)

b) Tessellation of faces with vectors
~vk1 (blue), ~vk2 (green), and ~nk (red)

c) Face centroids and normal vectors
computed from tessellation

d) Triangulation of cell volume with
vectors ~nk (blue) and ~ckr (green)

Fig. 4.32. Steps in the computation of geometry information for a single PEBI cell
using computeGeometry.

The computation of centroids in (4.2) requires that the grid does not have
faces with zero area, because otherwise the second formula would involve
a division by zero and hence incur centroids with NaN values. The reader
interested in creating his/her own grid-factory routines for grids that may
contain degenerate (pinched) cells should be aware of this and make sure that
all faces with zero area are removed in a preprocessing step.

To compute the cell centroid and volume, we start by computing the centre
point ~cc of the cell, which we define as the average of the face centroids,
~cc =

∑mf

k=1 ~cf/mf , where mf is the number of faces of the cell. By connecting
this centre point to the mt face triangles, we define a unique triangulation
of the cell volume, as shown to the lower right in Figures 4.31 and 4.32. For
each tetrahedron, we define the vector ~ckr = ~pkc − ~cc and compute the volume
(which may be negative if the centre point ~cc lies outside the cell)

V k = 1
3~c
k
r · ~nk.
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The triangle normals ~nk will point outward or inward depending upon the
orientation of the points used to calculate them, and to get a correct com-
putation we therefore must modify the triangle normals so that they point
outward. Finally, we can define the volume and the centroid of the cell as
follows

V =

mt∑
k=1

V k, ~c = ~cc +
3

4V

mt∑
k=1

V k~ckr . (4.3)

In MRST, all cell quantities are computed inside a loop, which may not be as
efficient as the computation of the face quantities.

Computer exercises:

25. Go back to Exercise 16 in Section 4.1. What would you do to randomly
perturb all nodes in the grid except for those that lie on an outer face
whose normal vector has no component in the y-direction?

26. Exercise 20 on page 95 extended the function triangleGrid from pla-
nar triangulations to triangulated surfaces in 3D. Verify that the function
computeGeometry computes cell areas, cell centroids, face centroids, and
face lengths correctly for general 3D triangulated surfaces.

27. How would you write a function that purges all cells that have an invalid
vertex (with value NaN) from a grid?

4.5 Examples of more complex grids

To help the user generate test cases, MRST supplies a routines for generating
example grids. We have previously encountered twister, which perturbs the
x and y coordinates in a grid. Likewise, in Chapter 3.5 we used simpleGrdecl

to generate a simple Eclipse input stream for a stratigraphic grid describing
a wavy structure with a single deviated fault. The routine has several options
that allow the user to specify the magnitude of the fault displacement, flat
rather than a wavy top and bottom surfaces, and vertical rather than inclined
pillars, see Figure 4.33.

Similarly, the routine with the somewhat cryptic name makeModel3 gen-
erates a corner-point input stream that models parts of a dome that is cut
through by two faults, see Figure 4.34. Similarly, extrudedTriangleGrid.m gen-
erates a 2.5D prismatic grid with a laterally curved fault in the middle. Al-
ternatively, the routine can generate a 2.5D PEBI grid in which the curved
fault is laterally stair-stepped, see Figure 4.34.

SAIGUP: shallow-marine reservoirs

Having discussed the corner-point format in some detail, it is now time to
return to the SAIGUP model. In the following, we will look at the grid rep-
resentation in more detail and show some examples of how to interact and
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simpleGrdecl ([20, 20, 5]); simpleGrdecl ([20, 20, 5], ...
@(x) .05*(sin(2*pi*x)−1.5));

simpleGrdecl ([20, 20, 5], ...
@(x) .25*(x−.5),' flat ' , true );

Fig. 4.33. The simpleGrdecl routine can be used to produce faulted, two-block
grids of different shapes.

makeModel3 ([30,20,5]); extrudedTriangleGrid (50); extrudedTriangleGrid (50, true );

Fig. 4.34. Three different example grids created by the grid example functions
makeModel3 and extrudedTriangleGrid.

visualize different features of the grid (see also the last video of the second
MRST Jolt on grids and petrophysical data [114]). In Chapter 3.5, we saw
that parsing the input file creates the following structure

grdecl =

cartDims: [40 120 20]

COORD: [29766x1 double]

ZCORN: [768000x1 double]

ACTNUM: [96000x1 int32]

PERMX: [96000x1 double]

: : :

In the following, we will (mostly) use the first four fields:

1. The dimension of the underlying logical Cartesian grid: Eclipse keyword
SPECGRID, equal 40× 120× 20.

2. The coordinates of pillars: Eclipse keyword COORD, top and bottom co-
ordinate per vertex in the logical 40 × 120 areal grid, i.e., 6 × 41 × 121
values.

3. The coordinates along the pillars: Eclipse keyword ZCORN, eight values per
cell, i.e., 8× 40× 120× 20 values.

4. The boolean indicator for active cells: Eclipse keyword ACTNUM, one value
per cell, i.e., 40× 120× 20 values.
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As we have seen above, we can use the routine processGRDECL to process the
Eclipse input stream and turn the corner-point grid into MRST’s unstructured
description. The interested reader may ask the processing routine to display
diagnostic output

G = processGRDECL(grdecl, 'Verbose', true);
G = computeGeometry(G)

and consult the SAIGUP tutorial (saigupModelExample.m) or the technical
documentation of the processing routine for an explanation of the resulting
output.

The model has been created using vertical pillars with lateral resolution of
75 meters and a vertical resolution of 4 meters, giving a typical aspect ratio
of 18.75. This can be seen, e.g., by extracting the pillars and corner points
and analyzing the results as follows:

[X,Y,Z] = buildCornerPtPillars(grdecl,'Scale',true);
dx = unique(diff(X)).'
[x,y,z] = buildCornerPtNodes(grdecl);
dz = unique(reshape(diff(z,1,3),1,[]))

The resulting grid has 78 720 cells that are almost equal in size (as can easily
be seen by plotting hist(G.cells.volumes)), with cell volumes varying between
22 500 m3 and 24 915 m3. Altogether, the model has 264 305 faces: 181 649 ver-
tical faces on the outer boundary and between lateral neighbors, and 82 656
lateral faces on the outer boundary and between vertical neighbors. Most of
the vertical faces are not part of a fault and are therefore parallelograms with
area equal 300 m2. However, the remaining 26–27 000 faces are a result of the
subdivision introduced to create a matching grid along the (stair-stepped)
faults. Figure 4.35 shows where these faces appear in the model and a his-
togram of their areas: the smallest face has an area of 5.77·10−4 m2 and there
are 43, 202, and 868 faces with areas smaller than 0.01, 0.1, and 1 m2, re-
spectively. The processGRDECL has an optional parameter 'Tolerance' that sets
the minimum distance used to distinguish points along the pillars (the default
value is zero). By setting this to parameter to 5, 10, 25, or 50 cm, the area of
the smallest face is increased to 0.032, 0.027, 0.097, or 0.604 m2, respectively.
In general, we advice against aggressive use of this tolerance parameter; one
should instead develop robust discretization schemes and, if necessary, suitable
post-processing methods that eliminate or ignore faces with small areas.

Next, we will show a few examples of visualizations of the grid model that
will highlight various mechanisms for interacting with the grid and accessing
parts of it. As a first example, we start by plotting the layered structure of
the model. To this end, we use a simple trick: create a matrix with ones in all
cells of the logical Cartesian grid and then do a cumulative summation in the
vertical direction to get increasing values,

val = cumsum(ones(G.cartDims),3);
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plotFaces (G , G.faces.tag >0 & ...
G.faces.areas >=290),'y','edgea',.1 );

plotFaces (G , G.faces.areas <290,'r', 'edgea',.1 );

Fig. 4.35. Faces that have been subdivided for the SAIGUP mode. The left plot
shows a histogram of the faces areas. The right plot shows all fault faces (yellow)
and fault faces having area less than 290 m2 (red).

Fig. 4.36. Visualizing the layered structure of the SAIGUP model.

which we then plot using a standard call to plotCellData, see the left plot in
Figure 4.36. Unfortunately, our attempt at visualizing the layered structure
was not very successful. We therefore try to extract and visualize only the
cells that are adjacent to a fault:

cellList = G.faces.neighbors(G.faces.tag>0, :);
cells = unique(cellList(cellList>0));

In the first statement, we go through all faces and extract the neighbors
of all faces that are marked with a tag (i.e., lies at a fault face). The list
may have repeated entries if a cell is attached to more than one fault face
and contain zeros if a fault face is part of the outer boundary. We get
rid of these in the second statement, and can then plot the result using
plotCellData(G,val(G.cells.indexMap),cells), giving the result in the right
plot of Figure 4.36. Let us inspect the fault structure in the lower-right corner
of the plot. If we disregard using cutGrdecl as discussed on page 103, there are
basically two ways we can extract parts of the model, that both rely on the
construction of a map of cell numbers of logical indices. In the first method,
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Fig. 4.37. Details from the SAIGUP model showing a zoom of the fault structure
in the lower-right corner of the right plot in Figure 4.36. The left plot shows the cells
attached to the fault faces, and in the right plot the fault faces have been marked
with gray color and red edges.

we first construct a logical set for the cells in a logically Cartesian bounding
box and then use the built-in function ismember to extract the members of
cells that lie within this bounding box:

[ijk{1:3}] = ind2sub(G.cartDims, G.cells.indexMap); ijk = [ijk{:}];
[I,J,K] = meshgrid(1:9,1:30,1:20);
bndBox = find(ismember(ijk,[I(:), J(:), K (:)], 'rows' ));
inspect = cells(ismember(cells,bndBox));

The ismember function has an operational count of O(n log n). A faster alter-
native is to use logical operations having an operational count of O(n). That
is, we construct a vector of boolean numbers that are true for the entries we
want to extract and false for the remaining entries

[ijk{1:3}] = ind2sub(G.cartDims, G.cells.indexMap);

I = false(G.cartDims(1),1); I(1:9)=true;
J = false(G.cartDims(2),1); J(1:30)=true;
K = false(G.cartDims(3),1); K(1:20)=true;

pick = I(ijk{1}) & J(ijk{2}) & K(ijk{3});
pick2 = false(G.cells.num,1); pick2(cells) = true;
inspect = find(pick & pick2);

Both approaches produce the same index set; the resulting plot is shown in
Figure 4.37. To mark the fault faces in this subset of the model, we do the
following steps

cellno = rldecode(1:G.cells.num, diff(G.cells.facePos), 2) .';
faces = unique(G.cells.faces(pick(cellno), 1));
inspect = faces(G.faces.tag(faces)>0);
plotFaces(G, inspect, [.7 .7 .7], 'EdgeColor','r ' );

The first statement constructs a list of all cells in the model, the second
extracts a unique list of face numbers associated with the cells in the logical
vector pick (which represents the bounding box in logical index space), and the
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Fig. 4.38. A ’sieve’ plot of the porosity in the SAIGUP model. Using this technique,
one can more easily see the structure in the interior of the model.

third statement extracts the faces within this bounding box that are marked
as fault faces.

Logical operations are also useful in other circumstances. As an example,
we will extract a subset of cells forming a sieve that can be used to visualize
the petrophysical quantities in the interior of the model:

% Every fifth cell in the x−direction
I = false(G.cartDims(1),1); I(1:5:end)=true;
J = true(G.cartDims(2),1);
K = true(G.cartDims(3),1);
pickX = I(ijk{1}) & J(ijk{2}) & K(ijk{3});

% Every tenth cell in the y−direction
I = true(G.cartDims(1),1);
J = false(G.cartDims(2),1); J(1:10:end) = true;
pickY = I(ijk{1}) & J(ijk{2}) & K(ijk{3});

% Combine the two picks
plotCellData(G,rock.poro, pickX | pickY, 'EdgeColor','k','EdgeAlpha',.1);

Composite grids

One advantage of an unstructured grid description is that it easily allows
the use of composite grids consisting of geometries and topologies that vary
throughout the model. That is, different grid types of cells or different grid
resolution may be used locally to adapt to well trajectories and flow and
geological constraints, see e.g., [77, 129, 72, 123, 32, 57, 177] and references
therein.

You may already have encountered a composite grid if you did Exercise 22
on page 95, where we sought an unstructured grid that adapted to two skew
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Fig. 4.39. A composite grid consisting of a regular Cartesian mesh with radial
refinement around two well positions.

faults and was padded with rectangular cells near the boundary. As another
example, we will generate a Cartesian grid that has a radial refinement around
two wells in the interior of the domain. This composite grid will be constructed
from a set of control points using the pebi routine. To this end, we first con-
struct the generating point for a unit refinement, as discussed in Figure 4.25
on page 108

Pw = [];
for r = exp(−3.5:.2:0),

[x,y,z] = cylinder(r,28); Pw = [Pw [x (1,:); y (1,:)]];
end
Pw = [Pw [0; 0]];

Then this point set is translated to the positions of the wells and glued into
a standard regular point lattice (generated using meshgrid):

Pw1 = bsxfun(@plus, Pw, [2; 2]);
Pw2 = bsxfun(@plus, Pw, [12; 6]);
[x,y] = meshgrid(0:.5:14, 0:.5:8);
P = unique([Pw1'; Pw2'; x (:) y (:)], 'rows');
G = pebi(triangleGrid(P));

The resulting grid is shown in Figure 4.39. To get a good grid, it is important
that the number of points around the cylinder has a reasonable match with the
density of the points in the regular lattice. If not, the transition cells between
the radial and the regular grid may exhibit quite unfeasible geometries. The
observant reader will also notice the layer of small cells at the boundary, which
is an effect of the particular distribution of the generating points (see the left
plot in Figure 4.10 on page 90) and can, if necessary be avoided by a more
meticulous choice of points.

In the left plot of Figure 4.40, we have combined these two approaches to
generate an areal grid consisting of three characteristic components: Carte-
sian grid cells at the outer boundary, hexagonal cells in the interior, and a
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Fig. 4.40. Examples of composite grids. The left plot shows an areal grid consist-
ing of Cartesian, hexagonal, and radial parts. The right plot shows the same grid
extruded to 3D with two stair-stepped faults added.

radial grid with exponential radial refinement around two wells. The right
plot shows a 2.5D in which the areal Voronoi grid has been extruded to 3D
along vertical pillars. In addition, structural displacement has been modelled
along two areally stair-stepped faults that intersect near the west boundary.
Petrophysical parameters have been sampled from layers 40–44 of the SPE10
data set [49].

Multiblock grids

A somewhat different approach to get grids whose geometry and topology vary
throughout the physical domain is to use multiblock grids in which different
types of structured or unstructured griding are glued together. The resulting
grid can be non-matching across block interfaces (see e.g., [187, 18, 186]) or
have grid lines that are continuous (see e.g., [91, 107]). MRST does not have
any grid-factory routine for generating advanced multiblock grids, but offers
a the function glue2DGrid for gluing together rectangular blocks in 2D. In
the following, we will show a few examples of such grids.

As our first example, let us generate a curvilinear grid that has a local
refinement at its center as shown in Figure 4.41 (see also Exercise 21 on
page 95). To this end, we start by generating three different block types shown
in red, green, and blue colors to the left in the figure:

G1 = cartGrid([ 5 5],[1 1]);
G2 = cartGrid([20 20],[1 1]);
G3 = cartGrid([15 5],[3 1]);

Once these are in place, we can simply translate the blocks and glue them
together and then apply the twister function to make a curvilinear transfor-
mation of each grid line:
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Fig. 4.41. Using a multiblock approach to construct a rectilinear grid with refine-
ment.

G = glue2DGrid(G1, translateGrid(G2,[1 0]));
G = glue2DGrid(G, translateGrid(G1,[2 0]));
G = glue2DGrid(G3, translateGrid(G, [0 1]));
G = glue2DGrid(G, translateGrid(G3,[0 2]));
G = twister(G);

Let us now replace the central block by a patch consisting of triangular cells.
To this end, we start by regenerating G2

[N,M]=deal(10,15);
[x,y] = ndgrid( linspace(0,1,N+1), linspace(0,1,M+1));
x(2:N ,2:M) = x(2:N,2:M) + 0.3*randn(N−1,M−1)*max(diff(xv));
y(2:N ,2:M) = y(2:N,2:M) + 0.3*randn(N−1,M−1)*max(diff(yv));
G2 = computeGeometry(triangleGrid([x(:) y(:)]));

The glue2DGrid routine relies on face tags as explained in 4.4 on page 111 that
can be used to identify the external faces that are facing East, West, North,
and South. Generally, such tags does not make much sense for triangular grids
and are therefore not supplied. However, to be able to find the correct interface
to glue together, we need to supply tags on the perimeter of the triangular
patch, where the normal vectors follow the axial directions and tags therefore
make sense. To this end, we start by computing the true normal vectors:

hf = G2.cells.faces(:,1);
hf2cn = gridCellNo(G2);
sgn = 2*(hf2cn == G2.faces.neighbors(hf, 1)) − 1;
N = bsxfun(@times, sgn, G2.faces.normals(hf,:));
N = bsxfun(@rdivide, N, G2.faces.areas(hf,:));
n = zeros(numel(hf),2); n(:,1)=1;

Then, all interfaces that face the East are those whose dot-product with the
vector (1, 0) is identical to −1:
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Fig. 4.42. Using a multiblock approach to construct rectilinear grid with triangular
and polygonal refinements.

Fig. 4.43. An example of a 3D multiblock grid.

G2.cells.faces(:,2) = zeros(size(hf));
i = sum(N.*n,2)==−1; G2.cells.faces(i,2) = 1;

Similarly, we can identify all the interfaces facing the West, North, and South.
The left plot in Figure 4.42 shows the resulting multiblock grid. Likewise, the
right plot shows another multiblock grid where the central refinement is the
dual to the triangular patch and G3 has been scaled in the y-direction and
refined in the x-direction so that the grid lines are no longer matching with
the grid lines of G1.

As a last example, let us use this technique to generate a 3D multiblock
grid that consists of three blocks in the vertical direction

G = glue2DGrid(G1, translateGrid(G2,[0 1]));
G = glue2DGrid(G, translateGrid(G1,[0 2]));
G = makeLayeredGrid(G, 5);
G.nodes.coords = G.nodes.coords(:,[3 1 2]);

That is, we first generate an areal grid in the xy-plane, extrude it to 3D
along the z direction, and then permute the axis so that their relative orien-
tation is correctly preserved (notice that simply flipping [1 2 3]→[1 3 2],
for instance, will not create a functional grid).
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Computer exercises:

27. How would you populate the grids shown in Figures 4.33 and 4.34 with
petrophysical properties so that spatial correlation and displacement across
the fault(s) is correctly accounted for? As an illustrative example, you can
try to sample petrophysical properties from the SPE 10 data set.

28. Select at least one of the models in the data sets BedModels1 or BedModel2
and try to find all inactive cells and then all cells that do not have six faces.
Hint: it may be instructive to visualize these models both in physical space
and in index space.

29. Extend your function from Exercise 22 on page 95 to also include radial
refinement in near-well regions as shown in Figure 4.39.

30. Make a grid similar to the one shown to the right in Figure 4.40. Hint:
although it is not easy to see, the grid is matching across the fault, which
means that you can use the method of fictitious domain to make the fault
structure.

31. As pointed out in Exercise 21 on page 95, MRST
does not yet have a grid factory routine to gener-
ate structured grids with local nested refinement
as shown in the figure to the right. While it is not
very difficult to generate the necessary vertices if
each refinement patch is rectangular and matches
the grid cells on the coarser level, building up the
grid structure may prove to be a challenge. Try
to develop an efficient algorithm and implement
in MRST.
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Incompressible Single-Phase Flow
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6

Mathematical Models and Basic Discretizations

If you have read the chapters of the book in chronological order, you have
already encountered the equations modeling flow of a single, incompressible
fluid through a porous media twice: first in Section 2.1 where we showed how
to use MRST to compute vertical equilibrium inside a gravity column, and
then in Section 3.4.2, in which we discussed the concept of rock permeabil-
ity. In this section, we will review the mathematical modeling of single-phase
flow in more detail, introduce basic numerical methods for solving the result-
ing equations, and discuss how these are implemented in MRST and can be
combined with the tools introduced in Chapters 3 and 4 to develop efficient
simulators for single-phase incompressible flow. Solvers for compressible flow
will be discussed in more detail in Chapter 12.

6.1 Fundamental concept: Darcy’s law

Mathematical modeling of single-phase flow in porous media started with the
work of Henry Darcy, a French hydraulic engineer, who in the middle of the
19th century was engaged to enlarge and modernize the waterworks of the city
of Dijon. To understand the physics of flow through the sand filters that were
used to clean the water supply, Darcy designed a vertical experimental tank
filled with sand, in which water was injected at the top and allowed to flow out
at the bottom of the tank; Figure 6.1 shows a conceptual illustration. Once the
sand pack is filled with water, and the inflow and outflow rates are equal, the
hydraulic head at the inlet and at the outlet can be measured using mercury-
filled manometers. The hydraulic head is given as, h = E/mg = z + p/ρg,
relative to a fixed datum. As water flows through the porous medium, it
will experience a loss of energy. In a series of experiments, Darcy measured
the water volumetric flow rate out of the tank and compared this rate with
the loss of hydrostatic head from top to bottom of the column. From the
experiments, he established that for the same sand pack, the discharge (flow
rate) Q [m3/s] is proportional to the cross-sectional area A [m2] and the
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Fig. 6.1. Conceptual illustration of Darcy’s experiment.

Fig. 6.2. The macroscopic Darcy velocity represents an average of microscopic fluid
fluxes.

difference in hydraulic head (height of the water) ht − hb [m], and inversely
proportional to the flow length of the tank L [m]. Altogether, this can be
summarized as

Q

A
= κ

ht − hb
L

(6.1)

which was presented in 1856 as an appendix to [51] entitled “Determination of
the laws of flow of water through sand” and is what we today call Darcy’s law.
In (6.1), κ [m/s] denotes the hydraulic conductivity, which is a function both
of the medium and the fluid flowing through it. It follows from a dimensional
analysis that κ = ρgK/µ, where g [m/s2] is the gravitational acceleration, µ
[kg/ms] is the dynamic viscosity, and K [m2] is the intrinsic permeability of
a given sand pack.

The specific discharge v = Q/A, or Darcy flux, through the sand pack rep-
resents the volume of fluid per total area per time and has dimensions [m/s].
Somewhat misleading, v is often referred to as the Darcy velocity. However,
since only a fraction of the cross-sectional area is available for flow (the major-
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Fig. 6.3. Illustration of a control volume Ω on which one can apply the principle
of conservation to derive macroscopic continuity equations.

ity of the area is blocked by sand grains), v is not a velocity in the microscopic
sense. Instead, v is the apparent macroscopic velocity obtained by averaging
the microscopic fluxes inside representative elementary volumes (REVs) which
were discussed in Section 3.3.2. The macroscopic fluid velocity, defined as vol-
ume per area occupied by fluid per time, is therefore given by v/φ, where φ
is the porosity associated with the REV.

Henceforth, we will, with a slight abuse of notation, refer to the specific
discharge as the Darcy velocity. In modern differential notation, Darcy’s law
for a single-phase fluid reads,

~v = −K

µ
(∇p− gρ∇z), (6.2)

where p is the fluid pressure and z is the vertical coordinate. The equation
expresses conservation of momentum and was derived from the Navier–Stokes
equations by averaging and neglecting inertial and viscous effects by Hubbert
[87]. The observant reader will notice that Darcy’s law (6.2) is analogous to
Fourier’s law (1822) for heat conduction, Ohm’s law (1827) in the field of
electrical networks, or Fick’s law (1855) for fluid concentrations in diffusion
theory, except that for Darcy there are two driving forces, pressure and gravity.
Notice also that Darcy’s law assumes a reversible fluid process, which is a
special case of the more general physical laws of irreversible processes that
were first described by Onsager.

6.2 General flow equations for single-phase flow

To derive a mathematical model for single-phase flow on the macroscopic
scale, we first make a continuum assumption based on the existence of REVs
as discussed in the previous section and then look at a control volume as shown
in Figure 6.3. From the fundamental law of mass conservation, we know that
the accumulation of mass inside this volume must equal the net flux over the
boundaries,
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∂

∂t

∫
Ω

φρ d~x+

∫
∂Ω

ρ~v · ~n ds =

∫
Ω

ρq d~x, (6.3)

where ρ is the density of the fluid, φ is the rock porosity, ~v is the macroscopic
Darcy velocity, ~n denotes the normal at the boundary ∂Ω of the computa-
tional domain Ω, and q denotes fluid sources and sinks, i.e., outflow and inflow
of fluids per volume at certain locations. Applying Gauss’ theorem, this con-
servation law can be written on the alternative integral form∫

Ω

[ ∂
∂t
φρ+∇ · (ρ~v)

]
d~x =

∫
Ω

ρq d~x. (6.4)

This equation is valid for any volume Ω, and in particular volumes that are
infinitesimally small, and hence it follows that the macroscopic behavior of
the single-phase fluid must satisfy the continuity equation

∂(φρ)

∂t
+∇ · (ρ~v) = ρq. (6.5)

Equation (6.5) contains more unknowns than equations and to derive a closed
mathematical model, we need to introduce what is commonly referred to as
constitutive equations that give the relationship between different states of
the system (pressure, volume, temperature, etc.) at given physical conditions.
Darcy’s law, discussed in the previous section, is an example of a constitutive
relation that has been derived to provide a phenomenological relationship be-
tween the macroscale ~v and the fluid pressure p. In Section 3.4.1 we introduced
the rock compressibility cr = d ln(φ)/dp, which describes the relationship be-
tween the porosity φ and the pressure p. In a similar way, we can introduce
the fluid compressibility to relate the density ρ to the fluid pressure p.

A change in density will generally cause a change in both the pressure p
and the temperature T . The usual way of describing these changes in ther-
modynamics is to consider the change of volume V for a fixed number of
particles,

dV

V
=

1

V

(
∂V

∂p

)
T

dp+
1

V

(
∂V

∂T

)
p

dT, (6.6)

where the subscripts T and p indicate that the change takes place under
constant temperature and pressure, respectively. Since ρV is constant for a
fixed number of particles, dρV = ρdV , and (6.6) can written in the equivalent
form

dρ

ρ
=

1

ρ

(
∂ρ

∂p

)
T

dp+
1

ρ

(
∂ρ

∂T

)
p

dT = cfdp+ αfdT, (6.7)

where the cf denotes the isothermal compressibility and αf denotes the ther-
mal expansion coefficient. In many subsurface systems, the density changes
slowly so that heat conduction keeps the temperature constant, in which case
(6.7) simplifies to

cf =
1

ρ

dρ

dp
=
d ln(ρ)

dp
. (6.8)
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6.2 General flow equations for single-phase flow 157

The factor cf , which we henceforth will refer to as the fluid compressibility,
is non-negative and will generally depend on both pressure and temperature,
i.e., cf = cf (p, T ).

Introducing Darcy’s law and fluid and rock compressibilities in (6.5), we
obtain the following parabolic equation for the fluid pressure

ctφρ
∂p

∂t
−∇ ·

[ρK
µ

(∇p− gρ∇z)
]

= ρq, (6.9)

where ct = cr + cf denotes the total compressibility. Notice that this equation
is generally nonlinear since both ρ and ct may depend on p. In the following,
we will look briefly at several special cases in which the governing single-
phase equation becomes a linear equation for the primary unknown; more
extensive discussions can be found in standard textbooks like [155, Chap. 1],
[47, Chap. 2]. For completeness, we will also briefly review the concept of an
equation-of-state.

Incompressible flow

In the special case of an incompressible rock and fluid (that is, ρ and φ are
independent of p so that ct = 0), (6.9) simplifies to an elliptic equation with
variable coefficients,

−∇ ·
[K
µ
∇(p− gρz)

]
= q. (6.10)

If we introduce the fluid potential, Φ = p − gρz, (6.10) can be recognized as
the (generalized) Poisson’s equation −∇·K∇Φ = q or as the Laplace equation
∇ · K∇Φ = 0 if there are no volumetric fluid sources or sinks. In the next
section, we will discuss in detail how to discretize the second-order spatial
Laplace operator L = ∇ · K∇, which is a key technological component that
will enter almost any software for simulation of flow in porous rock formations.

Constant compressibility

If the fluid compressibility is constant and independent of pressure, (6.8) can
be integrated from a known density ρ0 at a pressure datum p0 to give the
following equation,

ρ(p) = ρ0e
cf (p−p0) (6.11)

which applies well to most liquids that do not contain large quantities of
dissolved gas. To develop the differential equation, we first assume that the
porosity and the fluid viscosity do not depend on pressure. Going back to the
definition of fluid compressibility (6.8), it also follows from this equation that
∇p = (cfρ)−1∇ρ, which we can use to eliminate ∇p from Darcy’s law (6.2).
Inserting the result into (6.5) gives us the following continuity equation

∂ρ

∂t
− 1

µφcf
∇ ·
(
K∇ρ− cfgρ2K∇z

)
= ρq, (6.12)
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which in the absence of gravity forces and source terms is a linear equation
for the fluid density that is similar to the classical heat equation with variable
coefficients,

∂ρ

∂t
=

1

µφcf
∇ ·
(
K∇ρ

)
. (6.13)

Slightly compressible flow

In the case that the fluid compressibility is small, it is sufficient to use a linear
relationship

ρ = ρ0

[
1 + cf (p− p0)

]
. (6.14)

We further assume that φ is a function of ~x only and that µ is constant. For
simplicity, we also assume that g and q are both zero. Then, we can simplify
(6.9) as follows:

(cfφρ)
∂p

∂t
=
cfρ

µ
∇p · K∇p+

ρ

µ
∇ · (K∇p)

If cf is sufficiently small, in the sense that cf∇p · K∇p � ∇ · (K∇p), we can
neglect the first term on the right-hand side to derive a linear equation similar
to (6.13) for the fluid pressure

∂p

∂t
=

1

µφcf
∇ ·
(
K∇p

)
. (6.15)

Ideal gas

If the fluid is a gas, compressibility can be derived from the gas law, which
for an ideal gas can be written in two alternative forms,

pV = nRT, ρ = p(γ − 1)e. (6.16)

In the first form, T is temperature, V is volume, R is the gas constant (8.314
J K−1mol−1), and n = m/M is the amount of substance of the gas in moles,
where m is the mass and M is the molecular weight. In the second form, γ
is the adiabatic constant, i.e., ratio of specific heat at constant pressure and
constant volume, and e is the specific internal energy (internal energy per unit
mass). In either case, it follows from (6.8) that cf = 1/p.

If the fluid is a gas, we can neglect gravity, and once again we assume that
φ is a function of ~x only. Inserting (6.16) into (6.9) gives

∂(ρφ)

∂t
= φ(γ − 1)e

∂p

∂t
=

1

µ
∇ ·
(
ρK∇p

)
=

(γ − 1)e

µ
∇ ·
(
pK∇p

)
from which it follows that

φµ
∂p

∂t
= ∇ ·

(
pK∇p

)
⇔ φµ

p

∂p2

∂t
= ∇ ·

(
K∇p2

)
. (6.17)
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Equation of state

Equations (6.11), (6.14), and (6.16) are all examples of what is commonly
referred to as equations of state, which provide constitutive relationships be-
tween mass, pressures, temperature, and volumes at thermodynamic equilib-
rium. Another popular form of these equations are the so-called cubic equa-
tions of state, which can be written as cubic functions of the molar volume
Vm = V/n = M/ρ involving constants that depend on the pressure pc, the
temperature Tc, and the molar volume Vc at the critical point, i.e., the point at

which ( ∂p∂V )T = ( ∂
2p

∂V 2 )T ≡ 0. A few particular examples include the Redlich–
Kwong equation of state

p =
RT

Vm − b
− a√

T Vm(Vm + b)
,

a =
0.42748R2T

5/2
c

pc
, b =

0.08662RTc
pc

,

(6.18)

the modified version called Redlich–Kwong–Soave

p =
RT

Vm − b
− aα√

T Vm(Vm + b)
,

a =
0.427R2T 2

c

pc
, b =

0.08664RTc
pc

,

α =
[
1 +

(
0.48508 + 1.55171ω − 0.15613ω2

)
(1−

√
T/Tc)

]2
,

(6.19)

as well as the Peng–Robinson equation of state,

p =
RT

Vm − b
− aα

V 2
m + 2bVm − b2)

,

a =
0.4527235R2T 2

c

pc
, b =

0.077796RTc
pc

,

α =
[
1 +

(
0.37464 + 1.54226ω − 0.26992ω2

)
(1−

√
T/Tc)

]2
.

(6.20)

Here, ω denotes the acentric factor of the species, which is a measure of the
centricity (deviation from spherical form) of the molecules in the fluid. The
Peng–Robinson model is much better at predicting the densities of liquids
than the Redlich–Kwong–Soave model, which was developed to fit pressure
data of hydrocarbon vapor phases. If we introduce

A =
aαp

(RT )2
, B =

bp

RT
, Z =

pV

RT
,

the Redlich–Kwong–Soave equation (6.19) and the Peng–Robinson equation
(6.20) can be written in alternative polynomial forms,

0 = Z3 − Z2 + Z(A−B −B2)−AB, (6.21)

0 = Z3 − (1−B)Z2 + (A− 2B − 3B2)Z − (AB −B2 −B3), (6.22)

which illustrates why they are called cubic equations of state.
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160 6 Mathematical Models and Basic Discretizations

6.3 Auxiliary conditions and equations

The governing equations for single-phase flow discussed above are all parabolic,
except for the incompressible case in which the governing equation is elliptic.
For the solution to be well-posed1 inside a finite domain for any of the equa-
tions, one needs to supply boundary conditions that determine the behavior
on the external boundary. For the parabolic equations describing unsteady
flow, one also needs to impose an initial condition that determines the initial
state of the fluid system. In this section, we will discuss these conditions in
more detail. We will also discuss models for representing flow in and out of the
reservoir rock through wellbores. Because this flow typically takes place on a
length scale that is much smaller than the length scales of the global flow in-
side the reservoir, it is customary to model it using special analytical models.
Finally, we also discuss a set of auxiliary equations for describing the move-
ment of fluid elements and/or neutral particles that follow the single-phase
flow without affecting it.

6.3.1 Boundary and initial conditions

In reservoir simulation one is often interested in describing closed flow systems
that have no fluid flow across its external boundaries. This is a natural assump-
tion when studying full reservoirs that have trapped and contained petroleum
fluids for million of years. Mathematically, no-flow conditions across external
boundaries are modeled by specifying homogeneous Neumann conditions,

~v · ~n = 0 for ~x ∈ ∂Ω. (6.23)

With no-flow boundary conditions, any pressure solution of (6.10) is imma-
terial and only defined up to an additive constant, unless a datum value is
prescribed at some internal point or along the boundary.

It is also common that parts of the reservoir may be in communication
with a larger aquifer system that provides external pressure support, which
can be modeled in terms of a Dirichlet condition of the form

p(~x) = pa(~x, t) for ~x ∈ Γa ⊂ ∂Ω. (6.24)

The function pa can, for instance, be given as a hydrostatic condition. Alter-
natively, parts of the boundary may have a certain prescribed influx, which
can be modeled in terms of an inhomogeneous Neumann condition,

~v · ~n = ua(~x, t) for ~x ∈ Γa ⊂ ∂Ω. (6.25)

Combinations of these conditions are used when studying parts of a reservoir
(e.g., sector models). There are also cases, e.g., when describing groundwater

1 A solution is well-posed if it exists, is unique, and depends continuously on the
initial and boundary conditions.
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6.3 Auxiliary conditions and equations 161

Fig. 6.4. Illustration of a well inside a grid cell. The proportions are not fully to
scale: whereas the diameter of a well varies from 5 to 40 inches, a grid block may
extend from tens to hundreds of meters in the lateral direction and from a few
decimeters to ten meters in the vertical direction.

systems or CO2 sequestration in saline aquifers, where (parts of) the bound-
aries are open or the system contains a background flow. More information
of how to set boundary conditions will be given in Section 7.1.4. In the com-
pressible case in (6.9), we also need to specify an initial pressure distribution.
Typically, this pressure distribution will be hydrostatic, as in the gravity col-
umn we discussed briefly in Section 2.1, and hence be given by the ordinary
differential equation,

dp

dz
= ρg, p(z0) = p0. (6.26)

6.3.2 Injection and production wells

In a typical reservoir simulation, the inflow and outflow in wells occur on a
subgrid scale. In most discretized flow models, the pressure is modelled using
a single pressure value inside each grid cell. The size of each grid cell must
therefore be chosen so small that the pressure variation inside the cell can be
approximated accurately in terms of its volumetric average. Far away from
wells, the spatial variations in pressure tend to be relatively slow, at least
in certain directions, and one can therefore choose cell sizes in the order of
tens or hundreds of meters, which is a reasonable size compared with the
extent of the reservoir. Near the well, however, the pressure will have large
variations over short distances, and to compute a good approximation of these
pressure variations, one would need grid cells than are generally smaller than
what is computationally tractable. As a result, one with a setup similar to
what is illustrated in Figure 6.4, where the radius of the well is typically
between 1/100 and 1/1000 of the horizontal dimensions of the grid cell. The
largest percentage of the pressure drop associated with a well occurs near the
well and the pressure at the well radius will thus deviate significantly from
the volumetric pressure average inside the cell. Special analytical models are
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2rw

h

a) Horizontal view of well b) From above

Fig. 6.5. Radial flow used to develop well model

therefore developed to represent the subgrid variations in the particular flow
patterns near wells.

Normally, fluids are injected from a well at either constant surface rate or
at constant bottom-hole pressure, which is also called wellbore flowing pressure
and refers to the pressure at a certain point inside the wellbore. Similarly,
fluids are produced at constant bottom-hole pressure or at constant surface
liquid rate. The main purpose of a well model is then to accurately compute
the pressure at well radius when the injection or production rate is known,
or to accurately compute the flow rate in our out of the reservoir when the
pressure at well radius is known. The resulting relation between the bottom-
hole pressure and surface flow rate is often called the ’inflow-performance
relation’ or IPR.

The simplest and most widely used inflow-performance relation is the lin-
ear law

qo = J(pR − pbh), (6.27)

which states that the flow rate is directly proportional to the pressure draw-
down in the well; that is, flow rate is proportional to the difference between
the average reservoir pressure pR in the grid cell and the bottom-hole pressure
pbh in the well. The constant of proportionality J is called the productivity
index (PI) for production wells or the well injectivity index (WI) for injectors
and accounts for all rock and fluid properties, as well as geometric factors
that affect the flow. In MRST, we do not distinguish between productivity
and injectivity indices, and henceforth we will only use the shorthand ’WI’.

The basic linear relation (6.27) can be derived from Darcy’s law. Consider a
vertical well that drains a rock with uniform permeabilityK. As an equation of
state, we introduce the formation volume factor B defined as the ratio between
the volume of the fluid at reservoir conditions and the volume of the fluid at
surface conditions. (For incompressible flow, B ≡ 1). The well penetrates the
rock completely over a height h and is open in the radial direction. Fluids
are assumed to only flow in the radial direction and the outer boundary is
circular, see Figure 6.5. In other words, we assume a pseudo-steady, radial
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flow that can be described by Darcy’s law

v =
qB

2πrh
=
K

µ

dp

dr
.

Even if several different flow patterns can be expected when fluids flow toward
a vertical wellbore, two-dimensional radial flow is considered to be the most
representative for vertical oil and gas wells.

We now integrate this equation from the wellbore rw and to the drainage
boundary re where the pressure is constant

2πKh

∫ pe

pbh

1

qµB
dp =

∫ re

rw

1

r
dr.

Here, B and µ are pressure-dependent quantities; B decreases with pressure
and µ increases. The composite effect is that (µB)−1 decreases (almost) lin-
early with pressure. We can therefore approximate µB by (µB)avg evaluated
at the average pressure pavg = (pbh + pe)/2. For convenience, we drop the
subscript in the following. This gives us the pressure as a function of radial
distance

pe = pbh +
qµB

2πKh
ln(re/rw). (6.28)

To close the system, we need to know the location of the drainage boundary
r = re where the pressure is constant. This is often hard to know, and it is
customary to relate q to the volumetric average pressure instead. For pseudo-
steady flow the volumetric average pressure occurs at r = 0.472re. Hence,

q =
2πKh

µB
(
ln(re/rw)− 0.75

)(pR − pbh). (6.29)

The above relation (6.29) was developed for an ideal well under several sim-
plifying assumptions: homogeneous and isotropic formation of constant thick-
ness, clean wellbore, etc. In practice, a well will rarely experience these ideal
conditions. Typically the permeability is altered close to the wellbore under
drilling and completion, the well will only be partially completed, and so on.
The actual pressure performance will therefore deviate from (6.29). To model
this, it is customary to include a skin factor S to account for extra pressure
loss due to alterations in the inflow zone. The resulting equation is

q =
2πKh

µB
(
ln(re/rw)− 0.75 + S

)(pR − pbh). (6.30)

Often the constant −0.75 is included in the skin factor S, and for stimulated
wells the skin factor could be negative. Sometimes h is modified to ch, where
c is the completion factor, i.e., a dimensionless number between zero and one
describing the fraction of the wellbore open to flow.

To use the radial model in conjunction with a reservoir model, the volu-
metric average pressure in the radial model must be related to the computed
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Fig. 6.6. Illustration of the pressure distribution inside a cell computed from (6.28)
assuming the well is producing fluids from an infinite domain. Here, pa is the volu-
metric pressure average and ra is the radius at which this value is found. The inset
shows a zoom of the near-well zone.

Producer

Injector

Quarter five-spot

Fig. 6.7. Excerpts of a repeated five-spot pattern.

cell pressure. Analytical solutions are generally not known since real reservoirs
have complicated geometries and irregular boundaries. Well models are there-
fore developed using highly idealized reservoir geometries. One such example
is the so-called repeated five-spot pattern, which consists of a thin, infinitely
large, horizontal reservoir with a staggered pattern of injection and production
wells as shown in Figure 6.7 that repeats itself to infinity in all directions. The
name comes from the fact that each injector is surrounded by four producers,
and vice versa, hence creating tiles of five-spot patterns. If all wells operate at
equal rates, the flow pattern has certain symmetries and it is common to only
consider a quarter of the five spot, as shown in Figure 6.7, subject to no-flow
boundary conditions. An analytical solution for the pressure drop between the
injection and production wells was developed by Muskat [138],

∆p =
qµB

πKh

(
ln(re/rw)−B

)
, (6.31)

where d is the distance between the wells, and B is given by an infinite series.
Muskat [138] originally used B = 0.6190, but a more accurate value, B =
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0.61738575, was later derived by Peaceman [154], who used (6.31) to determine
an equivalent radius re at which the cell pressure is equal to the analytical
pressure. Assuming isotropic permeabilities, square grid blocks, single-phase
flow, and a well at a center of an interior block, Peaceman [156] showed that
the equivalent radius is

re ≈ 0.2
√
∆x∆y

for the two-point discretization that will be discussed in more detail in Sec-
tion 6.4.1.

This basic model has later been extended to cover a lot of other cases,
e.g., off-center wells, multiple wells, non-square grids, anisotropic permeability,
horizontal wells; see for instance [14, 67, 7]. For anisotropic permeabilities–and
horizontal wells–the equivalent radius is defined as [154]

re = 0.28

(√
Ky/Kx∆x

2 +
√
Kx/Ky∆y

2
)1/2

(
Ky/Kx

)1/4
+
(
Kx/Ky

)1/4 , (6.32)

and the permeability is replaced by an effective permeability

Ke =
√
KxKy. (6.33)

If we include gravity forces in the well and assume hydrostatic equilibrium,
the well model thus reads

qi =
2πhcKe

ln(re/rw) + S

1

µiBi

(
pR − pbh − ρi(z − zbh)g

)
, (6.34)

where Ke is given by (6.33) and re is given by (6.32). For deviated wells, h
denotes the length of the grid block in the major direction of the wellbore and
not the length of the wellbore.

At this point we should add a word of caution. The equivalent radius of
a numerical method generally depends on how the method approximates the
pressure inside the grid cell containing the well perforation. The formulas given
above are strictly seen only valid if you use the specific two-point discretization
they were developed for. When using another discretization method, you may
have to compute other values for the equivalent radius, e.g., as discussed in
[112, 120].

6.3.3 Field lines and time-of-flight

Equation (6.10) together with a set of suitable and compatible boundary con-
ditions is all that one needs to describe the flow of an incompressible fluid
inside an incompressible rock. In the remains of this section, we will discuss
a few simple concepts and auxiliary equations that have proven useful to vi-
sualize, analyze, and understand flow fields.
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A simple way to visualize a flow field is to use field lines resulting from the
vector field: streamlines, streaklines, and pathlines. In steady flow, the three
are identical. However, if the flow is not steady, i.e., when ~v changes with
time, they differ. Streamlines are associated with an instant snapshot of the
flow field and consists of a family of curves that are everywhere tangential to
~v and show the direction a fluid element will travel at this specific point in
time. That is, if ~x(r) is a parametric representation of a single streamline at
this instance t̂ in time, then

d~x

dr
× ~v(~x, t̂) = 0, or equivalently,

d~x

dr
=

~v(t̂)

|~v(t̂)|
. (6.35)

In other words, streamlines are calculated instantaneously throughout the
fluid from an instantaneous snapshot of the flow field. Because two streamlines
from the same instance in time cannot cross, there cannot be flow across it,
and if we align a coordinate along a bundle of streamlines, the flow through
them will be one-dimensional.

Pathlines are the trajectories that individual fluid elements will follow over
a certain period. In each moment of time, the path a fluid particle takes will be
determined by the streamlines associated with the streamlines at this instance
in time. If ~y(t) represents a single path line starting at ~y0 at time t0, then

d~y

dt
= ~v(~y, t), ~y(t0) = ~y0. (6.36)

A streakline is the line traced out by all fluid particles that have passed
through a prescribed point throughout a certain period of time. (Think of dye
injected into the fluid at a specific point). If we ~z(t, s) denote a parametrization
of a streakline and ~z0 the specific point through which all fluid particles have
passed, then

d~z

dt
= ~v(~z, t), ~z(s) = ~z0. (6.37)

Like streamlines, two streaklines cannot intersect each other.
In summary: streamline patterns change over time, but are easy to generate

mathematically. Pathlines and streaklines are recordings of the passage of time
and are obtained through experiments.

Within reservoir simulation streamlines are far more used that pathlines
and streaklines. Moreover, rather than using the arc length r to parametrize
streamlines, it is common to introduce an alternative parametrization called
time-of-flight, which takes into account the reduced volume available for flow,
i.e., the porosity φ. Time-of-flight is defined by the following integral

τ(r) =

∫ r

0

φ(~x(s))

|~v(~x(s))|
ds, (6.38)

where τ expresses the time it takes a fluid particle to travel a distance r
along a streamline (in the interstitial velocity field ~v/φ). Alternatively, by the
fundamental theorem of calculus and the directional derivative,
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6.3 Auxiliary conditions and equations 167

Fig. 6.8. Illustration of time-of-flight, shown as gray isocontour lines, and stream-
lines shown as thick black lines.

dτ

dr
=

φ

|~v|
=

~v

|~v|
· ∇τ,

from which it follows that τ can be expressed by the following differential
equation [52, 53]

~v · ∇τ = φ. (6.39)

In lack of a better name, we will refer to this as the time-of-flight equation.

6.3.4 Tracers and volume partitions

Somewhat simplified, tracers can be considered as neutral particles that pas-
sively flow with the fluid without altering its flow properties. The concentra-
tion of a tracer is given by a continuity equation on the same form as (6.5),

∂(φC)

∂t
+∇ ·

(
~vC
)

= qC . (6.40)

Communication patterns within a reservoir can be determined by simulating
the evolution of artificial, non-diffusive tracers whose concentration does not
change upon fluid compression or expansion. A simple flow diagnostics is to
set the tracer concentration equal to one in a particular fluid source or at a
certain part of the inflow boundary and compute the solution approached at
steady-state conditions from the non-conservative equation,

~v · ∇C = qC , C|inflow = 1. (6.41)

The resulting tracer distribution gives the portion of the total fluid volume
coming from a certain fluid source, or parts of the inflow boundary, that
eventually will reach each point in the reservoir. Likewise, by reversing the
sign of the flow field and assigning unit tracers to a particular fluid sink or
parts of the outflow, one can compute the portion of the fluid arriving at a
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source or outflow boundary that can be attributed to a certain point in the
reservoir. By repeating this process for all parts of the inflow, one can easily
obtain a partition of the instantaneous flow field.

A more dynamic view can be obtained by utilizing the fact that streamlines
and time-of-flight can be used to define an alternative curvilinear and flow-
based coordinate system in three dimensions. To this end, we introduce the
bi-streamfunctions ψ and χ [23], for which ~v = ∇ψ × ∇χ. In the streamline
coordinates (τ, ψ, χ), the gradient operator is expressed as

∇(τ,ψ,χ) = (∇τ)
∂

∂τ
+ (∇ψ)

∂

∂ψ
+ (∇χ)

∂

∂χ
. (6.42)

Moreover, a streamline Ψ is defined by the intersection of a constant value
for ψ and a constant value for χ. Because ~v is orthogonal to ∇ψ and ∇χ, it
follows from (6.39) that

~v · ∇(τ,ψ,χ) = (~v · ∇τ)
∂

∂τ
= φ

∂

∂τ
. (6.43)

Therefore, the coordinate transformation (x, y, z) → (τ, ψ, χ) will reduce the
three-dimensional transport equation (6.40) to a family of one-dimensional
transport equations along each streamline [52, 99], which for incompressible
flow reads

∂C

∂t
+
∂C

∂τ
= 0. (6.44)

In other words, there is no exchange of the quantity C between streamlines
and each streamline can be viewed as an isolated flow system. Assuming a
prescribed concentration history C0(t) at the inflow, gives a time-dependent
boundary-value problem for the concentration at the outflow (6.44). Here, the
response is given as (see [52]),

C(t) = C0(t− τ), (6.45)

which is easily verified by inserting the expression into (6.44) and the fact that
the solution is unique [83]. For the special case of continuous and constant
injection, the solution is particularly simple

C(t) =

{
0, t < τ,

C0, t > τ.

6.4 Basic finite-volume discretizations

Research on numerical solution of the Laplace/Poisson equation has a long
tradition, and there exist a large number of different finite-difference and
finite-volume methods, as well as finite-element methods based on standard
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Galerkin, mixed, or discontinuous Galerkin formulations, which all have their
merits. In Chapter 8, we will discuss consistent discretizations of Poisson-type
equations in more detail. We introduce a general framework for formulating
such method on general polyhedral grids and present several recent methods
that are specially suited for irregular grids with strongly discontinuous coef-
ficients, which are typically seen in realistic reservoir simulation models. In
particular, we will discuss multipoint flux-approximation (MPFA) methods
and mimetic finite-difference (MFD) methods, which are both available in
add-on modules that are part of the standard MRST releases. As a starting
point, however, we will in rest of this section present the simplest example
of a finite-volume discretization, the two-point flux-approximation (TPFA)
scheme, which is used extensively throughout industry and also is the default
discretization method in MRST. We will give a detailed derivation of the
method and point out its advantages and shortcomings. For completeness,
we also briefly outline how to discretize the time-of-flight and the stationary
tracer equations.

6.4.1 Two-point flux-approximation

To keep technical details at a minimum, we will in the following without loss
of generality consider the simplified single-phase flow equation

∇ · ~v = q, ~v = −K∇p, in Ω ⊂ Rd. (6.46)

In classical finite-difference methods, partial differential equations are approx-
imated by replacing the derivatives with appropriate divided differences be-
tween point-values on a discrete set of points in the domain. Finite-volume
methods, on the other hand, have a more physical motivation and are de-
rived from conservation of (physical) quantities over cell volumes. Thus, in
a finite-volume method the unknown functions are represented in terms of
average values over a set of finite-volumes, over which the integrated PDE
model is required to hold in an averaged sense. Although finite-difference and
finite-volume methods have fundamentally different interpretation and deriva-
tion, the names are used interchangeably in the scientific literature. The main
reason for this is probably that for certain low-order methods, the discrete
equations derived for the cell-centered values in a mass-conservative finite-
difference method are identical to the discrete equations for the cell averages
in the corresponding finite-volume method. Herein, we will stick to this con-
vention and not make a strict distinction between the two types of methods

To develop a finite-volume discretization for (6.46), we start by rewriting
the equation in integral form using a single cell Ωi in the discrete grid as
control volume ∫

∂Ωi

~v · ~n ds =

∫
Ωi

q d~x. (6.47)
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pi

Ωi

Γi,k

pk

Ωk
~ni,k

~ci,k

πi,k

Fig. 6.9. Two cells used to define the two-point finite-volume discretization of the
Laplace operator.

This is a simpler form of (6.3), where that the accumulation term has disap-
peared because φ and ρ are independent of time and the constant ρ has been
eliminated.

Equation (6.47) ensures that mass is conserved for each grid cell. The next
step is to use Darcy’s law to compute the flux across each face of the cell,

vi,k =

∫
Γik

~v · ~n ds, Γi,k = ∂Ωi ∩ ∂Ωk. (6.48)

We will refer to the faces Γi,k as half-faces since they are associated with
a particular grid cell Ωi and a certain normal vector ~ni,k. However, since
the grid is assumed to be matching, each interior half face will have a twin
half-face Γk,i that has identical area Ak,i = Ai,k but opposite normal vector
~nk,i = −~ni,k. If we further assume that the integral over the cell face in (6.48)
is approximated by the midpoint rule, we use Darcy’s law to write the flux as

vi,k ≈ Ai,k~v(~xi,k) · ~ni,k = −Ai,k
(
K∇p)(~xi,k) · ~ni,k, (6.49)

where ~xi,k denotes the centroid on Γi,k. The idea is now to use a one-sided
finite difference to express the pressure gradient as the difference between the
pressure πi,k at the face centroid and at some point inside the cell. However, in
a finite-volume method, we only know the cell averaged value of the pressure
inside the cell. We therefore must make some additional assumption that
will enable us to reconstruct point values that are needed to estimate the
pressure gradient in Darcy’s law. If we assume that the pressure is linear (or
constant) inside each cell, the reconstructed pressure value πi at the cell center
is identical to the average pressure pi inside the cell, and hence it follows that
(see Figure 6.9)

vi,k ≈ Ai,kKi
(pi − πi,k)~ci,k
|~ci,k|2

· ~ni,k = Ti,k(pi − πi,k). (6.50)

Here, we have introduced one-sided transmissibilities Ti,k that are associated
with a single cell and gives a two-point relation between the flux across a cell
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face and the difference between the pressure at the cell and face centroids. We
will refer to these one-sided transmissibilities as half-transmissibilities since
they are associated with a half face.

To derive the final discretization, we impose continuity of fluxes across all
faces, vi,k = −vk,i = vik and continuity of face pressures πi,k = πk,i = πik.
This gives us two equations,

T−1
i,k vik = pi − πik, −T−1

k,i vik = pk − πik.

By eliminating the interface pressure πik, we end up with the following two-
point flux-approximation (TPFA) scheme,

vik =
[
T−1
i,k + T−1

k,i

]−1
(pi − pk) = Tik(pi − pk). (6.51)

where is the Tik the transmissibility associated with the connection between
the two cells. As the name suggests, the TPFA scheme uses two ’points’,
the cell averages pi and pk, to approximate the flux across the interface Γik
between the cells Ωi and Ωk. In the derivation above, the cell fluxes were
parametrized in terms of the index of the neighboring cell. Extending the
derivation to also include fluxes on exterior faces is trivial since we either
know the flux explicitly for Neumann boundary conditions (6.23) or (6.25),
or know the interface pressure for Dirichlet boundary conditions (6.24).

By inserting the expression for vik into (6.47), we see that the TPFA
scheme for (6.46), in compact form, seeks a set of cell averages that satisfy
the following system of equations∑

k

Tik(pi − pk) = qi, ∀Ωi ⊂ Ω (6.52)

This system is clearly symmetric, and a solution is, as for the continuous
problem, defined up to an arbitrary constant. The system is made positive
definite, and symmetry is preserved by specifying the pressure in a single
point. In MRST, we have chosen to set p1 = 0 by adding a positive constant
to the first diagonal of the matrix A = [aij ], where:

aij =

{∑
k Tik if j = i,

−Tij if j 6= i,

The matrix A is sparse and will have a banded structure for structured grids
(tridiagonal for 1D grids and penta- and heptadiagonal for logically Cartesian
grids in 2D and 3D, respectively). The TPFA scheme is monotone, robust,
and relatively simple to implement, and is currently the industry standard
with reservoir simulation.

Example 6.1. To tie the links with standard finite-difference methods on
Cartesian grids, we will derive the two-point discretization for a 2D Cartesian
grid with isotropic permeability. Consider the flux in the x-direction between
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vi,k

∆xi ∆xk

∆ypi pkπi,k

Fig. 6.10. Two cells used to derive the TPFA discretization for a 2D Cartesian grid

two cells i and k as illustrated in Figure 6.10. As above, we impose mass
conservation inside each cell. For cell i this reads:

vi,k = ∆y
(pi − πi,k)(

1
2∆xi

)2 ( 1
2∆xi, 0

)
Ki

(
1, 0
)T

= ∆y
2Ki

∆xi

(
pi − πi,k

)
and likewise for cell k:

vk,i = ∆y
(pk − πk,i)(

1
2∆xk

)2 (− 1
2∆xk, 0

)
Kk

(
−1, 0

)T
= ∆y

2Kk

∆xk

(
pk − πk,i

)
Next, we impose continuity of fluxes and face pressures,

vi,k = −vk,i = vik, πi,k = πk,i = πik

which gives us two equations

∆xi
2Ki∆y

vik = pi − πik, − ∆xk
2Kk∆y

vik = pk − πik.

Finally, we eliminate πik to obtain

vik = 2∆y
(∆xi
Ki

+
∆xk
Kk

)−1(
pi − pk

)
,

which shows that the transmissibility is given by the harmonic average of the
permeability values in the two adjacent cells, as one would expect.

In [4], we showed how one could develop an efficient and self-contained
MATLAB program that in approximately thirty compact lines solved the in-
compressible flow equation (6.46) using the two-point method outlined above.
The program was designed for Cartesian grids with no-flow boundary condi-
tions only and relied strongly on a logical ijk numbering of grid cells. For this
reason, the program has limited applicability beyond highly idealized cases
like the SPE10 model. However, in its simplicity, it presents an interesting
contrast to the general-purpose implementation in MRST that handles un-
structured grids, wells, and more general boundary conditions. The interested
reader is encouraged to read the paper and try the accompanying program
and example scripts that can be downloaded from

http://folk.uio.no/kalie/matlab-ressim/
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6.4 Basic finite-volume discretizations 173

6.4.2 Discrete div and grad operators

While the double-index notation vi,k and vik used in the previous section is
simple and easy to comprehend when working with a single interface between
two neighboring cells, it becomes more involved when we want to introduce
the same type of discretizations for more complex equations than the Poisson
equation for incompressible flow. To prepare for discussions that will follow
later in the book, we will in the following introduce a more abstract way of
writing the two-point finite-volume discretization introduced in the previous
section. The idea is to introduce discrete operators for the divergence and
gradient operators that mimic their continuous counterparts, which will en-
able us to write the discretized version of the Poisson equation (6.46) in the
same form as its continuous counterpart. To this end, we start by a quick
recap of the definition of unstructured grids. As discussed in detail in Sec-
tion 4.4, the grid structure in MRST, consists of three objects: The cells,
the faces, and the nodes. Each cell corresponds to a set of faces, and each
face to a set of edges, which again are determined by the nodes. Each ob-
ject has given geometrical properties (volume, areas, centroids). As before,
let us denote by nc and nf , the number of cells and faces, respectively. To
define the topology of the grid, we will mainly use two different mappings.
The first mapping is given by N : {1, . . . , nc} → {0, 1}nf and maps a cell
to the set of faces that constitute this cell. In a grid structure G, this is rep-
resented as the G.cells.faces array, where the first column that gives the
cell numbers is not stored since it is redundant and instead must be com-
puted by a call f2cn = gridCellNo(G);. The second mapping consists in fact
of two mappings that, for a given face, give the corresponding neighboring
cells, N1, N2 : {1, . . . , nf} → {1, . . . , nc}. In a grid structure G, N1 is given by
G.faces.neighbors(:,1) and N2 by G.faces.neighbors(:,2).

Let us now construct the discrete versions of the divergence and gradient
operators, which we denote div and grad. The mapping div is a linear map-
ping from faces to cells. We consider a discrete flux v ∈ Rnf . For a face f , the
orientation of the flux v[f ] is from N1(f) to N2(f). Hence, the total amount
of matter leaving the cell c is given by

div(v)[c] =
∑

f∈N(c)

v[f ] 1{c=N1(f)} −
∑

f∈N(c)

v[f ] 1{c=N2(f)}. (6.53)

The grad mapping maps Rnc to Rnf and it is defined as

grad(p)[f ] = p[N2(f)]− p[N1(f)], (6.54)

for any p ∈ Rnc . In the continuous case, the gradient operator is the adjoint
of the divergence operator (up to a sign), as we have∫

Ω

p∇ · ~v d~x+

∫
Ω

~v · ∇p d~x = 0, (6.55)
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for vanishing boundary conditions. Let us prove that this property holds also
in the discrete case. To simplify the notations, we set Sc = {1, . . . , nc} and
Sf = {1, . . . , nf}. For any v ∈ Rnf and p ∈ Rnc , we have

∑
c∈Sc

div(v)[c]p[c] =
∑
c∈Sc

p[c]

( ∑
f∈N(c)

v[f ] 1{c=N1(f)} −
∑

f∈N(c)

v[f ] 1{c=N2(f)}

)

=
∑
c∈Sc

∑
f∈Sf

v[f ]p[c] 1{c=N1(f)} 1{f∈N(c)}

−
∑
c∈Sc

∑
f∈Sf

v[f ]p[c] 1{c=N2(f)} 1{f∈N(c)} (6.56)

We can switch the order in the sums above and obtain∑
c∈Sc

∑
f∈Sf

v[f ]p[c] 1{c=N1(f)} 1{f∈N(c)} =∑
f∈Sf

∑
c∈Sc

v[f ]p[c] 1{c=N1(f)} 1{f∈N(c)}.

For a given face f , we have that 1{c=N1(f)}1{f∈N(c)} is nonzero if and only if
c = N1(f) and therefore∑

f∈Sf

∑
c∈Sc

1{c=N1(f)}1{f∈N(c)}v[f ]p[c] =
∑
f∈Sf

v[f ]p[N1(f)].

In the same way, we have∑
c∈Sc

∑
f∈Sf

v[f ]p[c] 1{c=N2(f)} 1{f∈N(c)} =
∑
f∈Sf

v[f ]p[N2(f)]

so that (6.56) yields∑
c∈Sc

div(v)[c]p[c] +
∑
f∈Sf

grad(p)[f ]v[f ] = 0. (6.57)

Until now, the boundary conditions have been ignored. They are included by
introducing one more cell number c = 0 to denote the exterior. Then we can
consider external faces and extend the mappings N1 and N2 to Sc ∪ {0} so
that, if a given face f satisfies N1(f) = 0 or N2(f) = 0 then it is external.
Note that the grad operator only defines values on internal faces. Now taking
external faces into account, we obtain∑

c∈Sc

div(v)[c]p[c] +
∑
f∈Sf

grad(p)[f ]v[f ]

=
∑

f∈S̄f\Sf

(
p[N1(f)] 1{N2(f)=0} − p[N2(f)] 1{N1(f)=0}

)
v[f ], (6.58)
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where S̄f denotes the set of internal and external faces. The identity (6.58) is
the discrete counterpart to∫

Ω

p∇ · ~v d~x+

∫
Ω

~v · ∇p d~x =

∫
∂Ω

p~v · ~n ds. (6.59)

Going back to (6.46), we see that the vector v ∈ Rnf is a discrete approxima-
tion of the flux on faces. Given f ∈ Sf , we have

v[f ] ≈
∫
Γf

~v(x) · ~nf ds,

where ~nf is the normal to the face f , where the orientation is given by the
grid. The relation between the discrete pressure p ∈ Rnc and the discrete flux
is given by the two-point flux approximation discussed in the previous section,

v[f ] = −T [f ] grad(p)[f ] ≈ −
∫
Γf

K(x)∇p · ~nf ds, (6.60)

where T [f ] denotes the transmissibility of the face f , as defined in (6.51).
Hence, the discretization of (6.46) is

div(v) = q (6.61a)

v = −T grad(p). (6.61b)

where the multiplication in (6.61b) holds element-wise.

Example 6.2. To illustrate the use of the discrete operators, let us set up and
solve the classical Poisson equation on a simple box geometry,

− div(Tgrad(p)) = q, Ω = [0, 1]× [0, 1] (6.62)

subject to no-flow boundary conditions with q consisting of a point source at
(0,0) and a point sink at (1,1). First, we construct a small Cartesian grid

G = computeGeometry(cartGrid([5 5],[1 1]));

for which T equals a scalar multiple of the identity matrix and is therefore
dropped for simplicity. The div and grad operators will be constructed as
sparse matrices. To this end, we will use (6.54) and (6.57), which implies that
the sparse matrix used to construct div is the negative transpose of the matrix
that defines grad. Moreover, since we assume no-flow boundary conditions,
we only need to let N1 and N2 account for internal connections:

N = G.faces.neighbors;
N = N(all(N ~= 0, 2), :);
nf = size(N,1);
nc = G.cells.num;
C = sparse([(1:nf)'; (1:nf )'], N, ...

ones(nf,1)*[−1 1], nf, nc);
grad = @(x) C*x;
div = @(x) −C'*x;

∂
∂y

∂
∂x

C =
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Once we have the discrete operators, we can write (6.62) in residual form,
f(p) = Ap + q = 0, and then use automatic differentiation as discussed in
Section 2.7 to obtain A by computing ∂f/∂p

p = initVariablesADI(zeros(nc,1));
q = zeros(nc, 1); % source term
q(1) = 1; q(nc) = −1; % −> quarter five−spot

eq = div(grad(p))+q; % equation
eq(1) = eq(1) + p(1); % make solution unique
p = −eq.jac{1}\eq.val; % solve equation

Next, we try to solve the same type of flow problem on a non-rectangular
domain. That is, we still consider the unit square, but remove two half-circles
of radius 0.4 centered at (0.5,0) and (0.5,1), respectively. To construct the
corresponding grid, we use the fictitious grid approach from Section 4.1 (see
Exercise 16 on page 83):

G = cartGrid([20 20],[1 1]);
G = computeGeometry(G);
r1 = sum(bsxfun(@minus,G.cells.centroids,[0.5 1]).ˆ2,2);
r2 = sum(bsxfun(@minus,G.cells.centroids,[0.5 0]).ˆ2,2);
G = extractSubgrid(G, (r1>0.16) & (r2>0.16));

The construction of the discrete operators is agnostic to the exact layout of the
grid, and since the transmissibility matrix T is still a multiple of the identity
matrix, since the grid cells are equidistant squares, we can simply reuse the
exact same set-up as above:

% Grid information
N = G.faces.neighbors;
:
% Operators
C = sparse([(1:nf)'; (1:nf )'], N, ...

ones(nf,1)*[−1 1], nf, nc);
:
% Assemble and solve equations
p = initVariablesADI(zeros(nc,1));
q = zeros(nc, 1);
q(1) = 1; q(nc) = −1;
eq = div(grad(p))+q;
eq(1) = eq(1) + p(1);
p = −eq.jac{1}\eq.val;
plotCellData(G,p);

∂
∂y

∂
∂x

Notice that the C matrix has almost the same sparsity structure as in our
first problem, except that the nonzero band now are curved since the number
of cells in each column/row of the grid changes throughout the domain.
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Example 6.3. To illustrate the power of the combination of an unstructured
grid format and discrete differential operators, we also go through how you
can use this technique to solve the Poisson equation on an unstructured grid.
As an example, we use the Voronoi grid generated from the seamount data set
shown in Figure 4.11 on page 90. Now comes the important point: Because the
discrete differential operators are defined in terms of the two general matrices
N1 and N2 that describe the internal connections in the grid, their construction
remains exactly the same as for the Cartesian grid:

load seamount

G = pebi(triangleGrid([x(:) y(:)], delaunay(x,y)));
G = computeGeometry(G);

N = G.faces.neighbors;
N = N(all(N ~= 0, 2), :);
nf = size(N,1);
nc = G.cells.num;
C = sparse([(1:nf)'; (1:nf )'], N, ...

ones(nf,1)*[−1 1], nf, nc);
grad = @(x) C*x;

Here, the directional derivatives do not follow the axial directions and hence
C will have a general sparse structure and not the banded structure we saw
for the Cartesian grids in the previous example. Likewise, because the cell
centers are no longer equidistant points on a uniform mesh, the diagonal
entries in the transmissibility matrix will not be the same constant for all
cells and hence cannot be scaled out of the discrete system. For historical
reasons, MRST only supplies a routine for computing half-transmissibilities
defined in (6.50) on page 170. These are defined for all faces in the grid. Since
we have assumed no-flow boundary conditions, we hence only need to find the
half-transmissibilities associated with the interior faces and compute their
harmonic average to get the transmissibilities defined in (6.51):

hT = computeTrans(G, struct('perm', ones(nc,1)));
cf = G.cells.faces(:,1);
T = 1 ./ accumarray(cf, 1 ./ hT, [G.faces.num, 1]);
T = T(all(N~=0,2),:);

p = initVariablesADI(zeros(nc,1));
q = zeros(nc, 1); q([135 282 17]) = [−1 .5 .5];
eq = div(T.*grad(p))+q;
eq(1) = eq(1) + p(1);
p = −eq.jac{1}\eq.val;

You may also notice that we have changed our source terms slightly so that
there is now a fluid sink at the center and fluid sources to the north-west and
south-east. We will return to a more detailed discussion of the computation
of transmissibilities and assembly of discrete linear systems in Section 7.2
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6.4.3 Time-of-flight and tracer

The transport equations (6.39) and (6.41) can be written on the common form

∇ ·
(
u~v
)

= h(~x, u), (6.63)

where u = τ and h = φ+τ∇·~v for time-of-flight and u = C and h = qC+C∇·~v
for the artificial tracer.

To discretize the steady transport equation (6.63), we integrate it over a
single grid cell Ωi and use Gauss’ divergence theorem to obtain∫

∂Ωi

u~v · ~n ds =

∫
Ωi

h
(
~x, u(~x)

)
d~x.

In Section 6.4.1 we discussed how to discretize the flux over an interface Γik
between two cells Ωi and Ωk for the case that u ≡ 1. To be consistent with the
notation used above, we will call this flux vik. If we can define an appropriate
value uik at the interface Γik, we can write the flux across the interface as∫

Γik

u~v · ~n ds = uikvik. (6.64)

The obvious idea of setting uik = 1
2 (ui + uk) gives a centered scheme that is

unfortunately notoriously unstable. By inspecting the direction information
is propagating in the transport equation, we can instead use the so-called
upwind value

uik =

{
ui, if vij ≥ 0,

uk, otherwise.
(6.65)

This can be thought of as adding extra numerical dispersion which will sta-
bilize the resulting scheme so that it does not introduce spurious oscillations.

For completeness, let us also write this discretization using the abstract
notation defined in the previous section. If we discretize u by a vector u ∈ Rnc

and h by a vector function h(u) ∈ Rnc , the transport equation (6.63) can be
written in the discrete form

div(uv) = h(u). (6.66)

We also substitute the expression for v from (6.61b) and use (6.65) to define
u at each face f . Then, we define, for each face f ∈ Sf ,

(uv)[f ] = uf [f ]T [f ] grad(p)[f ], (6.67)

where

uf [f ] =

{
u[N1(f)]), if grad(p)[f ] > 0,

u[N2(f)]), otherwise.
(6.68)

Time-of-flight and tracer distributions can of course also be computed
based on tracing streamlines by solving the ordinary differential equations
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(6.35). The most commonly used method for tracing streamlines on hexahedral
grids is a semi-analytical tracing algorithm introduced by Pollock [159], which
uses analytical expressions of the streamline paths inside each cell based on
the assumption that the velocity field is piecewise linear locally. Although
Pollock’s method is only correct for regular grids, it is often used also for highly
skewed and irregular grids. Other approaches for tracing on unstructured grids
and the associated accuracy are discussed in [50, 161, 94, 126, 75, 125, 103].
On unstructured polygonal grids, tracing of streamlines becomes significantly
more involved. Because the general philosophy of MRST is that solvers should
work independent of grid type – so that the user can seamlessly switch from
structured to fully unstructured, polygonal grids – we prefer to use finite-
volume methods rather than streamline tracing to compute time-of-flight and
tracer distributions.

Computer exercises:

32. Compare the discrete differentiation operators for selected grids from Chap-
ter 4, e.g., Exercises 16 to 18 on page 84 and Exercises 21 and 22 on page 95.
Can you explain the differences?
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7

Incompressible Solvers

A simulation model can be considered to consist of two main parts; the first
part describes the reservoir rock and the second part describes the mathemat-
ical laws that govern fluid behavior. We have already discussed how to model
the reservoir rock and its petrophysical properties in Chapters 3 and 4 and
shown how the resulting geological models are represented in MRST using a
grid object, usually called G, that describes the geometry of the reservoir, and
a rock object, usually called rock, that describes petrophysical parameters.
From the properties in these objects, one can compute spatial discretization
operators that are generic and not tied to a particular set of flow equations
as discussed in Section 6.4.2.

To form a full simulation model for porous media flow, however, we also
need to introduce forcing terms and fluid properties. In MRST, the fluid
behavior is represented as a fluid object that describes basic fluid properties
such as density, viscosity, and compressibility. These fluid objects can then
be extended to model more complex behavior for specific models, for instance
to include properties like relative permeability and capillary pressure that
describe the interaction between a multiphase flow interacts and a porous
rock. Forcing terms other than gravity are represented similarly using objects
with data structures that are specific to boundary conditions, (volumetric)
source terms, and models of injection and production wells. In addition, it is
convenient to introduce a state object holding the reservoir states (primary
unknowns and derived quantities) like pressure, fluxes, face pressures, etc.

There are two different ways the data objects outlined above can be com-
bined to form a full simulator. In Example 6.2, we saw how one can use
discrete differential operators to write the flow equations in residual form and
then employ automatic differentiation to linearize and form a linear system.
Whereas this technique is elegant and will prove highly versatile for com-
pressible flow models later in the book, it is an overkill for incompressible
single-phase flow, since these equations already are linear. In this chapter we
therefore outline how one can use a classic procedural approach to implement
the discretized flow equations from the previous chapter. We start by outlin-
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182 7 Incompressible Solvers

ing the data structures and constructors needed to set up fluid properties and
forcing terms, and once this is done, we move on to discuss in detail how to
build two-point discretizations and assemble and solve corresponding linear
systems. The codes presented are simplified version of the basic flow solvers
for incompressible flow that are implemented in the add-on modules incomp

and diagnostics of MRST. Then at the end of the chapter, we go through
a few examples and give all code lines that are necessary for full simulation
setups with various driving mechanisms.

7.1 Basic data structures in a simulation model

In the previous chapter, we showed an example of a simple flow solver that did
not contain any fluid properties and assumed no-flow boundary conditions and
point sources as the only forcing term. In this section we will outline the basic
data structures that are needed to set up more comprehensive single-phase
simulation models.

7.1.1 Fluid properties

The only fluid properties we need in the basic single-phase flow equation are
the viscosity and the fluid density for incompressible models and the fluid
compressibility for compressible models. For more complex single-phase and
multiphase models, there are other fluid and rock-fluid properties that will
be needed by flow and transport solvers. To simplify the communication of
fluid properties, MRST uses so-called fluid object that contain basic fluid
properties as well as a few function handles that can be used to evaluate rock-
fluid properties that are relevant for multiphase flow. This basic structure can
be expanded further to represent more advanced fluid models.

The following shows how to initialize a simple fluid object that only re-
quires viscosity and density as input

fluid = initSingleFluid('mu' , 1*centi*poise, ...
'rho' , 1014*kilogram/meterˆ3);

After initialization, the fluid object will contain pointers to functions that can
be used to evaluate petrophysical properties of the fluid:

fluid =

properties: @(varargin)properties(opt,varargin{:})

saturation: @(x,varargin)x.s

relperm: @(s,varargin)relperm(s,opt,varargin{:})

Only the first function is relevant for single-phase flow, and returns the vis-
cosity when called with a single output argument and the viscosity and the
density when called with two output arguments. The other two functions can
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7.1 Basic data structures in a simulation model 183

be considered as dummy functions that can be used to ensure that the single-
phase fluid object is compatible with solvers written for more advanced fluid
models. The saturation function accepts a reservoir state as argument (see
Section 7.1.2) and returns the corresponding saturation (volume fraction of
the fluid phase) which will either be empty or set to unity, depending upon
how the reservoir state has been initialized. The relperm function accepts a
fluid saturation as argument and returns the relative permeability, i.e., the
reduction in permeability due to the presence of other fluid phases, which is
always identical to one for a single-phase model.

7.1.2 Reservoir states

To hold the dynamic state of the reservoir, MRST uses a special data struc-
ture. We will in the following refer to realizations of this structure as state
objects. In its basic form, the structure contains three elements: a vector
pressure with one pressure per cell in the model, a vector flux with one flux
per grid face in the model, and a vector s with one saturation value for each
cell, which should either be empty or be an identity vector since we only have
a single fluid. The state object is typically initialized by a call to the following
function

state = initResSol(G, p0, s0);

where p0 is the initial pressure and s0 is an optional parameter that gives the
initial saturation (which should be identical to one for single-phase models).
Notice that this initialization does not initialize the fluid pressure to be at
hydrostatic equilibrium. If such a condition is needed, it must be enforced
explicitly by the user. In the case that the reservoir has wells, one should use
the alternative function:

state = initState(G, W, p0, s0);

This will give a state object with an additional field wellSol, which is a
vector with length equal the number of wells. Each element in the vector is
a structure that has two fields wellSol.pressure and wellSol.flux. These
two fields are vectors of length equal the number of completions in the well
and contain the bottom-hole pressure and flux for each completion.

7.1.3 Fluid sources

The simplest way to describe flow into or flow out from interior points of the
reservoir is to use volumetric source terms. These source terms can be added
using the following function:

src = addSource(src, cells, rates);
src = addSource(src, cells, rates, 'sat', sat);

Here, the input values are:
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– src: structure from a prior call to addSource which will be updated on out-
put or an empty array (src==[]) in which case a new structure is created.
The structure contains the following fields:

– cell: cells for which explicit sources are provided
– rate: rates for these explicit sources
– value: pressure or flux value for the given condition
– sat: fluid composition of injected fluids in cells with rate>0

– cells: indices to the cells in the grid model in which this source term should
be applied.

– rates: vector of volumetric flow rates, one scalar value for each cell in
cells. Note that these values are interpreted as flux rates (typically in
units of [m3/day] rather than as flux density rates (which must be inte-
grated over the cell volumes to obtain flux rates).

– sat: optional parameter that specifies the composition of the fluid injected
from this source. An n × m array of fluid compositions with n being
the number of elements in cells and m is the number of fluid phases.
For m = 3, the columns are interpreted as: 1=’aqua’, 2=’liquid’, and
3=’vapor’. This field is for the benfit of multiphase transport solvers, and
is ignored for all sinks (at which fluids flow out of the reservoir). The
default value is sat = [], which corresponds to single-phase flow. As a
special case, if size(sat,1)==1, then the saturation value will be repeated
for all cells specified by cells.

For convenience, values and sat may contain a single value; this value is then
used for all faces specified in the call.

There can only be a single net source term per cell in the grid. Moreover, for
incompressible flow with no-flow boundary conditions, the source terms must
sum to zero if the model is to be well posed, or alternatively sum to the flux
across the boundary. If not, we would either inject more fluids than we extract,
or vice versa, and hence implicitly violate the assumption of incompressbilitity.

7.1.4 Boundary conditions

As discussed in Section 6.3.1, all outer faces in a grid model are assumed to
be no-flow boundaries in MRST unless other conditions are specified explic-
itly. The basic mechanism for specifying Dirichlet and Neumann boundary
conditions is to use the function:

bc = addBC(bc, faces, type, values);
bc = addBC(bc, faces, type, values, 'sat' , sat);

Here, the input values are:

– bc: structure from a prior call to addBC which will be updated on output
or an empty array (bc==[]) in which case a new structure is created. The
structure contains the following fields:
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– face: external faces for which explicit conditions are set
– type: cell array of strings denoting type of condition
– value: pressure or flux value for the given condition
– sat: fluid composition of fluids passing through inflow faces, not

used for single-phase models

– faces: array of external faces at which this boundary condition is applied.
– type: type of boundary condition. Supported values are ’pressure’ and

’flux’, or cell array of such strings.
– values: vector of boundary conditions, one scalar value for each face in

faces. Interpreted as a pressure value in units of [Pa] when type equals
’pressure’ and as a flux value in units of [m3/s] when type is ’flux’. If the
latter case, the positive values in values are interpreted as injection fluxes
into the reservoir, while negative values signify extraction fluxs, i.e., fluxes
out of the reservoir.

– sat: optional parameter that specifies the composition of the fluid injected
across inflow faces. Similar setup as for explained for source terms in
Section 7.1.3.

There can only be a single boundary condition per face in the grid. Solvers
assume boundary conditions are given on the boundary; conditions in the in-
terior of the domain yield unpredictable results. Moreover, for incompressible
flow and only Neumann conditions, the boundary fluxes must sum to zero
if the model is to be well posed. If not, we would either inject more fluids
than we extract, or vice versa, and hence implicitly violate the assumption of
incompressbilitity.

For convenience, MRST also offers two additional routines that can be
used to set Dirichlet and Neumann conditions at all outer faces in a certain
direction for grids having a logical IJK numbering:

bc = pside(bc, G, side, p);
bc = fluxside(bc, G, side, flux)

The side argument is a string that much match one out of the following six
alias groups:

1: ’West’, ’XMin’, ’Left’
2: ’East’, ’XMax’, ’Right’
3: ’South’, ’YMin’, ’Back’
4: ’North’, ’YMax’, ’Front’
5: ’Upper’, ’ZMin’, ’Top’
6: ’Lower’, ’ZMax’, ’Bottom’

These groups correspond to the cardinal directions mentioned as the first
alternative in each group. The user should also be aware of an important dif-
ference in how fluxes are specified in addBC and fluxside. Specifying a scalar
value in addBC means that this value will be copied to all faces the boundary
condition is applied to, whereas a scalar value in fluxside sets the cummula-
tive flux for all faces that make up the global side to be equal the specified
value.
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7.1.5 Wells

Wells are similar to source terms in the sense that they describe injection or
extraction of fluids from the reservoir, but differ in the sense that they not
only provide a volumetric flux rate, but also contain a model that couples this
flux rate to the difference between the average reservoir in the grid cell and
the pressure inside the wellbore. As discussed in Section 6.3.2, this relation
can be written for each perforation as

vp = J(pi − pf ) (7.1)

where J is the well index, pi is the pressure in the perforated grid cell, and
pf is the flowing pressure in the wellbore. The latter can be found from the
pressure at the top of hte well and the density of the fluid in each perforation.
For single-phase, incompressible this pf = pwh + ρ∆zf , where pwh is the
pressure at the well head and ∆zf is the vertical distance from this point and
to the perforation.

The structure used to represent wells in MRST, which by convention is
called W, consists of the following fields:

– cells: an array index to cells perforated by this well
– type: string describing which variable is controlled (i.e., assumed to be

fixed), either ’bhp or ’rate’
– val: the target value of the well control (pressure value for type=’bhp’ or

the rate for type=’rate’.
– r: the wellbore radius (double).
– dir: a char describing the direction of the perforation, one of the cardinal

directions ’x’, ’y’ or ’z’
– WI: the well index: either the productivity index or the well injectivity index

depending on whether the well is producing or injecting.
– dZ: the height differences from the well head, which is defined as the ’high-

est’ contact (i.e., the contact with the minimum z-value counted amongst
all cells perforated by this well)

– name: string giving the name of the well
– compi: fluid composition, only used for injectors
– refDepth: reference depth of control mode
– sign: define if the well is intended to be producer or injector

Well structures are created by a call to the function

W = addWell(W, G, rock, cellInx);
W = addWell(W, G, rock, cellInx, 'pn', pv, ... );

Here, cellInx is a vector of indices to the cells perforated by the well, and
’pn’/pv denote one or more ’key’/value pairs that can be used to specify
optional parameters that influence the well model:
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– type: string specifying well control, ’bhp’ (default) means that the well is
controlled by bottom-hole pressure, whereas ’rate’ means that the well is
rate controlled.

– val: target for well control. Interpretation of this values depends upon type.
For ’bhp’ the value is assumed to be in unit Pascal, and for ’rate’ the value
is given in unit [m3/sec]. Default value is 0.

– radius: wellbore radius in meters. Either a single, scalar value that applies
to all perforations, or a vector of radii, with one value for each perforation.
The default radius is 0.1 m.

– dir: well direction. A single CHAR applies to all perforations, while a
CHAR array defines the direction of the corresponding perforation.

– innerProduct: used for consistent discretizations discussed in Chapter 8
– WI: well index. Vector of length equal the number of perforations in the

well. The default value is -1 in all perforations, whence the well index will
be computed from available data (cell geometry, petrophysical data, etc)
in grid cells containing well completions

– Kh: permeability times thickness. Vector of length equal the number of per-
forations in the well. The default value is -1 in all perforations, whence
the thickness will be computed from the geometry of each perforated cell.

– skin: skin factor for computing effective well bore radius. Scalar value or
vector with one value per perforation. Default value: 0.0 (no skin effect).

– Comp i: fluid composition for injection wells. Vector of saturations. Default
value: Comp_i = [1, 0, 0] (water injection)

– Sign: well type: production (sign=−1) or injection (sign=1). Default value:
[] (no type specified)

– name: string giving the name of the well. Default value is ’Wn’ where n is
the number of this well, i.e., n=numel(W)+1

For convenience, MRST also provides the function

W = verticalWell(W, G, rock, I, J, K)
W = verticalWell(W, G, rock, I, K)

that can be used to specify vertical wells in models described by Cartesian
grids or grids that have some kind of extruded structure. Here,

– I,J: gives the horizontal location of the well heel. In the first mode, both
I and J are given and then signify logically Cartesian indices so that I is
the index along the first logical direction while J is the index along the
second logical direction. This mode is only supported in grids which have
an underlying Cartesian (logical) structure such as purely Cartesian grids
or corner-point grids.
In the second mode, only I is described and gives the cell index of the
topmost cell in the column through which the vertical well will be com-
pleted. This mode is supported for logically Cartesian grids containing a
three-component field G.cartDims or for otherwise layered grids which
contain the fields G.numLayers and G.layerSize.
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– K: a vector of layers in which this well should be completed. If isemmpty(K)

is true, then the well is assumed to be completed in all layers in this grid
column and the vector is replaced by 1:num_layers.

7.2 Incompressible two-point pressure solver

The two-point flux-approximation scheme introduced in Section 6.4.1 is im-
plemented as two different routines in the incomp module:

hT = computeTrans(G,rock)

computes the half-face transmissibilities and does not depend on the fluid
model, the reservoir state, or the driving mechanisms, whereas

state = incompTPFA(state, G, hT, fluid, 'mech1', obj1, ...)

takes the complete model description as input and assembles and solves
the two-point system. Here, mech arguments the drive mechanism (’src’,
’bc’, and/or ’wells’) using correctly defined objects obj, as discussed in Sec-
tions 7.1.3–7.1.5. Notice that computeTrans may fail to compute sensible trans-
missibilities if the permeability field in rock is not given in SI units. Likewise,
incompTPFA may produce strange results if the inflow and outflow specified
by the boundary conditions, source terms, and wells does not sum to zero and
hence violates the assumption of incompressibility. However, if fixed pressure
is specified in wells or on parts of the outer boundary, there will be an outflow
or inflow that will balance the net rate that is specified elsewhere. In the re-
mains of this section, we will discuss more details of the incompressible solver
and demonstrate how simple it is to implement the TPFA method on general
polyhedral grid by going through the essential code lines needed to compute
half-transmissibilities and solve and assemble the global system. The impa-
tient reader can jump directly to Section 7.4, which contains several examples
that demonstrate the use of the incompressible solver for single-phase flow.

To focus on the discretization and keep the discussion simple, we will not
look at the full implementation of the two-point solver in incomp. Instead,
we discuss excerpts from two simplified functions, simpleComputeTrans and
simpleIncompTPFA, that are located in the 1phase directory of the mrst-book

module and together form a simplified single-phase solver which has been
created for pedagogical purposes. The standard computeTrans function from
mrst-core can be used for different representations of petrophysical parame-
ters and includes functionality to modify the discretization by overriding the
definition of cell and face centers and/or including multipliers that modify the
values of the half-transmissibilities, see e.g., Sections 3.4.3 and 3.5.5. Likewise,
the incompTPFA solver from the incomp module is implemented for a general,
incompressible flow model with multiple fluid phases with flow driven by a
general combination of boundary conditions, fluid sources, and well models.
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Ti,k = Ai,kKi
~ci,k · ~ni,k
|~ci,k|2

Tik = [T−1
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k,i ]−1

∑
k

Tik(pi − pk) = qi

pi

Ωi

Γi,k

pk

Ωk
~ni,k
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Fig. 7.1. Two-point discretization on general polyhedral cells

Assume that we have a standard grid G that contains cell and face cen-
troids, e.g., as computed by the computeGeometry function discussed in Sec-
tion 4.4. Then, the essential code lines of simpleComputeTrans are as follows:
First, we define the vectors ~ci,k from cell centroids to face centroids, see Fig-
ure 7.1. To this end, we first need to determine the map from faces to cell
number so that the correct cell centroid is subtracted from each face centroid.

hf = G.cells.faces(:,1);
hf2cn = gridCellNo(G);
C = G.faces.centroids(hf,:) − G.cells.centroids(hf2cn,:);

The face normals in MRST are assumed to have length equal to the corre-
sponding face areas, and hence correspond to Ai,k~ni,k in (6.50). To get the
correct sign, we look at the neighboring information that describes which cells
share the face: if the current cell number is in the first column, the face normal
has a positive sign. If not, it gets a negative sign:

sgn = 2*(hf2cn == G.faces.neighbors(hf, 1)) − 1;
N = bsxfun(@times, sgn, G.faces.normals(hf,:));

The permeability tensor may be stored in different formats, as discussed in
Section 3.5, and we therefore use an utility function to extract it:

[K, i, j] = permTensor(rock, G.griddim);

Finally, we compute the half transmissibilities, CTKN/CTC. To limit mem-
ory use, this is done in a for-loop (which is rarely used in MRST):

hT = zeros(size(hf2cn));
for k=1:size(i,2),

hT = hT + C(:,i(k)) .* K(hf2cn, k) .* N (:, j(k ));
end
hT = hT./ sum(C.*C,2);

The actual code has a few additional lines that perform various safeguards
and consistency checks.
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Once the half transmissibilities have been computed, they can be passed
to the simpleIncompTPFA solver. The first thing this solver needs to do is adjust
the half transmissibilities to account for fluid viscosity, since they were derived
for a fluid with unit viscosity:

mob = 1./fluid.properties(state);
hT = hT .* mob(hf2cn);

Then we loop through all faces and compute the face transmissibility as the
harmonic average of the half-transmissibilities

T = 1 ./ accumarray(hf, 1 ./ hT, [G.faces.num, 1]);

Here, we have used the MATLAB function accumarray which constructs an ar-
ray by accumulation. A call to a = accumarray(subs,val) will use the subscripts
in subs to create an array a based on the values val. Each element in val has a
corresponding row in subs. The function collects all elements that correspond
to identical subscripts in subs and stores the sum of those values in the ele-
ment of a corresponding to the subscript. In our case, G.cells.faces(:,1) gives
the global face number for each half face, and hence the call to accumarray

will sum the transmissibilities of the half-faces that correspond to a given
global face and store the result in the correct place in a vector of G.faces.num
elements. The function accumarray is very powerful and is used a lot in MRST
in place of nested for-loops. In fact, we will employ this function to loop over
all the cells in the grid and collect and sum the transmissibilities of the faces
of each cell to define the diagonal of the TPFA matrix:

nc = G.cells.num;
i = all(G.faces.neighbors ~= 0, 2);
n1 = G.faces.neighbors(i,1);
n2 = G.faces.neighbors(i,2);
d = accumarray([n1; n2], repmat(T(i ),[2,1]),[ nc, 1]);

Now that we have computed both the diagonal and the off-diagonal element
of A, the discretization matrix itself can be constructed by a straightforward
call to MATLAB’s sparse function:

I = [n1; n2; (1:nc )'];
J = [n2; n1; (1:nc )'];
V = [−T(i); −T(i); d ]; clear d;
A = sparse(double(I), double(J), V, nc, nc);

Finally, we check if Dirichlet boundary conditions are imposed on the system,
and if not, we modify the first element of the system matrix to (somewhat
arbitrarily) fix the pressure in the first cell to zero, before we solve the system
to compute the pressure:

A(1) = 2*A(1);
p = mldivide(A, rhs);
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To solve the system we rely on MATLAB’s default solver mldivide, which for
a sparse system boils down to calling a direct solver from UMFPACK imple-
menting an unsymmetric, sparse, multifrontal LU factorization add citation.
While this solver is efficient for small to medium-sized systems, larger systems
are more efficiently solved using more problem-specific solvers. To provide flex-
ibility, the linear solver can be passed as a function-pointer argument to both
incompTPFA and simpleIncompTPFA.

Once the pressures have been computed, we can compute pressure values
at the face centroids using the half-face transmissibilities

fp = accumarray(G.cells.faces(:,1), p(hf2cn).*hT, [G.faces.num,1])./ ...
accumarray(G.cells.faces(:,1), hT, [G.faces.num,1]);

and likewise construct the fluxes across the interior faces

ni = G.faces.neighbors(i,:);
flux = −accumarray(find(i), T(i).*(p(ni(:,2))−p(ni(:,1))), [nf, 1]);

In the code excerpts given above, we did not account for gravity forces and
general Dirichlet or Neumann boundary conditions, which both will compli-
cate the code beyond the scope of the current presentation. The interested
reader should consult the actual code to work out these details.

We will short discuss several examples that demonstrate how this code can
be used to solve flow problems on structured and unstructured grids. However,
before doing so, we outline another flow solver from the diagnostics module
visualizing flow patterns

7.3 Upwind solver for time-of-flight and tracer

The diagnostics module provides various functionality that can used to
probe a reservoir model to establish communication patterns between inflow
and outflow regions, time lines for fluid movement, and various measures of
reservoir heterogeneity. At the hart of this module, lies the function

tof = computeTimeOfFlight(state, G, rock, mech1, obj1, ...)

which implements the upwind, finite-volume discretization introduced in Sec-
tion 6.4.3 for solving the time-of-flight equation ~v · ∇τ = φ to compute the
time it takes a neutral particle to travel from the nearest fluid source or inflow
boundary to each point in the reservoir. Here, the mech arguments specify the
drive mechanism (’src’, ’bc’, and/or ’wells’) specified in terms of specific ob-
jects obj, as discussed in Sections 7.1.3 to 7.1.5. The same routine can also
compute tracer concentrations that can be used to define volumetric partitions
if the user specifies extra input parameters. Likewise, the backward time-of-
flight, i.e., the time it takes to travel from any point in the reservoir and to
the nearest fluid sink or outflow boundary, can be computed from the same
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equation if we change the sign of the flow field and modify the boundary con-
ditions and/or source terms accordingly. In the following, we will go through
the main parts of how this discretization is implemented.

We start by identifying all volumetric sources of inflow and outflow, which
may be described as source/sink terms in src and/or as wells in W,

[qi,qs] = deal([]);
if ~isempty(W),

qi = [qi; vertcat(W.cells)];
qs = [qs; vertcat(state.wellSol.flux)];

end
if ~isempty(src),

qi = [qi; src.cell];
qs = [qs; src.rate];

end

and collect the results in a vector q of source terms having one value per cell

q = sparse(src.cell, 1, src.rate, G.cells.num, 1);

We also need to compute the accumulated inflow and outflow from boundary
fluxes for each cell. This will be done in three steps. First, we create an empty
vector ff with one entry per global face, find all faces that have Neumann
conditions, and insert the corresponding value in the correct row

ff = zeros(G.faces.num, 1);
isNeu = strcmp('flux', bc.type);
ff(bc.face(isNeu)) = bc.value(isNeu);

For faces having Dirichlet boundary conditions, the flux is not specified and
must be extracted from the solution computed by the pressure solver, i.e.,
from the state object that holds the reservoir state. We also need to set the
correct sign so that fluxes into a cell are positive and fluxes out of a cell are
negative. To this end, we use the fact that the normal vector of face i points
from cell G.faces.neighbors(i,1) to G.faces.neighbors(i,2). In other words,
the sign of the flux across an outer face is correct if neighbors(i,1)==0, but if
neighbors(i,2)==0 we need to reverse the sign

isDir = strcmp('pressure', bc.type);
i = bc.face(isDir);
if ~isempty(i)

ff(i) = state.flux(i) .* (2*(G.faces.neighbors(i,1)==0) − 1);
end

The last step is to sum all the fluxes across outer faces and collect the result
in a vector qb that has one value per cell

is_outer = ~all(double(G.faces.neighbors) > 0, 2);
qb = sparse(sum(G.faces.neighbors(is_outer,:), 2), 1, ...

ff(is_outer), G.cells.num, 1);
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7.3 Upwind solver for time-of-flight and tracer 193

Here, G.faces.neighbors(is_outer,:), 2) gives the index of the cell that is at-
tached to each outer face (since the entry in one of the columns must be zero
for an outer face).

Once the contributions to inflow and outflow are collected, we can start
building the upwind flux discretization matrix A. The off-diagonal entries are
defined defined such that Aji = max(vij , 0) and Aij = −min(vij , 0), where vij
is the flux computed by the TPFA scheme discussed in the previous section.

i = ~any(G.faces.neighbors==0, 2);
out = min(state.flux(i), 0);
in = max(state.flux(i), 0);

The diagonal entry equals the outflux minus the divergence of the velocity,
which can be obtained by summing the off-diagonal rows. This will give the
correct equation in all cell except for those with a positive fluid source. Here,
the net outflux equals the divergence of the velocity and we hence end up with
an undetermined equation. In these cells, we can as a reasonable approxima-
tion set the average time-of-flight to be equal half the time it takes to fill the
cell, which means that the diagonal entry should be equal twice the fluid rate
inside the cell.

n = double(G.faces.neighbors(i,:));
inflow = accumarray([n(:, 2); n (:, 1)], [in; −out]);
d = inflow + 2*max(q+qb, 0);

Having obtained diagonal and all the nonzero off-diagonal elements, we can
assemble the full matrix

nc = G.cells.num;
A = sparse(n(:,2), n (:,1), in, nc, nc) ...

+ sparse(n(:,1), n (:,2), −out, nc, nc);
A = −A + spdiags(d, 0, nc, nc);

We have now established the complete discretization matrix, and time-of-flight
can be computed by a simple matrix inversion

tof = A \ poreVolume(G,rock);

If there are no gravity forces and the flux has been computed by a monotone
scheme, one can show that the discretization matrix A can be permuted to
a lower-triangular form [140, 139]. In the general case, the permuted matrix
will be block triangular with irreducible diagonal blocks. Such systems can
be inverted very efficiently using a permuted back-substitution algorithm as
long as the irreducible diagonal blocks are small. In our experience, MATLAB
is quite good at detecting such structures and using the simple backslash (\)
operator is therefore efficient, even for quite large models. However, for models
of real petroleum assets described on stratigraphic grids (see Chapter 4.3), it
is often necessary to preprocess flux fields to get rid of numerical clutter that
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would otherwise introduce large irreducible blocks inside stagnant regions.
By specifying optional parameters to computeTimeOfFlight, the function will
get rid of such small cycles in the flux field and set the time-of-flight to a
prescribed upper value in all cells that have sufficiently small influx. This
tends to reduce the computational cost significantly for large models with
complex geology and/or significant compressibility effects.

In addition to time-of-flight, we can compute stationary tracers as dis-
cussed in Section 6.3.4. This is done by passing an optional parameter,

tof = computeTimeOfFlight(state, G, rock, ..., 'tracer ', tr)

where tr is a cell-array of vectors that each gives the indexes of the cells that
emit a unique tracer. For incompressible flow, the discretization matrix of the
tracer equation is the same as that for time-of-flight, and all we need to do is
to assemble the right-hand side

numTrRHS = numel(tr);
TrRHS = zeros(nc,numTrRHS);
for i=1:numTrRHS,

TrRHS(tr{i},i) = 2*qp(tr{i});
end

Since we have doubled the rate in any cells with a positive source when con-
structing the matrix A, the rate on the right-hand side must also be doubled.

Now we can solve the combined time-of-flight, tracer problem as a linear
system with multiple right-hand side,

T = A \ [poreVolume(G,rock) TrRHS];

which means that we essentially get the tracer for free as long as the number
of tracers does not exceed the number of right-hand columns MATLAB can
be handled in one solve. We will return to a more thorough discussion of
the tracer partitions in the next chapter and show how these can be used to
delineate connectivities within the reservoir. In the rest of this chapter, we
will consider time-of-flight and streamlines as a means to study flow patterns
in reservoir models.

7.4 Simulation examples

You have now been introduced to all the functionality from the incomp module
that is necessary to solve a single-phase flow problem as well as the time-of-
flight solver from the diagnostics module, which can be used to compute
time lines in the reservoir. In following, we will discuss several examples, in
which we demonstrate step-by-step how to set up a flow model, solve it, and
visualize and analyze the resulting flow field. Complete codes can be found in
the 1phase directory of the mrst-book module.
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7.4.1 Quarter five-spot

As our first example, we show how to solve −∇ · (K∇p) = q with no-flow
boundary conditions and two source terms at diagonally opposite corners
of a 2D Cartesian grid covering a 500 × 500 m2 area. This setup mimics a
standard quarter five-spot well pattern, which you already have encountered
in Figure 6.7 on page 164 when we discussed well models. The full code is
available in the script quarterFiveSpot.m.

We use a nx×ny grid with homogeneous petrophysical data, permeability
of 100 mD, and porosity of 0.2:

[nx,ny] = deal(32);
G = cartGrid([nx,ny ],[500,500]);
G = computeGeometry(G);
rock.perm = ones(G.cells.num, 1)*100*milli*darcy;
rock.poro = ones(G.cells.num, 1)*.2;

As we saw above, all we need to know to develop the spatial discretization is
the reservoir geometry and the petrophysical properties. This means that we
can compute the half transmissibilities without knowing any details about the
fluid properties and the boundary conditions and/or sources/sinks that will
drive the global flow:

hT = simpleComputeTrans(G, rock);

The result of this computation is a vector with one value per local face of each
cell in the grid, i.e., a vector with G.cells.faces entries.

The reservoir is horizontal and gravity forces are therefore not active. We
create a fluid with properties that are typical for water:

gravity reset off

fluid = initSingleFluid('mu' , 1*centi*poise, ...
'rho' , 1014*kilogram/meterˆ3);

To drive the flow, we will use a fluid source at the south-west corner and a
fluid sink at the north-east corner of the model. The time scale of the problem
is defined by the strength of the source term. In our case, we set the source
terms such that a unit time corresponds to the injection of one pore volume
of fluids. By convention, all flow solvers in MRST automatically assume no-
flow conditions on all outer (and inner) boundaries if no other conditions are
specified explicitly.

pv = sum(poreVolume(G,rock));
src = addSource([], 1, pv);
src = addSource(src, G.cells.num, −pv);
display(src)

The data structure used to represent the fluid sources contains three elements:
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src =

cell: [2x1 double]

rate: [2x1 double]

sat: []

The src.cell gives the cell numbers where the source term is nonzero, and
the vector src.rate specifies the fluid rates, which by convention are positive
for inflow into the reservoir and negative for outflow from the reservoir. The
last data element src.sat specifies fluid saturations, which only has meaning
for multiphase flow models and hence is set to be empty here.

To simplify communication among different flow and transport solvers,
all unknowns (reservoir states) are collected in a structure. Strictly speaking,
this structure need not be initialized for an incompressible model in which
none of the fluid properties depend on the reservoir states. However, to avoid
treatment of special cases, MRST requires that the structure is initialized and
passed as argument to the pressure solver. We therefore initialize it with a
dummy pressure value of zero and a unit fluid saturation since we only have
a single fluid

state = initResSol(G, 0.0, 1.0);
display(state)

state =

pressure: [1024x1 double]

flux: [2112x1 double]

s: [1024x1 double]

This completes the setup of the model. To solve for the pressure, we simply
pass the reservoir state, grid model, half transmissibilities, fluid model, and
driving forces to the flow solver, which assembles and solves the incompressible
flow equation.

state = simpleIncompTPFA(state, G, hT, fluid, 'src', src);
display(state)

As explained above, simpleIncompTPFA solves for pressure as the primary vari-
able and then uses transmissibilities to reconstruct the face pressure and inter-
cell fluxes. After a call to the pressure solver, the state object is therefore
expanded by a new field facePressure that contains pressures reconstructed
at the face centroids

state =

pressure: [1024x1 double]

flux: [2112x1 double]

s: [1024x1 double]

facePressure: [2112x1 double]

Figure 7.2 shows the resulting pressure distribution. To improve the visual-
ization of the flow field, we show streamlines. In MRST, Pollock’s method
[159] for semi-analytical tracing of streamlines has been implemented in the
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plotCellData (G , state.pressure );
plotGrid (G , src.cell , 'FaceColor', 'w');
axis equal tight ; colormap (jet (128));
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hf= streamline (Sf );
hb= streamline (Sb );
set ([ hf ; hb ], 'Color', 'k' );

Fig. 7.2. Solution of the quarter five-spot problem on a 32× 32 uniform grid. The
left plot shows the pressure distribution and in the right plot we have imposed
streamlines passing through centers of the cells on the NW–SE diagonal.

streamlines add-on module. Here, we will use this functionality to trace
streamlines forward and backward, starting from the midpoint of all cells
along the NW–SE diagonal in the grid

mrstModule add streamlines;
seed = (nx:nx−1:nx*ny).';
Sf = pollock(G, state, seed, 'substeps', 1);
Sb = pollock(G, state, seed, 'substeps', 1, ' reverse ' , true);

The pollock routine produces a cell array of individual streamlines that can
be passed onto MATLAB’s built-in streamline routine for plotting, as shown
to the right in Figure 7.2.

To get a better picture of how fast the fluids will flow through our domain,
we solve the time-of-flight equation (6.39) subject to the condition that τ = 0
at the inflow, i.e., at all points where q > 0. For this purpose, we use the
computeTimeOfFlight solver discussed in Section 7.3, which can compute both
the forward time-of-flight from inflow points and into the reservoir,

toff = computeTimeOfFlight(state, G, rock, 'src', src);

and the backward time-of-flight from outflow points and backwards into the
reservoir

tofb = computeTimeOfFlight(state, G, rock, 'src', src, 'reverse ' , true);

Isocontours of time-of-flight define natural time lines in the reservoir, and
to emphasize this fact, the left plot in Figure 7.3 shows the time-of-flight
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plotCellData (G , toff );
plotGrid (G , src.cell , 'FaceColor','w');
axis equal tight ;
colormap (jet (16)); caxis ([0,1]);
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plotCellData (G , toff+tofb);
plotGrid (G , src.cell , 'FaceColor','w');
axis equal tight ;
colormap (jet (128));

Fig. 7.3. Solution of the quarter five-spot problem on a 32×32 uniform grid. The left
plot shows time-of-flight plotted with a few color levels to create a crude contouring
effect. The right plot shows a plot of the total travel time to distinguish high-flow
and stagnant regions.

plotted using only a few colors to make a rough contouring effect. The sum of
the forward and backward time-of-flights gives the total time it takes a fluid
particle to travel through the reservoir, from an inflow point to an outflow
point. The total travel time can be used to visualize high-flow and stagnant
regions as demonstrated in the right plot of Figure 7.3.

Computer exercises:

33. Run the quarter five-spot example with the following modifications:
a) Replace the Cartesian grid by a curvilinear grid, e.g., using twister or

a random perturbation of internal nodes as shown in Figure 4.3.
b) Replace the Cartesian grid by the locally refined grid from Exercise 21

on page 95
c) Replace the homogeneous permeability by a heterogeneous permeabil-

ity derived from the Carman–Kozeny relation (3.6)
d) Set the domain to be a single layer of the SPE10 model. Hint: use

SPE10_rock() to sample the petrophysical parameters and remember
to convert to SI units.

Notice that the pollock function may not work for non-Cartesian grids.
34. Construct a grid similar to the one in Exercise 16 on page 83, except that the

domain is given a 90◦ flip so that axis of the cylindrical cut-outs align with
the z-direction. Modify the code presented above so that you can compute
a five-spot setup with one injector near each corner and a producer in the
narrow middle section between the cylindrical cut-outs.
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7.4.2 Boundary conditions

To demonstrate how to specify boundary conditions, we will go through essen-
tial code lines of three different examples; the complete scripts can be found
in boundaryConditions.m. In all three examples, the reservoir is 50 meter
thick, is located at a depth of approximately 500 meters, and is restricted to a
1× 1 km2 area. The permeability is uniform and anisotropic, with a diagonal
(1000, 300, 10) mD tensor, and the porosity is uniform and equal 0.2 In the
first two examples, the reservoir is represented as a 20 × 20 × 5 rectangular
grid, and in the third example the reservoir is given as a corner-point grid of
the same Cartesian dimension, but with an uneven uplift and four intersecting
faults (as shown in the left plot of Figure 4.34):

[nx,ny,nz] = deal(20, 20, 5);
[Lx,Ly,Lz] = deal(1000, 1000, 50);
switch setup

case 1,
G = cartGrid([nx ny nz], [Lx Ly Lz ]);

case 2,
G = cartGrid([nx ny nz], [Lx Ly Lz ]);

case 3,
G = processGRDECL(makeModel3([nx ny nz], [Lx Ly Lz/5]));
G.nodes.coords(:,3) = 5*(G.nodes.coords(:,3) ...

− min(G.nodes.coords(:,3)));
end
G.nodes.coords(:,3) = G.nodes.coords(:,3) + 500;

Setting rock and fluid parameters, computing transmissibilities, and initializ-
ing the reservoir state can be done as explained in the previous section, and
details are not included for brevity.

Linear pressure drop

In the first example (setup=1), we specify a Neumann condition with total
inflow of 5000 m3/day on the east boundary and a Dirichlet condition with
fixed pressure of 50 bar on the west boundary:

bc = fluxside(bc, G, 'EAST', 5e3*meterˆ3/day);
bc = pside (bc, G, 'WEST', 50*barsa);

This completes the definition of the model, and we can pass the resulting
objects to the simpleIncompTFPA solver to compute the pressure distribution
shown to the right in Figure 7.4. In the absence of gravity, these boundary
conditions will result in a linear pressure drop from east to west inside the
reservoir.

Hydrostatic boundary conditions

In the next example, we will use the same model, except that we now include
the effects of gravity and assume hydrostatic equilibrium at the outer vertical
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Fig. 7.4. First example of a flow driven by boundary conditions. In the left plot,
faces with Neumann conditions are marked in blue and faces with Dirichlet condi-
tions are marked in red. The right plot shows the resulting pressure distribution.

boundaries of the model. First, we initialize the reservoir state according to
hydrostatic equilibrium, which is straightforward to compute if we for sim-
plicity assume that the overburden pressure is caused by a column of fluids
with the exact same density as in the reservoir:

state = initResSol(G, G.cells.centroids(:,3)*rho*norm(gravity), 1.0);

There are at least two different ways to specify hydrostatic boundary condi-
tions. The simplest approach is to use the function psideh, i.e.,

bc = psideh([], G, 'EAST', fluid);
bc = psideh(bc, G, 'WEST', fluid);
bc = psideh(bc, G, 'SOUTH', fluid);
bc = psideh(bc, G, 'NORTH', fluid);

Alternatively, we can do it manually ourselves. To this end, we need to extract
the reservoir perimeter defined as all exterior faces are vertical, i.e., whose
normal vector have no z-component,

f = boundaryFaces(G);
f = f(abs(G.faces.normals(f,3))<eps);

To get the hydrostatic pressure at each face, we can either compute it directly
by using the face centroids,

fp = G.faces.centroids(f,3)*rho*norm(gravity);

or we use the initial equilibrium that has already been established in the
reservoir by can sample from the cells adjacent to the boundary

cif = sum(G.faces.neighbors(f,:),2);
fp = state.pressure(cif);
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Fig. 7.5. A reservoir with hydrostatic boundary condition and fluid extracted from
a sink penetrating two cells in the upper two layers of the model. The left plot shows
the boundary and the fluid sink, while the right plot shows the resulting pressure
distribution.

The latter may be useful if the initial pressure distribution has been computed
by a more elaborate procedure than what is currently implemented in psideh.
In either case, the boundary conditions can now be set by the call

bc = addBC(bc, f, 'pressure ' , fp);

To make the problem a bit more interesting, we also include a fluid sink at
the midpoint of the upper two layers in the model,

ci = round(.5*(nx*ny−nx));
ci = [ci; ci+nx*ny];
src = addSource(src, ci, repmat(−1e3*meterˆ3/day,numel(ci),1));

The boundary conditions and source terms are shown to the left in Figure 7.5
and the resulting pressure distribution to the right. The fluid sink will cause
a pressure draw-down, which will have an ellipsoidal shape because of the
anisotropy in the permeability field.

Conditions on non-rectangular domain

In the last example, we consider a case where the outer boundary of the
reservoir is not a simple hexahedron. In such cases, it may not be as simple
as above to determine the exterior faces that lie on the perimeter of the
reservoir. In particular, faults having a displacement may give exterior faces
at the top an bottom of the model that are not part of what one would call
the reservoir perimeter when setting boundary conditions other than no-flow.
Likewise, other geological processes like erosion may cause gaps in the model
that lead to exterior faces that are not part of the natural perimeter. This
is illustrated in the left plot of Figure 7.6, where we have tried to specify
boundary conditions using the same procedure as in the linear pressure-drop
example (Figure 7.4).
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Fig. 7.6. Specifying boundary conditions along the outer perimeter of a corner-
point model. The upper-left plot shows the use of fluxside (blue color) and pside

(red color) to set boundary conditions on the east and west global boundaries. In
the upper-right point, the same functions have been used along with a specification
of subranges in the global sides. In the lower-left plot, we have utilized user-supplied
information to correctly set the conditions only along the perimeter. The lower-right
plot shows the resulting pressure solution.

If the reservoir neither had faults with displacement nor holes inside its
perimeter, we could use the subrange feature of fluxside and pside to restrict
the boundary conditions to a subset of the global side, i.e., for our particular
choice of grid parameters, set

bc = fluxside([], G, 'EAST', 5e3*meterˆ3/day, 4:15, 1:5);
bc = pside (bc, G, 'WEST', 50*barsa, 7:17, []);

Unfortunately, this will not work properly in the current case, as shown in
the middle plot of Figure 7.6. The problem is that fluxside and pside define
their ’east’ sides to consist of all faces that only belong to one cell and are
categorized to be on the east side of this cell.

To find the faces that are on the perimeter, we need to use expert knowl-
edge. In our case, this amounts to utilizing the fact that the perimeter is
defined as those faces that lie on the bounding box of the model. On these
faces, we distribute the total flux to individual faces according to the face
area. For the Neumann condition we therefore get
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x = G.faces.centroids(f,1);
[xm,xM] = deal(min(x), max(x));
ff = f(x>xM−1e−5);
bc = addBC(bc, ff, 'flux ' , (5e3*meterˆ3/day) ...

* G.faces.areas(ff)/ sum(G.faces.areas(ff)));

The Dirichlet condition can be specified in a similar manner.

Computer exercises:

35. Consider a 2D box with a sink at the midpoint and inflow across the perime-
ter specified either in terms of a constant pressure or a constant flux. Are
there differences in the two solutions, and if so, can you explain why? Hint:
use time-of-flight, total travel time, and/or streamlines to investigate the
flow pattern.

36. Apply the production setup from Figure 7.5 on page 201, with hydrostatic
boundary conditions and fluids extracted from two cells at the midpoint of
the model, to the model depicted in Figure 7.6 on the preceding page.

37. Compute the flow patterns for all the bed models in data sets BedModels1

and BedModel2 subject to linear pressure drop first in the x and then in the
y-direction. These models are examples of small-scale models constructed
to model small-scale heterogeneity and compute representative properties
in simulation models on a larger scale, and a linear pressure drop is the
most wide-spread computational setup used for flow-based upscaling. What
happens if you try to specify flux conditions?

38. Consider models from the CaseB4 data set. Use appropriate boundary con-
ditions to drive flow across the faults and compare flow patterns computed
on the pillar and on the stair-stepped grid, as well as solutions computed
for the two different model resolutions. Can you explain any differences you
observe?

7.4.3 Structured versus unstructured stencils

We have so far only discussed grids that have an underlying structured cell
numbering. The two-point schemes can also be applied to fully unstructured
and polyhedral grids. To demonstrate this, we use the triangular grid gener-
ated from the seamount data set that is supplied with MATLAB, see Fig-
ure 4.8, scaled to cover a 1 × 1 km2 area. Based on this grid, we define a
non-rectangular reservoir. The reservoir is assumed to be homogeneous with
an isotropic permeability of 100 mD and the resident fluid has the same prop-
erties as in the previous examples. A constant pressure of 50 bar is set at
the outer perimeter and fluid is drained from a well located at (450, 500) at
a constant rate of one pore volume over fifty years. (All details are found in
the script stencilComparison.m).
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We start by generating the triangular grid, which will subsequently be
used to define the extent of the reservoir:

load seamount

T = triangleGrid([x(:) y(:)], delaunay(x,y));
[Tmin,Tmax] = deal(min(T.nodes.coords), max(T.nodes.coords));
T.nodes.coords = bsxfun(@times, ...

bsxfun(@minus, T.nodes.coords, Tmin), 1000./(Tmax − Tmin));
T = computeGeometry(T);

Next, we generate two Cartesian grids that cover the same domain, one with
approximately the same number of cells as the triangular grid and a 10× 10
refinement of this grid that will give us a reference solution,

G = computeGeometry(cartGrid([25 25], [1000 1000]));
inside = isPointInsideGrid(T, G.cells.centroids);
G = removeCells(G, ~inside);

The function isPointInsideGrid implements a simple algorithm for finding
whether one or more points lie inside the circumference of a grid. First, all
boundary faces are extracted and then the corresponding nodes are sorted so
that they form a closed polygon. Then, MATLAB’s built-in function inpolygon

can be used to check whether the points are inside this polygon or no.
To construct a radial grid centered around the point at which we will

extract fluids, we start by using the same code as on page 109 to generate a
set of points inside [−1, 1]× [−1, 1] that are graded radially towards the origin
(see e.g., Figure 4.25),

P = [];
for r = exp([−3.5:.2:0, 0, .1 ]),

[x,y] = cylinder(r,25); P = [P [x (1,:); y (1,:)]];
end
P = unique([P'; 0 0], 'rows');

The points are scaled and translated so that their origin is moved to the point
(450,500), from which fluid will be extracted:

[Pmin,Pmax] = deal(min(P), max(P));
P = bsxfun(@minus, bsxfun(@times, ...

bsxfun(@minus, P, Pmin), 1200./(Pmax−Pmin)), [150 100]);

Then, we remove all points outside of the triangular grid, before the point set
is passed to two grid-factory routines to first generate a triangular and then
a Voronoi grid:

inside = isPointInsideGrid(T, P);
V = computeGeometry( pebi( triangleGrid(P(inside,:)) ));

Once the grids have been constructed, the setup of the remaining part of
the model will be the same in all cases. To avoid unnecessary replication of
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code, we collect the grids in a cell array and use a simple for-loop to set up
and simulate each model realization:

g = {G, T, V, Gr};
for i=1:4

rock.poro = repmat(0.2, g{i}.cells.num, 1);
rock.perm = repmat(100*milli*darcy, g{i}.cells.num, 1);
hT = simpleComputeTrans(g{i}, rock);
pv = sum(poreVolume(g{i}, rock));

tmp = (g{i}.cells.centroids − repmat([450, 500],g{i}.cells.num,[])).ˆ2;
[~,ind] = min(sum(tmp,2));
src{i} = addSource(src{i}, ind, −.02*pv/year);

f = boundaryFaces(g{i});
bc{i} = addBC([], f, 'pressure ' , 50*barsa);

state{i} = incompTPFA(initResSol(g{i},0,1), ...
g{i}, hT, fluid, ' src ' , src{i}, 'bc' , bc{i}, 'MatrixOutput', true);

[tof{i},A{i}] = computeTimeOfFlight(state{i}, g{i}, rock,...
' src ' , src{i},'bc' ,bc{i}, ' reverse ' , true);

end

The pressure solutions computed on the four different grids are shown in Fig-
ure 7.7, while Figure 7.8 compares the sparsity patterns of the corresponding
linear systems for the three coarse grids.

As expected, the Cartesian grid gives a banded matrix consisting of five
diagonals that correspond to each cell and its four neighbors in the cardinal
directions. Even though this discretization is not able to predict the complete
draw-down at the center (the reference solution predicts a pressure slightly
below 40 bar), it captures the shape of the draw-down region quite accurately;
the region appears ellipsoidal because of the non-unit aspect ratio in the plot.
In particular, we see that the points in the radial plot follow those of the
fine-scale reference closely. The spread in the points as r → 300 is not a grid-
orientation effect, but the result of variations in the radial distance to the
fixed pressure at the outer boundary on all four grids.

The unstructured triangular grid is more refined near the well and is hence
able to predict the pressure draw-down in the near-well region more accurately.
However, the overall structure of this grid is quite irregular, as can be seen
from the sparsity pattern of the linear system shown in Figure 7.8, and the
irregularity gives significant grid-orientation effects. This can be seen from the
irregular shape of the color contours in the upper part of Figure 7.7 as well as
from the spread in the scatter plot. In summary, this grid is not well suited
for resolving the radial symmetry of the pressure draw-down in the near-well
region. But to be fair, the grid was not generated for this purpose either.
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Fig. 7.7. Comparison of the pressure solution for three different grid types: uniform
Cartesian, triangular, and a graded radial grid. The scattered points used to generate
the triangular domain and limit the reservoir are sampled from the seamount data
set and scaled to cover a 1× 1 km2 area. Fluids are drained from the center of the
domain, assuming a constant pressure of 50 bar at the perimeter.

0 100 200 300 400

0

100

200

300

400

nz = 2330

Cartesian

0 200 400

0

100

200

300

400

500

nz = 2244

Triangular

0 100 200 300 400

0

100

200

300

400

nz = 3045

Radial

Fig. 7.8. Sparsity patterns for the TPFA stencils on the three different grid types
shown in Figure 7.7.
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Except for close to the well and close to the exterior boundary, the topology
of the radial grid is structured in the sense that each cell has four neighbors,
two in the radial direction and two in the angular direction, and the cells are
regular trapezoids. This should, in principle, give a banded sparsity pattern
provided that the cells are ordered starting at the natural center point and
moving outward, one ring at the time. To verify this claim, you can execute
the following code:

[~,q]=sort(state{3}.pressure);
spy(state{3}.A(q,q));

However, as a result of how the grid was generated, by first triangulating and
then forming the dual, the cells are numbered from west to east, which explains
why the sparsity pattern is so far from being a simple banded structure. While
this may potentially affect the efficiency of a linear solver, it has no impact
on the accuracy of the numerical approximation, which is good because of
the grading towards the well and the symmetry inherent in the grid. Slight
differences in the radial profile compared with the Cartesian grid(s) can mainly
be attributed to the fact that the source term and the fixed pressure conditions
are not located at the exact same positions in the simulations, due to the
inherent difference in the discretizations.

In Figure 7.9, we also show the sparsity pattern of the linear system used
to compute the reverse time-of-flight from the well and back into the reservoir.
Using the default cell ordering, the sparsity pattern of each upwind matrix
will appear as a less dense version of the pattern for the corresponding TPFA
matrix. However, whereas the TPFA matrices represent an elliptic equation
in which information propagates in both directions across cell interfaces, the
upwind matrices are based on one-way connections arising from fluxes between
pairs of cells that are connected in the TPFA discretization. To reveal the
true nature of the system, we can permute the system by either sorting the
cell pressures in ascending order (potential ordering) or using the function
dmperm to compute a Dulmage–Mendelsohn decomposition. As pointed out in
Section 7.3, the result is a lower triangular matrix, from which it is simple to
see that the unidirectional propagation of information one would expect for a
hyperbolic equations having only positive characteristics.

Computer exercises:

39. Compare the sparsity patterns resulting from the potential ordering and
use of dmperm for both the upwind and the TPFA matrices.

40. Investigate the flow patterns in more details using forward time-of-flight,
travel time, and streamlines.

41. Replace the boundary conditions by a constant influx, or set pressure values
sampled from a radially symmetric pressure solution in an infinite domain.
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Fig. 7.9. Sparsity patterns for the upwind stencils used to compute time-of-flight on
the three different grid types shown in Figure 7.7. In the lower row, the matrices have
been permuted to lower-triangular form by sorting the cell pressures in ascending
order.

7.4.4 Using Peaceman well models

Whereas it may be sufficient to consider flow driven by sources, sinks, and
boundary conditions in many subsurface applications, the key aspect in reser-
voir simulation is in most cases to predict the amount of fluids that are pro-
duced and/or injected from one or more wells. As we saw in Section 6.3.2,
flow in and out of a wellbore takes place on a scale that is much smaller than
those of a single grid cell in typical sector and field models and is therefore
commonly modeled using a semi-analytical model of the form (6.34). In this
section, we will go through two examples to demonstrate how such models can
be included in the simulation setup using data objects and utility functions in-
troduced in Section 7.1.5. The first example is a highly idealized box model. In
the second example we consider a realistic model of a shallow-marine reservoir
taken from the SAIGUP study, see Section 3.5.5.

Box reservoir

We consider a reservoir consisting of a homogeneous 500×500×25 m3 sand box
with a isotropic permeability of 100 mD, represented on a regular 20× 20× 5
Cartesian grid. The fluid is the same as in the examples above. All code lines
necessary to set up the model, solve the flow equations, and visualize the
results are found in the script firstWellExample.m.
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Setting up the model is quickly done, once you have gotten familiar with
MRST:

[nx,ny,nz] = deal(20,20,5);
G = computeGeometry( cartGrid([nx,ny,nz], [500 500 25]) );
rock.perm = repmat(100 .* milli*darcy, [G.cells.num, 1]);
fluid = initSingleFluid('mu',1*centi*poise,'rho',1014*kilogram/meterˆ3);
hT = computeTrans(G, rock);

The reservoir will be produced by a well pattern consisting of a vertical injector
and a horizontal producer. The injector is located in the south-west corner of
the model and operates at a constant rate of 3000 m3 per day. The producer
is completed in all cells along the upper east rim and operates at a constant
bottom-hole pressure of 1 bar (i.e., 105 Pascal in SI units):

W = verticalWell([], G, rock, 1, 1, 1:nz, 'Type', ' rate ' , 'Comp i', 1, ...
'Val' , 3e3/day(), 'Radius', .12*meter, 'name', 'I ' );

W = addWell(W, G, rock, nx : ny : nx*ny, 'Type', 'bhp', 'Comp i', 1, ...
'Val' , 1.0e5, 'Radius', .12*meter, 'Dir' , 'y' , 'name', 'P');

In addition to specifying the type of control on the well (’bhp’ or ’rate’), we
also need to specify the radius and the fluid composition, which is ’1’ here
since we have a single fluid. After initialization, the array W contains two data
objects, one for each well:

Well #1: | Well #2:
cells: [5x1 double] | cells: [20x1 double]
type: ’rate’ | type: ’bhp’
val: 0.0347 | val: 100000

r: 0.1000 | r: 0.1000
dir: [5x1 char] | dir: [20x1 char]
WI: [5x1 double] | WI: [20x1 double]
dZ: [5x1 double] | dZ: [20x1 double]

name: ’I’ | name: ’P’
compi: 1 | compi: 1

refDepth: 0 | refDepth: 0
sign: 1 | sign: []

This concludes the specification of the model. We can now assemble and solve
the system

gravity reset on;
resSol = initState(G, W, 0);
state = incompTPFA(state, G, hT, fluid, 'wells' , W);

The result is shown in Figure 7.10. As expected, the inflow rate decays with
the distance to the injector. The flux intensity depicted in the lower-right plot
is computed using the following command, which first maps the vector of face
fluxes to a vector with one flux per half face and then sums the absolute value
of these fluxes to get a flux intensity per cell:

cf = accumarray(getCellNoFaces(G), ...
abs(faceFlux2cellFlux(G, state.flux)));
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Fig. 7.10. Solution of a single-phase, incompressible flow problem inside a box
reservoir with a vertical injector and a horizontal producer.

Shallow-marine reservoir

In the final example, we will return to the SAIGUP model discussed in Sec-
tion 4.5. This model does not represent a real reservoir, but is one out of a large
number of models that were built to be plausible realizations that contain the
types of structural and stratigraphic features one could encounter in models
of real clastic reservoirs. Continuing from Section 4.5, we simply assume that
the grid and the petrophysical model has been loaded and processed. All de-
tails are given in the script saigupWithWells.m. (The script also explains how
to speed up the grid processing by using two C-accelerated routines for con-
structing a grid from Eclipse input and computing areas, centroids, normals,
volumes, etc).

The permeability input is an anisotropic tensor with zero vertical perme-
ability in a number of cells. As a result, some parts of the reservoir may be
completely sealed off from the wells. This will cause problems for the time-of-
flight solver, which requires that all cells in the model must be flooded after
some finite time that can be arbitrarily large. To avoid this potential problem,
we assign a small constant times the minimum positive vertical permeability
to the grid blocks that have zero cross-layer permeability.

is_pos = rock.perm(:, 3) > 0;
rock.perm(~is_pos, 3) = 1e−6*min(rock.perm(is_pos, 3));

Similar safeguards are implemented in most commercial simulators.
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Fig. 7.11. Incompressible, single-phase simulation of the SAIGUP model. The upper
plot shows pressure distribution, and the lower plot shows cells with total travel time
less than fifty years.

The reservoir is produced from six producers spread throughout the middle
of the reservoir; each producer operates at a fixed bottom-hole pressure of
200 bar. Pressure support is provided by eight injectors located around the
perimeter, each operating at a prescribed and fixed rate. As in the previous
example, the wells are described using a Peaceman model. For simplicity,
all wells chosen to be vertical and are assigned using the logical ij sub-index
available in the corner-point format. The following code specifies the injectors:

nz = G.cartDims(3);
I = [ 3, 20, 3, 25, 3, 30, 5, 29];
J = [ 4, 3, 35, 35, 70, 70,113,113];
R = [ 1, 3, 3, 3, 2, 4, 2, 3]*500*meterˆ3/day;
W = [];
for i = 1 : numel(I),
W = verticalWell(W, G, rock, I(i), J(i), 1:nz, 'Type', ' rate ' , ...

'Val' , R(i), 'Radius', .1*meter, 'Comp i', 1, ...
'name', [ ' I$ {' , int2str(i), '}$' ]);

end

The producers are specified in the same way. Figure 7.11 shows the well posi-
tions and the pressure distribution. We see a clear pressure buildup along the
east, south, and west rim of the model. Similarly, there is a pressure draw-
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down in the middle of the model around producers P2, P3, and P4. The total
injection rate is set so that one pore volume will be injected in a little less
than forty years.

Although this is a single-phase simulation, let us for a while think of our
setup in terms of injection and production of different fluids (since the fluids
have identical properties, we can think of a ’blue’ fluid being injected into a
’black’ fluid). In an ideal situation, one would wish that the ’blue’ fluid would
sweep the whole reservoir before it breaks through to the production wells, as
this would maximize the displacement of the ’black’ fluid. Even in the simple
quarter five-spot examples in Section 7.4.1 (see Figure 7.3), we saw that this
was not the case, and one cannot expect that this will happen here, either. The
lower plot in Figure 7.11 shows all cells in which the total travel time (sum
of forward and backward time-of-flight) is less than fifty years. By looking
at such a plot, one can get a quite a good idea of regions in which there is
very limited communication between the injectors and producers (i.e., areas
without colors). If this was a multiphase flow problem, these areas would
typically contain bypassed oil and be candidates for infill drilling or other
mechanisms that would improve the volumetric sweep. We will come back
to a more detailed discussion of flow patterns and volumetric connections in
Section 9.4.2.

Computer exercises:

42. Change the parameter 'Dir' from 'y' to 'z ' in the box example and rerun
the case. Can you explain why you get a different result?

43. Switch the injector in the box example to be controlled by a bottom-hole
pressure of 200 bar. Where would you place the injector to maximize pro-
duction rate if you can only perforate (complete) it in five cells?

44. Consider the SAIGUP model: can you improve the well placement and/or
the distribution of fluid rates. Hint: is it possible to utilize time-of-flight
information?

45. Use the function SPE10_setup to set up an incompressible, single-phase
version of the full SPE 10 benchmark. Compute pressure, time-of-flight
and tracer concentrations associated with each well. Hint: You may need to
replace MATLAB’s standard backslash-solver by a highly-efficient iterative
solver like AGMG [150, 10] to get reasonable computational performance.
Also, beware that you may run out of memory if your computer is not
sufficiently powerful.
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Flow Diagnostics

Even for single-phase flow it is seldom sufficient to only study well responses
and pressure distribution to understand the flow paths and communication
patterns in a complex reservoir model. To gain a better qualitative picture
of the flow taking place in the reservoir, you will typically want to know the
answer to questions such as: From what region does a given producer drain? To
what region does a given injector provide pressure support? Which injection
and production wells are in communication? What part of the reservoir affects
this communication? How much does each injector contribute to support the
recovery from a given producer? Do any of the wells have back-flow? What is
the sweep and displacement efficiency within a given drainage, sweep, or well-
pair region? Which regions are likely to remain unswept? Likewise, you will
typically also want to perform what-if and sensitivity analyzes to understand
how different parameters in the reservoir model and their inherent sensitivity
affect reservoir responses.

As we will see later in the book, performing a single simulation of a full
reservoir model containing a comprehensive description of geology, reservoir
fluids, flow physics, well controls, and coupling to surface facilities is a compu-
tationally demanding task that may require hours or even days to complete.
This means that your ability to study parameter variations is limited. This
is particularly at odds with modern reservoir characterization techniques, in
which hundreds of equiprobable realizations may be generated to quantify un-
certainty in the characterization. In this chapter, we will therefore introduce
a set of simple techniques referred to as flow diagnostics that can be used
to develop basic understanding of how the fluid flow is affected by reservoir
geology and how the flow patterns in the reservoir respond to engineering
controls. In their basic setup, these techniques only rely on the solution of
single-phase, incompressible flow problems as discussed in the two previous
chapters. (However, in parts of the presentation, we will use some simple con-
cepts from multiphase flow that have not yet been properly introduced, but
are hopefully still understandable).
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In general, flow diagnostics can be defined as simple and controlled nu-
merical flow experiments that are run to probe a reservoir model, establish
connections and basic volume estimates, and quickly provide a qualitative pic-
ture of the flow patterns in the reservoir. Flow diagnostics can also be used to
compute quantitative information about the recovery process in settings some-
what simpler than what would be encountered in an actual field, and using
these techniques, you can rapidly and iteratively perturb simulation input and
evaluate the resulting changes in volumetric connections and communications
to build an understanding of cause and effects in your model.

Ideas similar to what will be presented in the following have previously
been used within streamline simulation [54] for ranking and upscaling [88, 19,
170], identifying reservoir compartmentalization [80], rate optimization [174,
153, 90], and flood surveillance [22]. Our presentation, however, is inspired by
Shahvali et al. [168] and [137], who developed the concept of flow diagnostics
based on standard finite-volume discretizations.

Because of their low computational cost, flow diagnostics methods can
easily be incorporated into interactive graphical tools that offer rapid and in-
teractive screening and preprocessing capabilities. This, however, is not easy to
present in book form, and if you want to see these tools in practice, you should
try out some of the examples that follow MRST study the exercises presented
throughout this chapter. Flow diagnostics techniques can also be utilized to
post-process more comprehensive simulation methods and to perform what-if
and sensitivity analyzes in parameter regions surrounding preexisting simula-
tions. As such, flow diagnostics offers a computationally inexpensive comple-
ment and/or alternative to the use of full-featured multiphase simulations to
provide flow information in various reservoir management workflows. .

9.1 Flow patterns and volumetric connections

You have already been introduced to the basic quantities that lie at the core
of flow diagnostics in the two previous chapters: As you probably recall from
Chapter 6.3.3, we can derive time lines that show how heterogeneity affects
flow patterns for an instantaneous velocity field ~v by computing

� the forward time-of-flight, defined by

~v · ∇τf = φ, τf |inflow = 0, (9.1)

which measures time it takes a neutral particle to travel to a given point
in the reservoir from the nearest fluid source or inflow boundary; and

� the backward time-of-flight, defined by

− ~v · ∇τb = φ, τb|outflow = 0, (9.2)

which measures the time it takes a neutral particle to travel from any point
in the reservoir to the nearest fluid sink or outflow boundary.
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The sum of the forward and backward time-of-flight at a given point in the
reservoir gives the total residence time of an imaginary particle as it travels
from the nearest fluid source or inflow boundary to the nearest fluid sink or
outflow boundary. Studying iso-contours of time-of-flight will give an indica-
tion of how more complex multiphase displacements may evolve under fixed
well and boundary conditions, and will reveal more information about the
flow field than pressure and velocities alone. This was illustrated already in
the previous chapter, where Figure 7.3 on page 198 showed time lines for a
quarter five-spot flow pattern and the total residence time was used to dis-
tinguish high-flow regions from stagnant regions. Likewise, in Figure 7.11 on
page 211 we used time-of-flight to identify non-targeted regions for a complex
field model, that is, regions with high τf values that were likely to remain
unswept and hence were obvious targets to investigate for placement of ad-
ditional wells. Time-of-flight can also be used to derive various measures of
dynamic heterogeneity, as we will see in the next section, or to compute prox-
ies of economical measures such as net-present value for models that contain
multiphase fluid information, see [137].

In similar manner, we can determine the points in the reservoir that are
affected by a given fluid source or inflow boundary by solving the following
injector (or inflow) tracer equation,

~v · ∇cki = 0, cki |inflow = 1. (9.3)

To understand what this equation does, let us think of an imaginary painting
experiment in which we inject a mass-less, non-diffusive ink of a unique color
at each fluid source or point on the inflow boundary we want to trace the
influence from. The ink will start flowing through the reservoir and paint
every point it gets in contact with. Eventually, the fraction of different inks
that flow past each point in the reservoir will reach a steady state, and by
measuring these fractions, we can determine the extent to which each different
ink influences a specific point. Likewise, to determine how much each point in
the reservoir is influenced by a fluid sink or point on the outflow boundary, we
can reverse the flow field and solve similar equations for producer (or outflow)
tracers,

− ~v · ∇ckp = 0, cki |outflow = 1. (9.4)

To summarize, the basic computation underlying flow diagnostics consists
of three parts: (i) solution of a pressure equation to determine the bulk fluid
movement; (ii) solution of a set of numerical tracer equations to partition the
model into volumetric flow regions; and (iii) solution of time-of-flight equations
to give time lines that describe the flow within each region. In the following,
we will describe in more detail how these basic quantities can be combined
and processed to provide more insight into flow patterns and volumetric con-
nections in the reservoir.
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9.1.1 Volumetric partitions

If all parts of the inflow (or outflow) are assigned a unique tracer value, the
resulting tracer distribution should in principle produce a partition of unity for
all parts of the reservoir that are in communication with the inflow (or outflow)
boundary. In practice, one may not be able to obtain an exact partition of
unity because of numerical errors. Based on the inflow and outflow tracers,
we can further define

� drainage regions – each such region represents the reservoir volume that
eventually will be drained by a given producer (or outflow boundary) given
that the current flow field ~v prevails until infinity;

� sweep regions – each such region represents the reservoir volume that even-
tually will be swept by a given injector (or inflow boundary) if the current
flow conditions remain forever;

� well pairs – pairs of injectors and producers that are in communication
with each other;

� well-pair regions – regions of the reservoir in which the flow between a
given injector and producer takes place.

Drainage and sweep regions are typically determined by a majority vote over
all tracers, while well pairs are determined by finding all injectors whose con-
centration is positive in one of the well completions of a given producer (or
vice versa). Well-pair regions can be found by intersecting drainage and sweep
regions, or alternatively by intersecting injector and producer tracers. Well-
allocation factors will be discussed in more detail in Section 9.1.3 and in
Chapter 10 in conjunction with single-phase upscaling.

Our default choice would be to assign a unique tracer to each injector and
producer, but you can also subdivide some of the wells into multiple segments
and trace the influence of each segment separately. This can, for instance, be
used to determine if a (horizontal) well has cross-flow, so that fluid injected
in one part of the well is drawn back into the wellbore in another part of the
well, or fluids produced in one completion is pushed out again in another.

We have already encountered the function computeTimeOfFlight for com-
puting time-of-flight in Section 7.3. The diagnostics module offers an addi-
tional utility function

D = computeTOFandTracer(state, G, rock, 'wells', W, ... )

that computes forward and backward time-of-flight, injector and producer
tracers, as well as sweep and drainage regions in one go for models with flow
driven by wells. These quantities are represented as fields in the structure D:

� inj and prod give the indices for the injection and production wells in the
well structure W;

� tof is a 2× n vector with τf in its first and τb in its second column;
� itracer and ptracer contains the tracers for the injectors and producers;
� ipart and ppart hold the partitions resulting from a majority vote.
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forward time-of-flight tracer concentration for I1

backward time-of-flight tracer concentration for P2

residence time well-pair regions (I1↔P1) and (I2↔P3)

sweep regions drainage regions

Fig. 9.1. Time-of-flight, tracer distributions, and various types of volumetric delin-
eations for a simple case with two injectors and three producers. The source code
necessary to generate the plots is given in the showDiagnostBasic tutorial in the
book module.

Similar quantities can be associated with boundary conditions and/or source
terms, but support for this has not yet been implemented in MRST. Well
pairs can be identified by

WP = computeWellPairs(G, rock, W, D)

which also computes the pore volume of the region of the reservoir associated
with each pair.

Figure 9.1 shows time-of-flight, tracer concentrations, tracer partitions and
a few combinations thereof for a simple flow problem with two injectors and
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three production wells. There are many other ways these basic quantities
can be combined and plotted to reveal volumetric connection and provide
enhanced insight into flow patterns. One can, for instance, combine sweep
regions with time-of-flight to provide a simple forecasts of contacted volumes
or to visualize how displacement fronts move through the reservoir. To this
end, one would typically also include estimates of characteristic wave-speeds
from multiphase displacement theory.

9.1.2 Time-of-flight per tracer region: improved accuracy

It is important to understand that the time-of-flight values computed by a
finite-volume method like the one discussed in Chapter 6.4.3 are volume-
average values, which cannot be compared directly with the point values
one obtains by tracing streamlines as described in Chapter 6.3.3. Since time-
of-flight is a quantity defined from a global line integral (see (6.38)), the
point-wise variations can be large inside a single grid cell, in particular near
flow divides and in the near-well regions, where both high-flow and low-flow
streamlines converge. To improve the accuracy of the time-of-flight within
each well-pair region, one can use the tracer concentrations to recompute the
time-of-flight values for each tracer region,

~v · ∇
(
cki τ

k
f

)
= cki φ. (9.5)

In MRST, this is done by passing the option computeWellTOFs to the time-
of-flight solver, using a call that looks something like

T = computeTimeOfFlight(state, G, rock, 'wells', W, ...
' tracer ' ,{W(inj).cells},'computeWellTOFs', true);

which will then append one extra column for each tracer at the end of the
return parameter T.

9.1.3 Well-allocation factors

Apart from a volumetric partition of the reservoir, one is often interested in
knowing how much of the inflow to a given producer can be attributed to
each of the injectors, or conversely, how the ’push’ from a given injector is
distributed to the different producers. We will refer to this as well-allocation
factors, which can be further refined so that they also describe the cumulative
flow from the toe to the heel of a well. By computing the cumulative flux
from the toe to the heel of the well and plotting this flux as a function of the
distance from the toe (with the flux on the x-axis and distance on the y-axis)
we get a plot that is reminiscent of the plot from a production-logging tool.

To formally define the well-allocation factors, we use the notation from
Section 6.4.2, so that x[c] denotes the value of vector x in cell c. Next, we
let cin denote the injector tracer concentration associated with well (or well
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segment) number n, let cpm denote the producer concentration associated with
well number m, q the vector of well fluxes, and {wnk}k the cells in which well
number n is completed. Then, the cumulative factors are defined as

ainm[wn` ] =
∑̀
k=1

q[wnk ]cin[wnk ]cpm[wnk ],

apmn[wm` ] =
∑̀
k=1

q[wmk ]cin[wmk ]cpm[wmk ].

(9.6)

The total well-allocation factor equals the cumulative factor evaluated at
the heel of the well. Well-allocation factors are computed using the func-
tion computeWellPair and are found as two arrays of structs, WP.inj and
WP.prod, that give the allocation factors for all the injection and production
wells (or segments) accounted for in the flow diagnostics. In each struct, the
array alloc gives the anm factors, whereas the influx or outflux that cannot
be attributed to another well or segment is represented in the array ralloc.

9.2 Measures of dynamic heterogeneity

Whereas primary recovery can be reasonably approximated using averaged
petrophysical properties, secondary and tertiary recovery is strongly governed
by the intrinsic variability in rock properties and geological characteristics.
This variability, which essentially can be observed at all scales in the porous
medium, is commonly referred to as ’heterogeneity’. As we have seen in pre-
vious chapters, both the rock’s ability to store and to transmit fluids are het-
erogeneous. However, it is the heterogeneity in permeability that has the most
pronounced effect on flow patterns and volumetric connections in the reser-
voir. The importance of heterogeneity has been recognized from the earliest
days of petroleum production, and over the years a number of static measures
have been proposed to characterize heterogeneity, such as flow and storage
capacity, Lorenz coefficient, Koval factor, and Dykstra–Parson’s permeability
variation coefficient, to name a few; see e.g., [106] for a more comprehensive
overview.

In this section, we will show how some of the static heterogeneity measures
from classical sweep theory can be reinterpreted in a dynamic setting if we cal-
culate them from the time-of-flight (and tracer partitions) associated with an
instantaneous flow field [170]. Static measures describe the spatial distribution
of permeability and porosity, and large static heterogeneity means that there
are large (local) variations in the rock’s ability to store and transmit fluids.
Dynamic heterogeneity measures, on the other hand, describe the distribution
of flow-path lengths and connection structure, and large heterogeneity values
show that there are large variations in travel and residence times, which again
tend to manifest itself in early breakthrough of injected fluids. Experience has
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Fig. 9.2. Streamtube analogue used to define dynamic flow and storage capacity.
Colors illustrate different average porosities.

shown that these measures, and particularly the dynamic Lorenz coefficient,
correlates very well with forecasts of hydrocarbon recovery predicted by more
comprehensive flow simulations and hence can be used as effective flow proxies
in various reservoir management workflows, see [170, 168, 137]

9.2.1 Flow and storage capacity

A computation of forward and backward time-of-flight is the starting point
for defining dynamic heterogeneity measures. We start by defining dynamic
flow and storage capacity. To this end, we can think of the reservoir as a set
of N streamtubes (non-communicating volumetric flow paths) that each has
a volume Vi, a flow rate qi, and a residence time τi = Vi/qi. The streamtubes
are sorted so that their residence times are ascending, τ1 ≤ τ2 ≤ · · · ≤ τN , see
Figure 9.2. Inside each streamtube, we assume a piston type displacement;
think of a blue fluid pushing a red fluid from the left to the right in the figure.
We then define the normalized flow capacity Fi and storage capacity Φi by,

Φi =

i∑
j=1

Vj

/ N∑
j=1

Vj , Fi =

i∑
j=1

qj

/ N∑
j=1

qj . (9.7)

Here, Φi is the volume fraction of all streamtubes that have ’broken through’
at time τi and Fi represent the corresponding fractional flow, i.e., the fraction
of the injected fluid to the total fluid being produced. These two quantities
can be plotted in a diagram as shown in Figure 9.3. From this diagram, we can
also define the fractional recovery curve defined as the ratio of inplace fluid
produced to the total fluid being produced; that is (1 − F ) plotted versus
dimensionless time tD = dΦ/dF measured in units of pore volumes injected.

To see how the F -Φ diagram can be seen as a measure of dynamic hetero-
geneity, we first consider the case of a completely homogeneous displacement,
for which all streamtubes will break through at the same time τ . This means
that, (Φi − Φi−1)/(Fi − Fi−1) ∝ Vi/qi is constant, which implies that F = Φ,
since both F and Φ are normalized quantities. Next, we consider a heteroge-
neous displacement in which all the streamtubes have the same flow rate q.
Since the residence times τi form a monotonically increasing sequence, we have
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Vi

qi

normalize

Φ

F

Fig. 9.3. Construction of the F -Φ diagram. The plot to the left shows flow rates
qi plotted as function of streamtube volumes Vi for a homogeneous displacement
(green) and for a heterogeneous displacement (blue). The right plot shows the cor-
responding F -Φ diagrams, where the flow rates and the streamtube volumes have
been normalized.

that {Vi} will also be monotonically increasing. In general, F (Φ) is a concave
function, where the steep initial slope corresponds to high-flow regions giving
early breakthrough, whereas the flat trailing tail corresponds to low-flow and
stagnant regions.

In the continuous case, we can (with a slight abuse of notation) define the
storage capacity as

Φ(τ) =

∫ τ

0

φ(~x(s)) ds (9.8)

where ~x(τ) represents all streamlines whose total travel time equals τ . By
assuming incompressible flow, we have that pore volume equals the flow rate
times the residence time, φ = qτ , and hence we can define the flow capacity
as

F (τ) =

∫ τ

0

q(~x(s) ds =

∫ τ

0

φ(~x(s))

s
ds. (9.9)

From this, we can define normalized, dynamic flow and storage capacities by

Φ̂(τ) =
Φ(τ)

Φ(∞)
, F̂ (τ) =

F (τ)

F (∞)
.

Henceforth, we will only discuss the normalized quantities and for simplicity
we will also drop the hat symbol. To compute these quantities in practice, one
would then have to first compute a representative set of streamlines, associate
a flow rate, a pore volume, and a total travel time to each streamline, and
then compute the cumulative sums as in (9.7).

Next, we consider how these concepts carry over to our grid setting where
time-of-flight is computed by a finite-volume method and not by tracing
streamlines. Let pv be an n × 1 array containing the pore volume of the
n cells in the grid and tof be an n×2 array containing the forward and back-
ward time-of-flights. We can now compute the cumulative, normalized storage
capacity Phi as follows:
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t = sum(tof,2); % total travel time
[ts,ind] = sort(t); % sort cells based on travel time
v = pv(ind); % put pore volumes in correct order
Phi = cumsum(v); % cumulative sum
vt = full(Phi(end)); % total volume of region
Phi = [0; Phi/vt]; % normalize to units of pore volumes

In our finite-volume formulation, we do not have direct access to the flow
rate for each cell, but this can easily be computed as the ratio between pore
volume and residence time if we assume incompressible flow. With this, it is
straightforward to compute the cumulative, normalized flow capacity F

q = v./ts; % back out flux based on incompressible flow
ff = cumsum(q); % cumulative sum
ft = full(ff(end)); % total flux computed
F = [0; ff/ft]; % normalize and store flux

This is essentially what is implemented in the utility function computeFandPhi

in the diagnostics module.
The result of the above calculation is that we have two sequences Φi and

Fi that are both given in terms of the residence time τi. If we sort the points
(Φi, Fi) according to ascending values of τi, we obtain a sequence of discrete
points that describe a parametrized curve in 2D space. The first end-point of
this curve is at the origin: If no fluids have entered the domain, the cumulative
flow capacity is obviously zero. Likewise, full flow capacity is reached when
the domain is completely filled, and since we normalize both Φ and F by their
value at the maximum value of τ , this corresponds to the point (1,1). Given
that both F and Φ increase with increasing values of τ , we can use linear
interpolation to define a continuous, monotonic, increasing function F (Φ).

9.2.2 Lorenz coefficient and sweep efficiency

The Lorenz coefficient is a popular measure of heterogeneity, and is defined as
the difference in flow capacity from that of an ideal piston-like displacement:

Lc = 2

∫ 1

0

(
F (Φ)− Φ

)
dΦ, (9.10)

In other words, the Lorenz coefficient is equal twice the area under the F (Φ)
curve and above the line F = Φ, and has values between zero for homoge-
neous displacement and unity for an infinitely heterogeneous displacement,
see Figure 9.4. Assuming that the flow and storage capacity are given as two
vectors F and Phi, the Lorenz coefficient can be computed by applying a
simple trapezoid rule

v = diff(Phi,1);
Lc = 2*(sum((F(1:end−1)+F(2:end))/2.*v) − .5);
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Φ

F

Fig. 9.4. The definition of the Lorenz coefficient from the F -Φ diagram. The green
line represents a completely homogeneous displacement in which all flow paths have
equal residence times, where the blue line is a heterogeneous displacement in which
there is variation in the residence times. The Lorenz coefficient is defined as two
times the gray area.

which is implemented in the computeLorenz function in the diagnostics

module.
The F -Φ diagram can also be used to compute the volumetric sweep ef-

ficiency Ev, which measures how efficient injected fluids are used. Here, Ev
is defined as the volume fraction of inplace fluid that has been displaced by
injected fluid, or equivalently, as the ratio between the volume contacted by
the displacing fluid at time t and the volume contacted at time t =∞. In our
streamtube analogue, only streamtubes that have not yet broken through will
contribute to sweep the reservoir. Normalizing by total volume, we thus have

Ev(t) =
q

V

∫ t

0

[
1− F

(
Φ(τ)

)]
dτ

=
qt

V
− q

V

∫ t

0

F (τ) dτ =
qt

V
− q

V

[
F (t)t−

∫ F

0

τdF
]

=
t

τ̄

(
1− F (t)

)
+

1

τ̄

∫ Φ

0

τ̄ dΦ = Φ+ (1− F )
dΦ

dF
= Φ+ (1− F )tD

The third equality follows from integration by parts, and the fourth equality
since τ̄ = V/q and τdF = τ̄ dΦ. Here, the quantity dΦ/dF takes the role as
dimensionless time. Prior to breakthrough, Ev = tD. After breakthrough, Φ
is the volume of fully swept flow paths, whereas (1 − F )tD is the volume of
flow paths being swept.

The implementation in MRST is quite simple and can be found in the
utility function computeSweep. Starting from the two arrays F and Phi, we
first remove any flat segments in F to avoid division by zero

inz = true(size(F));
inz(2:end) = F(1:end−1)~=F(2:end);
F = F(inz);
Phi = Phi(inz);
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Fig. 9.5. F -Φ and sweep diagram for the simple case with two injectors and three
producers, which has a Lorenz coefficient of 0.2475.

Then, dimensionless time and sweep efficiency can be computed as follows

tD = [0; diff(Phi)./diff(F)];
Ev = Phi + (1−F).*tD;

Figure 9.5 shows the F -Φ and the sweep diagram for the simple example with
two injectors and three producers from Figure 9.1. For this particular setup,
the Lorenz coefficient was approximately 0.25, which indicates that we can
expect a mildly heterogeneous displacement with some flow paths that break
through early and relatively small stagnant regions. From the diagram of the
sweep efficiency, we see that 70% of the fluids in-place can be produced by
injecting one pore volume and by injecting two additional pore volumes almost
all the in-place fluid can be produced.

9.2.3 Summary of diagnostic curves and measures

Altogether, we have defined three different curves that can be derived from the
residence/travel time. The curves shown in Figure 9.6 are visually intuitive
and emphasize different characteristics of the displacement:

� The F -Φ curve is useful for assessing the overall level of displacement
heterogeneity. The closer this curve is to a straight line, the better is the
displacement.

� The fractional recovery curve emphasizes early-time breakthrough behav-
ior and can have utility as a proxy for fractional recovery of the fluid
in-place.

� The sweep efficiency highlights the behavior after breakthrough and has
utility as a proxy for recovery factor.

The curves can be defined for the field as a total, or be associated with sector
models, individual swept volumes, well-pair regions, and so on.
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td

1− F
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Ev

Fig. 9.6. The three basic flow diagnostics curves: F -Φ diagram, fractional recovery
curve, and sweep efficiency. All quantities Φ, F , Ev, and tD are dimensionless; tD is
given in terms of pore volumes injected (PVI).

Whereas visually intuitive information is useful in many workflows, others
need measures defined in terms of real numbers. In our work, we have primarily
used the Lorenz coefficient. However, dynamic analogues of other classical
heterogeneity measures can be defined in a similar fashion. For instance, the
dynamic Dykstra–Parsons’ coefficient is defined as

VDP =
(F ′)Φ=0.5 − (F ′)Φ=0.841

(F ′)Φ=0.5
, (9.11)

where Φ = 0.5 corresponds to the mean storage capacity, while Φ = 0.841
is the mean value plus one standard deviation. Likewise, we can define the
dynamic flow heterogeneity index,

FHI = F (Φ∗)/Φ∗, F ′(Φ∗) = 1, (9.12)

Here, one can show that (dFdΦ )i = τ̄
τi

, where τ̄ = V/q =
∑
Vi/
∑
qi is the

average residence time for all the streamtubes. These heterogeneity measures
have not yet been implemented in the diagnostics module.

Computer exercises:

51. Implement Dykstra–Parsons’ coefficient (9.11) and the flow heterogeneity
index (9.12).

52. Use time-of-flight values defined per tracer region as discussed in Sec-
tion 9.1.2 on page 244 to implement refined versions of the dynamic het-
erogeneity measures.

53. Compute heterogeneity measures for each well pair in the model with two
injectors and three producers. (Original source code: showDiagnostBasics)
Are there differences between the different regions?

54. Try to make the displacement shown in Figures 9.1 and 9.5 less heteroge-
neous by moving the wells and/or by changing the relative magnitude of
the injection/production rates.
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9.3 Case studies

The use of flow diagnostics is best explained through examples. In this section
we therefore go through several cases and demonstrate various ways in which
flow diagnostics can be used to enhance our understanding of flow patterns
and volumetric connections, tell us how to change operational parameters such
as well placement and well rates to improve recovery, etc.

9.3.1 Tarbert formation: volumetric connections

As our first example, we consider a subset of the SPE10 data set consist-
ing of the top twenty layers of the Tarbert formation, see Section 3.5.3. We
modify the original inverted five-spot well pattern by replacing the central
injector by two injectors that are moved a short distance from the model cen-
ter (see Figure 9.7), assume single-phase incompressible flow, and solve the
corresponding flow problem. A complete description of the setup can be found
in showWellPairsSPE10.m in the book module.

Given the geological model represented in terms of the structures G and
rock, the wells represented by W, and the reservoir state by rS, we first com-
pute the time-of-flight and tracer partitions:

D = computeTOFandTracer(rS, G, rock, 'wells', W);

This gives us the information we need to partition the volume into different
drainage and sweep volumes. The simplest way to do this for the purpose of
visualization is to use a majority vote over the injector and producer tracer
partitions to determine the well that influences each cell the most as shown
in Figure 9.8. The result of this majority vote is collected in D.ppart and
D.ipart, respectively, and the essential commands to produce the two upper
plots in Figure 9.8 are:

plotCellData(G,D.ipart, ...);
plotCellData(G,D.ppart,D.ppart>1, ...);

Since there are two injectors, we would expect to see two different sweep
regions. However, in the figure there is also a small blue volume inside the tri-
angular section bounded by I1, P1, and P2, which corresponds to an almost
impermeable part of the reservoir that will not be swept by any of the injec-
tors. The well pattern is symmetric and for a homogeneous medium we would
therefore expect that the two pressure-controlled injectors would sweep sym-
metric volumes of equal size. For the highly heterogeneous Tarbert formation,
however, the sweep regions are quite irregular and clearly not symmetric. Be-
cause of the two wells are completed in cells with very different permeability,
the injection rate of I2 is approximately six times that of I1, and hence I2 will
sweep a much larger region than I1. In particular, we see that I2 is the injec-
tor that contributes most to flooding the lower parts of the region near P3,
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Fig. 9.7. Porosity and well positions for a model consisting of subset of the Tarbert
formation in Model 2 from the 10th SPE Comparative Solution Project

even though I1 is located closer. Looking at the drainage and sweep regions
in conjunction, it does not seem likely that I1 will contribute significantly to
support the production from wells P1 and P2 unless we increase its rate.

When using a majority vote to determine drainage and sweep regions, we
disregard the fact that there are regions that are influenced by more than one
well. To visualize such regions of the reservoir, we can blend in a gray color
in all cells in which more than one tracer has nonzero concentration as shown
in the bottom plot of Figure 9.8. The plot is generated by the following call:

plotTracerBlend(G, D.ppart, max(D.ptracer, [], 2), ... );

Having established the injection and tracer partitions, we can identify well
pairs and compute the pore volumes of the region associated with each pair:

WP = computeWellPairs(rS, G, rock, W, D);
pie(WP.vols, ones(size(WP.vols)));
legend(WP.pairs,'location', 'Best' );

To visualize the volumetric regions, we compute the tensor product of the
injector and producer partitions and then compress the result to get a con-
tiguous partition vector with a zero value signifying unswept regions:

p = compressPartition(D.ipart + D.ppart*max(D.ipart))−1;
plotCellData(G,p,p>0,'EdgeColor','k','EdgeAlpha',.05);

The result is shown in Figure 9.9, and confirms our previous observations
of the relative importance of I1 and I2. Altogether, I1 contributes to sweep
approximately 16% of the total pore volume, shown as the light red and the
yellow regions in the 3D plot.
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Fig. 9.8. Sweep (top) and drainage regions (middle) determined by a majority vote
over injector and producer tracer partitions, respectively, for the Tarbert model. The
bottom plot shows a refined tracer partition in which gray color signifies regions that
are affected by multiple tracers.
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Fig. 9.9. Well-pair regions and associated fraction of the total pore volume for the
upper twenty layers of the Tarbert formation.
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It is also interesting to see how these volumetric connections affect the
fluxes in and out of wells. To this end, we should look at the cumulative well-
allocation factors, which are defined as the cumulative flux in/out of a well
from bottom to top perforation of a vertical well, and from toe to heel for
a deviated well. We start by computing the flux allocation manually for the
two injectors (outflow fractions are given from well head and downward and
hence need to be flipped):

for i=1:numel(D.inj)
subplot(1,numel(D.inj),i); title(W(D.inj(i)).name);
alloc = cumsum(flipud(WP.inj(i)).alloc,1);
barh(flipud(WP.inj(i).z), alloc,'stacked'); axis tight

lh = legend(W(D.prod).name,4);
set(gca,'YDir',' reverse ' );

end

Figure 9.10 shows the resulting bar plots of the cumulative allocation fac-
tors. These plots confirm and extend the understanding we have developed
by studying volumetric connections: I1 will primarily push fluids towards P3.
Some fluids are also pushed towards P4, and we also observe that there is al-
most no outflow in the top three perforations where the rock has low quality.
Injection from I2, on the other hand, contributes to uphold the flux into all
four producers. We also see that the overall flux is not well balanced. Pro-
ducer P1 has significantly lower inflow than the P2 to P4. Alternatively, we
can use the library functions plotWellAllocationPanel(D, WP) from the
diagnostics module to compute and visualize the well-allocation factors for
all the wells in the model, as shown in Figure 9.11.

Finally, to look more closely at the performance of the different comple-
tions along the well path, we can divide the completion intervals into bins
and assign a corresponding set of pseudo-wells for which we recompute flow
diagnostics. As an example, we split the completions of I1 into three bins and
the completions of I2 into four bins.

[rSp,Wp] = expandWellCompletions(rS,W,[5, 3; 6, 4]);
Dp = computeTOFandTracer(rSp, G, rock, 'wells', Wp);

Figure 9.12 shows the majority-voted sweep regions for the four segments of
I2; to better see the various sweep regions, the 3D plot is rotated 180 degrees
compared with the other 3D plots of this model. To obtain the figure, we used
the following key statements

plotCellData(G, Dp.ipart,(Dp.ipart>3) & (Dp.ipart<8),...);
WPp = computeWellPairs(rSp, G, rock, Wp, Dp);
avols = accumarray(WPp.pairIx(:,1),WPp.vols);
pie(avols(4:end));

Notice, in particular, that fluids injected in the lowest segment is the major
contributor in almost half of the well’s total sweep region.
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Fig. 9.10. Well-allocation factors for the two injectors of the Tarbert model.
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Fig. 9.11. Normalized well-allocation factors for all wells of the Tarbert model.

9.3.2 Layers of SPE10: heterogeneity and sweep improvement

In this example, we first compute the Lorenz coefficient for all layers of the
SPE10 model subject to an inverted five-spot well pattern. We then pick one
of the layers and show how we can balance the well allocation and improve the
Lorenz coefficient and the areal sweep by moving some of the wells to regions
with better sand quality.
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Fig. 9.12. Majority-voted sweep regions for I2 of the Tarbert case divided into
four segments that each are completed in five layers of the model. (Notice that the
view angle is rotate 180 degrees compared with Figure 9.8.) The pie chart shows the
fraction of the total sweep region that can attributed to each segment of the well.

To compute Lorenz coefficient for all layers in the SPE10 model, we first
define a suitable 60×220×1 grid covering a rectangular area of 1200×2200×2
ft3. Then, we loop over all the 85 layers using the following essential lines:

for n=1:85
rock = SPE10_rock(1:cartDims(1),1:cartDims(2),n);
rock.perm = convertFrom(rock.perm, milli*darcy);
rock.poro = max(rock.poro, 1e−4);

W = [];
for w = 1:numel(wtype),

W = verticalWell(..);
end

T = computeTrans(G, rock);
rS = incompTPFA(initState(G, W, 0), G, T, fluid, 'wells ' , W);

D = computeTOFandTracer(rS, G, rock, 'wells', W, 'maxTOF', inf);
[F,Phi] = computeFandPhi(poreVolume(G,rock), D.tof);
Lc(n) = computeLorenz(F,Phi);

end

Because the permeability changes for each layer, we need to recompute the
transmissibility. Likewise, we regenerate the well objects to ensure correct well
indices when updating the petrophysical data. Complete source code can be
found in the script computeLorenzSPE10 in the book module.

Figure 9.13 reports the Lorenz coefficients for all layers for a setup in
which both the injector and the four producers are controlled by bottom-hole
pressure. We relatively large dynamic heterogeneity and the variation among
individual layers within the same formation is a result of our choice of well
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Fig. 9.13. Lorenz coefficient for each of the 85 horizontal layers of the SPE10 model
subject to an inverted five-spot pattern with injector and producers controlled by
bottom-hole pressure. The dashed line shows the border between the Tarbert and
the Upper Ness layers.

controls. The actual injection and production rates achieved with pressure-
controlled wells are very sensitive to each well being perforated in a region of
good sand quality. Good sand quality is difficult to ensure when using fixed
well positions, and hence pressure-controlled wells will generally accentuate
heterogeneity effects. To see this, you should modify the script and rerun the
case with equal rates in all the four producers.

Our somewhat haphazard placement of the wells is not what a good reser-
voir engineer would recommend, but serves well to illustrate our next point.
Since the Lorenz coefficient generally is quite large, most of the cases would
have suffered from early breakthrough if we were to use this initial well place-
ment for multiphase fluid displacement. Let us therefore pick one of the layers
and see if we can try to improve the Lorenz coefficient and hence also the
sweep efficiency. Figure 9.14 shows the well allocation and the sand quality
near the production wells for Layer 61, which is the layer giving the worst
Lorenz coefficient. The flux allocation shows that we have a very unbalanced
displacement pattern where producer P4 draws 94.5% of the flux from the
injector and producers P1 and P2 together draw only 1.2%. This can be ex-
plained if by looking at the sand quality in our reservoir. Producer P1 is
completed in a low-quality sand and will therefore achieve a low rate if all
producers operate at the same bottom-hole pressure. Producers P2 and P3
are perforated in cells with better sand, but are both completely encapsulated
in regions of low sand quality. On the other hand, producer P4 is connected
to the injector through a relatively contiguous region of high-permeable sand.
Likewise, the largely concave F -Φ diagram shown to the left in Figure 9.15
testifies that the displacement is strongly heterogeneous and hence be char-
acterized by large differences in the residence time of different flow paths, or
in other words, suffer from early breakthrough of the displacing fluid). Hence,
we would need to large amounts of the displacing fluid to recover the hydro-
carbons from the low-quality sand; this can be seen from the weakly concave
sweep diagram to the right in Figure 9.15. Altogether, we should expect a
very unfavorable volumetric sweep from this well placement.
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Fig. 9.14. Well configuration and flux allocation for the four well pairs with initial
well configuration for Layer 61. (Red colors are good sands, while blue colors signify
sands of low permeability and porosity.)
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Fig. 9.15. F -Φ and sweep diagrams before (blue line) and after (green line) pro-
ducers P1 to P3 have been been moved to regions with better sand quality. Moving
well reduces the Lorenz coefficient from 0.78 to 0.47.

Fig. 9.16. Well configuration and flux allocation for the four well pairs after the
producers P1 to P3 have been moved to regions with better sand quality.
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Table 9.1. Volumetric flow rates in units 10−5 m3/s for each of the wells in Layer
61 of the SPE10 model.

Placement P1 P2 P3 P4 I

Initial -0.0007 -0.0020 -0.0102 -0.2219 0.2348
Improved -0.0719 -0.0660 -0.0604 -0.0398 0.2381

To improve the displacement, we can try to move each of the producers
to a better location; that is, we should look for cells in the vicinity of each
well that have better sand quality (higher porosity and permeability) and are
connected to the injector by more contiguous paths of good quality sands.
Figure 9.16 shows the well allocation after we have made such a move of
producers P1, P2, and P3. Producer P4 was already in a good location, so we
do not move it. Compared with our previous setup, the well allocation is now
much more balanced and which is also confirmed by the well rates reported in
Table 9.1. (Notice also that the overall reservoir rate has increased slightly).
In Figure 9.15, we see that the F -Φ diagram has become significantly less
concave and, likewise, that the sweep diagram has become much more concave.
This testifies that the variation in residence times associated with different
flow paths is much smaller and we should expect a more efficient and less
heterogeneous volumetric sweep.

These types of dynamic heterogeneity measures are generally easy to use
as a guide when searching for optimal or improved well placement. Because of
their low computational cost, the measures can be used as part of a manual,
interactive search or combined with more rigorous mathematical optimization
techniques. In the diagnostics module you can find examples that use flow
diagnostics in combination with adjoint methods to determine optimal well
locations and set optimal injection and production rates as discussed in more
detail in [137].

Computer exercises:

55. Repeat the experiment using fixed rates for the producers (and possibly
also for the injector). Can you explain the differences that you observe?

56. Use the interactive diagnostic tool introduced in the next section to manu-
ally adjust the bottom-hole pressures (or alternatively the production rates)
to see if you can improve the sweep even further.

57. Can you devise an automated strategy that uses flow diagnostics to search
for optimal five-spot patterns?

58. Cell-averaged time-of-flight values computed by a finite-volume scheme can
be quite inaccurate when interpreted pointwise, particularly for highly het-
erogeneous media. To investigate this, pick one of the fluvial layers from
SPE 10 and use the pollock routine from the streamline module to com-
pute time-of-flight values on a 10×10 subsample inside a few selected cells.
Alternatively, you can use the finite-volume method on a refined grid.
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9.4 Interactive flow diagnostics tools

The examples you have encountered so far in the book have mostly been self
contained in the sense that we have either discussed the code lines necessary
for the example, or given reference to complete MRST scripts that can be run
in batch or cell mode to produce the figures and numerical results discussed in
the text. In this section, we will deviate slightly from this rule. While the ideas
behind most flow diagnostics techniques are relatively simple to describe and
their computation is straightforward to implement, the real strength of these
techniques lies in their visual appeal and the ability for rapid user interaction.
Together, MATLAB and MRST provide a wide variety of powerful visualiza-
tion routines that can be used to visualize input parameters and simulation
results. As you saw in the previous section, the diagnostics module supplies
additional tools for enhanced visualization. However, using a script-based ap-
proach to visualization means that you each time need to write extra code
lines to manually set color map and view angle or display various additional
information such as legends, colorbars, wells, and figure titles, etc. These extra
code lines have mostly been omitted in our discussion in the previous section,
but if you go in and examine the accompanying scripts, you will see that a
large fraction of the code lines focus on improving the visual appearance of
plots. This code is repetitive and should ideally not be exposed to the user
of flow diagnostics. More important, however, a script-based approach gives
a static view of the data and offers limited capabilities for user interaction
apart from zooming, rotating, and moving the displayed data sets. Likewise,
a new script must be written and executed each time we want to look a new
plot that combines various types of diagnostic data, e.g., to visualize time-of-
flight or petrophysical values within a given tracer region, use time-of-flight
to threshold the tracer regions, etc.

To simplify the user interface to flow diagnostics, we have integrates most
of the flow-diagnostics capabilities into a graphical tool that enables you to
interact more directly with your data set

interactiveDiagnostics(G, rock, W);

The script uses the standard two-point incompressible flow solver for a single-
phase fluid with density 1000 kg/m3 and viscosity 1 cP to compute a repre-
sentative flow field, which is then fed to the function computeTOFandTracer()

to compute the basic flow diagnostics quantities discussed above. Once the
computation of basic flow diagnostic quantities is complete, the graphical
user interface is launched, see Figure 9.17: This consists of a plotting window
showing the reservoir model and a control window that contains a set workflow
tabs and menus that enable you to use flow diagnostics to explore volumet-
ric connections, flow paths, and dynamic heterogeneity measures. The control
window has three different tabs. The ’region selection’ tab is devoted to dis-
playing the various kinds of volumetric regions discussed in Section 9.1.1. The
’plots’ tab lets you compute F -Φ diagram, Lorenz coefficient, and the well-
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Select injectors

Select producers

Different control tabs

How to combine tracers

Select quantity to display

Threshold on time-of-flight

Play time-of-flight movie

Fig. 9.17. The graphical user interface to flow diagnostics. The plotting window
shows forward time-of-flight, which is the default value displayed upon startup. In
the control window, we show the ’region selection’ tab that lets you select which
quantity to show in the plotting window, select which wells to include in the plot,
specify how to combine tracer partitions to select volumetric regions, and as well as
set maximum and minimum time-of-flight values to crop the volumetric regions.
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Fig. 9.18. Flow diagnostics used to post-process a three-phase, black-oil flow sim-
ulation of the Norne field.
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allocation panels shown in Figure 9.11. From this tab, you can also bring up a
dialog box that enables you to edit the well settings and recompute a new flow
field and the resulting flow diagnostics (unless the parameter 'computeFlux' is
set to false). In the ’advanced’ tab, you can control the appearance of the 3D
plot by selecting whether to display grid lines, well-pair information, and well
paths, set 3D lighting and transparency value, etc. This tab also allows you
to export the current volumetric subset as a set of boolean cell indicators.

The regions to be displayed in the plotting window are specified by se-
lecting a set of active wells and by choosing how the corresponding tracer
partitions should be combined. That is, for a given set of ’active’ wells, you
can either display all cells that have nonzero injector or producer tracer, only
those cells that have nonzero injector and producer tracer, only cells with
nonzero producer tracer, or only cells with nonzero injector tracers. The se-
lect a set of active wells, you can either use the list of injectors and producers
in the control window, or you can select an individual well by left-clicking
on the well in the plotting window. In the latter case, the set of active wells
will consist of the well you selected plus all other wells that this well is in
communication with. Clicking on a well will also bring up a new window that
displays a pie chart of the well allocation factors and a graph that displays
cumulative allocation factors per connection. Figure 9.18 shows this type of
visualization for a model where we also have access to the various time steps
of a full multiphase simulation. In this case, we invoke the GUI by calling

interactiveDiagnostics(G, rock, W, 'state', state, 'computeFlux', false);

so that the fluxes used to compute time-of-flight and tracer partitions are
extracted from the given reservoir state given in state. Left-click on producer
E-1H, brings up a plot of the well allocation as well as a plot of the fluid
distribution displayed as function of the backward time-of-flight from the well.
To further investigate the flow mechanism, we can click on each fluid and get a
plot of how the various injectors and fluid expansion in the reservoir contribute
to push the given fluid toward the producer. In Figure 9.18 we have expanded
the GUI by another function that enables us to plot the simulated well history
of each well. The GUI also offers functionality to load additional cell-based
data sets that can be displayed in the 3D plot:

interactiveDiagnostics(G, rock, W, celldata);
interactiveDiagnostics(G, rock, W, celldata, 'state', state);

The GUI also has more functionality for post-processing simulations with
multiple time steps, but this is beyond the scope of the current presentation.

In the following we will use the interactive GUI to study a few reservoir
models. This means, in particular, that the scripts that accompany the case
studies in this section do not reproduce all figures directly as was the case for
the script-based approach presented in the previous section. Instead, you will
have to perform several manual actions specified in the scripts to reproduce
some of the figures.
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Fig. 9.19. A simple 2D reservoir with two injectors and three producers. The left
plot shows porosity and the right plot the corresponding producer tracer partition.

9.4.1 Simple 2D example

As our first example, we will use a slightly modified version of the setup
used from Figure 9.1, in which we have introduced two low-permeable zones
that will play the role of sealing faults, moved the two injectors slightly to
the south, and switched all wells from rate to pressure control. The resulting
reservoir model is shown in Figure 9.19, whereas specific values for the well
controls are found in Table 9.2 under the label ’base case’. In our previous
setup, we had a relatively symmetric well pattern in which producers P1 and
P3 were supported by injectors I1 and I2, respectively, while producer P2
was supported by both injectors. This symmetry is broken by the two sealing
faults, and now injector I1 also provides a significant support for producer P3.
This can be inferred from the plot of the producer tracer partition: the gray
area between the magenta (P2) and red (P3) regions signifies a parts of the
reservoir that are drained by both producers. Since there is a relatively large
gray area southeast of I1, this injector will support both P2 and P3. There is
also a gray area southwest of injector I2, but since this is less pronounced, we
should expect that only a small portion of the inflow of P2 can be attributed
to I2. To confirm this, you can load the model in the interactive viewer (see
the script interactiveSimple), and click on the names for each individual
producer to bring up a pie chart reporting the corresponding flux allocation.

Next, we let us try to figure out to what extent this is a good well pattern
or not. We can start by looking at how a displacement front would propagate
if the present flow field remains constant. If the displacement front travels
with a unit speed relatively to the Darcy velocity given by the flux field, the
region swept by the front at time t consists of all those cell for which τf ≤ t.
Using the interactive GUI as shown in Figure 9.17, you can either show swept
regions by specifying threshold values manually, or use the ’Play TOF’ button
to play a ’movie’ of how the displacement front advances through the reservoir.
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Fig. 9.20. Evolution of an imaginary displacement front illustrated by thresholding
time-of-flight iniside the sweep regions for the base case.

Figure 9.20 shows four snapshots of such an advancing front. We notice, in
particular, how the sealing fault to the northwest of the reservoir impedes
the northbound propagation of the I1 displacement front and leads to early
breakthrough in P2. We also see that there is a relatively large region that
is still unswept after the two displacement fronts have broken through in all
three producers.

As a more direct alternative to studying snapshots of an imaginary dis-
placement front, we can plot the residence time, i.e., the sum of the forward
and backward time-of-flight, as shown in the upper-left plot in Figure 9.21.
Here, we have used a nonlinear gray-map to more clearly distinguish high-flow
zones (dark gray) from stagnant regions (white) and other regions of low flow
(light gray). In the figure, we see that wells I1 and P2 are connected by a
high-flow region, which explains the early breakthrough we observed in Fig-
ure 9.20. The existence of high-flow regions can also be seen from the F -Φ
diagram and the Lorenz coefficient of 0.273.

The interactive diagnostic tool has functionality that lets you modify the
well controls and if needed, add new wells or remove existing ones. We will now
use this functionality to try to improve the volumetric sweep of the reservoir,
much in the same way as we did manually for a layer of SPE 10 in Section 9.3.2.
We start by reducing the high flow rate in the region influenced by I1 and P2.
That is, we increase the pressure in P2 to, say, 130 bar to decrease the inter-
well pressure drop. The resulting setup is referred to as ’Case 1’, and gives
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Fig. 9.21. In Cases 1 and 2, well controls have been manually adjusted from that of
the base case (see Table 9.2) to equilibrate total travel time throughout the reservoir.
Case 3 includes infill drilling of an additional injector. The bottom plot shows the
corresponding F -Φ curves.

Table 9.2. Well controls given in terms of bottom-hole pressure [bar] for a simple
2D reservoir with five initial wells (I1, I2, P1, P2, P3) and one infill well (I3).

I1 I2 I3 P1 P2 P3 Lorenz

Base case 200 200 — 100 100 100 0.2730
Case 1 200 200 — 100 130 80 0.2234
Case 2 200 200 — 100 130 80 0.1934
Case 3 200 220 140 100 130 80 0.1887
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Fig. 9.22. Evolution of an imaginary displacement front illustrated by thresholding
time-of-flight iniside the sweep regions for Case 3.

more equilibrated flow paths, as can be seen from the Lorenz coefficient and
the upper-right plot in Figure 9.21. In Case 2, we have decreased the pressure
in P3 to 80 bar to increase the flow in the I2–P3 region. As a result of these
two adjustments to the well pressures, we have reduced the stagnant region
north of P2 and also diminished the clear flow-divide that extended from the
south of the reservoir to the region between P2 and P3. To also sweep the large
unswept region east of P3, we can use infill drilling to introduce a new well
in the southeast of this region, just north of the sealing fault. Since the new
well is quite close to the existing producer, we should assign a relatively low
pressure to avoid introducing too high flow rates. In Case 3, we have chosen
to let the well operate at 140 bar and at the same time we have increased
the pressure in I2 to 220 bar. Figure 9.22 shows snapshots of the advancing
front at the same instances in time as was used in Figure 9.20 for the base
case. Altogether, the well configuration of Case 3 gives a significant increase
in the swept areas and reduces the Lorenz coefficient to 0.189. It is therefore
reasonable to expect that this configuration would give a better displacement
if the setups were rerun with a multiphase simulator.

A more detailed description of how you should use the interactive GUI to
perform the above experiments can be found in the interactiveSimple.m

script of the book module. I encourage you to use the script to familiarize
yourself with interactive flow diagnostics. Are you able to make further im-
provements?
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9.4.2 SAIGUP: flow patterns and volumetric connections

The previous example was highly simplified and chosen mainly to illustrate the
possibilities that lie in the interactive use of flow diagnostics. In this example,
we revisit the SAIGUP case study from Section 7.4.4 on page 210 and take
a closer look at the volumetric connection in this shallow-marine reservoir.
We start by re-running this case study to set up the simulation model and
compute a flow field:

saigupWithWells; close all

clearvars −except G rock W state

Henceforth, we only need the geological model, the description of the wells,
and the reservoir state and have hence cleared all other variables and closed all
plots produced by the script. With this, we are ready to launch the interactive
flow diagnostics session. Since we already have computed a reservoir state, we
can pass this on to the interactive GUI and hence use it in pure post-processing
mode:

interactiveDiagnostics(G, rock, W, 'state', state, 'computeFlux', false);

in which we are not able to edit any well definitions and recompute fluxes.
In Figure 7.11 on page 211 we saw that although the injectors and produc-

ers are completed in all the twenty grid layers of the model, there is almost
no flow in the bottom half of the reservoir. A more careful inspection shows
that there is almost no flow in the upper layers in most of the reservoir ei-
ther. This is a result of the fact that the best sand quality is found in the
upper-middle layers of the reservoir, as shown in Figure 9.23, which compares
the permeability in the full model with the permeability in cells having a resi-
dence time less than one hundred years. Because each injector is controlled by
a total fluid rate, large fluid volumes will be injected in completions that are
connected to good quality sand, while almost no fluid is injected into zones
with low permeability and porosity. This can be seen in Figure 9.24, which
shows overall and cumulative well-allocation factors for four of the injectors.
Injectors I3 and I4 are completed in the southern part of the reservoir, and
here low-quality sand in the bottom half of the reservoir leads to almost neg-
ligible injection rates in completions 11 to 20. In a real depletion plan, the
injectors would probably not have been completed in the lower part of the
sand column. Injector I5 located to the west in the reservoir is completed in
a column with low permeability in the top four and the bottom layer, high
permeability in Layers 6 to 9, and intermediate permeability in the remaining
layers. Hence, almost no volume is injected through the top four completions,
which hence are redundant. Finally, injector I6 is completed in a column with
poor sand quality in the top three layers, high permeability in Layers 4 to 9,
and intermediate permeability in the remaining layers.

Figure 9.24 also shows the flux allocation for all well pairs in the reservoir.
In the plot, each curved line corresponds to a connection between an injector
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Fig. 9.23. Horizontal permeability (log10Kx) for the SAIGUP model. The left plot
shows the full permeability field, while the right plot only shows the permeability in
cells that have a total residence time less than 100 years. (The reservoir is plotted
so that the north-south axis goes from left to right in the figure.)
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Fig. 9.24. Flux allocation for all well pairs of the SAIGUP model and well-allocation
factors for injectors I3, I4, I5 and I6.
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Fig. 9.25. Plot of the injector tracer region for well I4.

and a producer, where the color of the line signifies the producer and the
percentage signifies the fraction of the total flux from each injector that goes
to the different producers. The connections have been truncated so that only
pairs that correspond to at least 1% of the flux are shown in the figure; which
explains why not all the fractions sum up to unity. Let us take injector I4 as
an example. Figure 9.25 shows two plots of the tracer region for this injector.
From the well-allocation plots, we have already seen that I4 is connected to
producers P2 to P4; (almost) all the well completions lie inside of the tracer
of I4. Producer P1, on the other hand, is only completed in a single cell inside
the tracer region, and this cell is in the top layer of the reservoir where the
sand quality is very poor. It is therefore not clear whether P1 is actually
connected to I4 or if this weak connection is a result of inaccuracies in the
tracer computation. Since we only use a first-order discretization, the tracer
fields will generally contain a significant amount of numerical smearing near
flow divides, which here is signified by blue-green colors.

Computer exercises:

59. Change all the injectors to operate at a fixed bottom-hole pressure of 300
bar. Does this significantly change the flow pattern in the reservoir? Which
configuration do you think is best?

60. Use the flow diagnostic tool to determine well completions in the SAIGUP
model that have insignificant flow rate, eliminate these well completions,
and rerun the model. Are there any apparent changes in the flux allocation
and volumetric connections?

61. Consider the model given in makeAnticlineModel.m. Can you use flow
diagnostics to suggest a better well configuration?
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Upscaling Petrophysical Properties

As you have seen previously in the book, porous rock formations are typically
heterogeneous at a large variety of length scales, from the micrometer scale
of pore channels to the kilometer scale of petroleum reservoirs or even larger
scales for aquifer systems and sedimentary basins. Describing all flow processes
pertinent to hydrocarbon production or CO2 extraction with a single model
is therefore not possible. In Section 3.3 we introduced you to the concept of
representative elementary volumes and mentioned various types of models that
can be used for flow studies, including: flow in core samples (cm scale), bed
models (meter scale), sector models, and field models (km scale). These models
must be calibrated against static and dynamic data of very different spatial
(and temporal) resolution: thin sections, core samples, well logs, geological
outcrops, seismic surveys, well tests, production data, core flooding and other
laboratory experiments, etc.

For full sized reservoirs the traditional approach has been to model geo-
logical structures with a geological model, and fluid flow with a coarser simu-
lation model. Geological models are produced to represent the heterogeneity
of the reservoir and possibly incorporate a measure of inherent uncertainty.
Pore, core, and bed models are mainly designed to give input to the geologi-
cal characterization and to derive flow parameters for simulation models. The
process of making a geological model is generally strongly under-determined.
It is therefore customary, in particular on the reservoir scale, to use geostatis-
tical methods to generate plausible distributions of petrophysical properties
as discussed briefly in Section 3.5. In recent years, process models that seek
to mimic deposition and subsequent structural changes have also gained a
lot in popularity since they tend to produce less artifacts in the geo-cellular
models. Heterogeneity and correlations in petrophysical properties depend
strongly on the patterns in the sedimentary deposits and flow patterns tend
to be strongly affected by details in the structural architecture of the reservoir.
There is therefore a general trend to build complex, high-resolution models for
geological characterization to represent small-scale geological structures. Like-
wise, large ensembles of equiprobable models are generated to systematically
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272 10 Upscaling Petrophysical Properties

quantify model uncertainty. While high-resolution models can describe a wide
variety of geological structures, there are also many structures on a finer scale
than the resolution of the geological model that are thought to be important
to understand the reservoir. Therefore, it is common to develop hierarchies of
models that cover a wide range of physical scales to systematically propagate
the effects of small-scale geological variations observed in core samples up to
the reservoir scale.

On the other hand, high-resolution geological used for reservoir characteri-
zation tend to contain more volumetric cells than contemporary simulators can
handle without having to resort to massively parallel high-performance com-
puting. As a result, flow simulations are usually performed using models that
contain less details than those used for geological characterization. And even if
you had all the computational power you needed, there are several arguments
why you still should perform simulations on coarser models. First of all, one
can argue that high-resolution models contain more details than what is justi-
fied by the available data. Second, in many modeling workflows the available
computational power should be spent running multiple model realizations to
span the range of plausible outcomes rather than on obtaining high numerical
resolution for few highly uncertain predictions. Third, because coarser models
contain fewer parameters, they are simpler to calibrate to observed reservoir
responses (pressure tests and production data). Finally, a coarser model may
be sufficient to predict flow patterns and reservoir responses with the accuracy
needed to make a certain business decision. It is perhaps tempting to believe
that with future increases in computing power, one will soon be able to close
the gap in resolution between models used for reservoir characterization and
models used for flow simulation. The development so far, indicates that such
an idea is wrong. The trend is rather that increases in computational power
enable geologists and reservoir engineers to build larger and more complex
models at a pace that outperforms the improvement in simulation capabili-
ties.

For all the reasons above, there is a strong need for mathematical and
numerical techniques that can be used to communicate parameters and prop-
erties between models of different spatial resolution. And – this need will
persist, and maybe even grow stronger, in the foreseeable future.

Upscaling (or homogenization) refers to the process of propagating prop-
erties and parameters from a model of high spatial resolution to a model of
lower spatial resolution. In this process, heterogeneous regions in a reservoir
model are replaced by homogeneous regions to make up a coarser model of the
same reservoir. Or, in the words of Chapter 5 on grid coarsening, upscaling
is the process in which petrophysical properties in the cells that make up a
coarse block are averaged into a single effective value for each coarse block,
see Figure 10.1. The effective properties of the new homogeneous regions are
defined so that they preserve the effects of small-scale variations in an aver-
aged sense. How this averaging should be performed depends on the type of
property to be upscaled. One distinguishes between additive properties that
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10.1 Upscaling for reservoir simulation 273

Fig. 10.1. Upscaling of petrophysical properties, here represented by porosity.

can be upscaled using simple volumetric averaging and nonadditive properties,
for which correct averaging methods only exist in special cases and the best
one can hope for in the general case is to compute accurate approximations.

Downscaling methods are used when propagating properties and parame-
ters from a model with low spatial resolution to a model having higher spatial
resolution. One can, for instance, be interested in refining coarse-scale mod-
ifications in petrophysical properties obtained during a history match on a
simulation model to update the underlying geomodel. In this process, the aim
is to preserve both the coarse-scale trends and the fine-scale heterogeneity
structures.

10.1 Upscaling for reservoir simulation

The process of upscaling petrophysical parameters leads to many fundamental
questions. For instance, do the partial differential equations that make up the
flow model on the coarse scale take the same form as the equations modeling
flow at the subgrid scale? And if so, how do we honor the fine-scale hetero-
geneities at the subgrid level. Even though upscaling has been a standard
procedure in reservoir simulation for more than four decades, nobody has an-
swered these questions rigorously, except for cases with special heterogeneous
formations such as periodic or stratified media.

Homogenization is a rigorous mathematical theory for asymptotic analysis
of periodic structures, see [28, 93, 85]. A relevant result states that for a
periodic medium with permeability K(xε ), there exists a constant symmetric
and positive-definite tensor K0 such that the solutions pε and vε = −K(xε )∇pε
to the following elliptic problem

−∇ · K(
x

ε
)∇pε = q (10.1)
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274 10 Upscaling Petrophysical Properties

converge uniformly as ε→ 0 to the corresponding solutions of a homogenized
equation

−∇ · K0∇p0 = q. (10.2)

This means that if we assume that the region we seek to compute an effective
property for is a cell in an infinite periodic medium, then homogenization
theory can be used to derive homogenized tensors for the region. The main
advantage of this approach is that it provides mathematical methods to prove
existence and uniqueness of the solution, and also verifies that the governing
equation at the macroscopic level take the same form as the elliptic equation
that governs porous media flow at the level of the representative elementary
volumes (REVs). However, whether homogenization can be used for practical
simulations is more debatable, in particular since natural rocks very seldom
are periodic.

As you will see shortly, the most basic upscaling techniques rely on some
kind of local averaging procedure in which effective properties in each grid
block are calculated solely from properties within the grid block. As such,
these averaging procedures do not consider coupling beyond the local domain,
which in turn implies that the upscaling methods fail to account for the effect
of long-range correlation and large-scale flow patterns in the reservoir unless
these can be represented correctly by the forces that drive flow inside the
local domain. Because different flow patterns may call for different upscaling
procedures, it is generally acknowledged that global effects must also be taken
into consideration to obtain robust coarse-scale simulation models.

Upscaling must also be seen in close connection with griding and coars-
ening methods, as discussed in Chapters 4 and 5. Even though these ques-
tions have already have been answered when making the fine-scale model,
you should consider what kind of grid you want to use to represent the porous
medium on the coarse scale, what resolution you need, and how you should
orient your coarse blocks. To make the simulation models as accurate and
robust as possible, the grid should be designed so that grid blocks capture
heterogeneities on the scale of the block. This often implies that you may
need significantly more blocks if you use a regular grid than if you use an
unstructured polyhedral grid. You may also want to use different coarsen-
ing factors in zones of high and low flow, near and far away from wells and
fluid contacts, etc. The importance of designing a good coarse grid should
not be underestimated, but griding in itself will not be discussed any further
herein. Henceforth, we will instead tacitly assume that a suitable coarse grid
is available and focus on upscaling techniques.

The literature on upscaling techniques is extensive, ranging from simple
averaging techniques, e.g., [95], via flow-based methods that rely on local flow
problems [26, 59] to more comprehensive global [144, 84] and local-global
[41, 42, 73] methods. Some attempts have been made to analyze the upscaling
process, e.g., [21, 189], but so far there is generally no theory or framework
for assessing the quality of an upscaling technique. In fact, upscaling tech-
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niques are seldom rigorously quantified with mathematical error estimates.
Instead, the quality of upscaling techniques is usually assessed by compar-
ing upscaled production characteristics with those obtained from a reference
solution computed on an underlying fine grid.

In the following, we will only discuss the basic principles and try to show
you how you can implement relatively simple upscaling methods and explain
why some methods may work well for some flow scenarios and not for others. If
you are interested in a comprehensive overview, you should consult one of the
many review papers devoted to this topic, e.g., [48, 185, 21, 164, 69, 60, 61].
We start by a brief discussion of how to upscale porosity and other additive
properties, before we move on to discuss upscaling permeability effects, which
is the primary example of a nonadditive property. Because of the way Darcy’s
law has been extended to from single-phase to multiphase flow, it is common
to distinguish the upscaling of absolute permeability K, which is associated
with single-phase flow, and relative permeability krα, which is the multiphase
factor that absolute permeability must be multiplied with to get the effective
permeability experienced by one fluid in the presence of another. Upscaling of
absolute permeability is therefore often called single-phase upscaling, whereas
upscaling of relative permeability is referred to as multiphase upscaling. The
main parts of this chapter is devoted to permeability upscaling and to up-
scaling of the corresponding transmissibilities that account for permeability
effects in finite-volume discretizations. As in the rest of the book, our discus-
sion will to a large extent be driven by examples, for which complete codes
can be found in the upscaling subdirectory of the book module of MRST.

10.2 Upscaling additive properties

Porosity is the simplest example of an additive property and can be upscaled
through a simple volumetric average. If Ω denotes the region we want to
average over, the averaged porosity value is given as

φ∗ =
1

Ω

∫
Ω

φ(~x) d~x. (10.3)

Implementing the computation of this volumetric average can be a bit tricky
if the coarse blocks and the fine cells are not matching. In MRST, however,
we always assume that the coarse grid is given as a partition of the fine grid,
as explained in Chapter 5. If q denotes the vector of integers describing the
coarse partition, upscaling porosity amounts to a single statement

crock.poro = accumarray(q,rock.poro.*C.cells.volumes)./ ...
max(accumarray(q,G.cells.volumes),eps);

Here we have used max(..,eps) to safeguard against division by zero in the
unlikely case your grid contains blocks with zero volume or your partition
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vector is not contiguous. Weighting by volume is not necessary for grids with
uniform cell sizes. Similar statements were used to go from the fine-scale model
on the left side of Figure 10.1 to the coarse-scale model shown on the right.
Complete source code is found in the script called illustrateUpscaling.m.
Flux densities are upscaled in the same way, with cell volumes replaced by
face areas.

Other additive (or volumetric) properties like net-to-gross, saturations and
concentrations can be upscaled almost in the same way, except that one now
should replace the bulk average in (10.3) by a weighted average. If n denotes
net-to-gross, the correct average would be to weight with porosity, so that

n∗ =
[∫
Ω

φ(~x) d~x
]−1

∫
Ω

φ(~x)n(~x) d~x. (10.4)

and likewise for saturations. In MRST, we can compute this upscaling as
follows

pv = rock.poro.*G.cells.volumes;
N = accumarray(q,pv.*n)./ max(accumarray(q,pv),eps);

To verify that this is the correct average, we simply compute

φ∗n∗ =
[ 1

Ω

∫
Ω

φ(~x) d~x
][∫

Ω

φ(~x) d~x
]−1

∫
Ω

φ(~x)n(~x) d~x

=
1

Ω

∫
Ω

φ(~x)n(~x) d~x = (φn)
∗
.

Using the same argument, one can easily argue that concentrations should be
weighted with saturations, and so on. Rock type (or flow unit), on the other
hand, is not an additive property, even though it is sometimes treated almost
as if it was by applying a majority vote to identify the rock type that occupies
the largest volume fraction of a block. Such a simple approach is generally not
robust [192] and should generally be avoided.

To get more acquainted with upscaling of additive quantities, we recom-
mend that you try to do the following computer exercises.

Computer exercises:

62. Construct a 8× 24× 5 coarse partition of the SAIGUP model and upscale
the additive rock properties. Verify your upscaling by computing

pv = accumarray(CG.partition, poreVolume(G,rock));
max(abs(pv − poreVolume(CG, crock)))

How would you make a coarse grid that represents the porosity better? To
measure the quality of a given approximation, you can for instance use the
following error measure:
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err3 = sum(abs(rock.poro − crock3.poro(CG3.partition)))/...
sum(rock.poro)*100;

63. The file mortarTestModel from the BedModels1 data set describes a
sedimentary bed that consists of three different facies. Construct a coarse
model that has 5 × 5 blocks in the lateral direction and as many blocks
in the vertical direction as required to preserve distinct facies layers, as
shown in the plot below.

Upscale the porosity of the model. Do you think the resulting coarse
grid is suitable for flow simulations? (Hint: Check the guidelines from
Section 5.4.)

10.3 Upscaling absolute permeability

To study upscaling of absolute permeability, it is sufficient to consider single-
phase flow in the form of a variable-coefficient, Poisson equation

∇ · K∇p = 0. (10.5)

Even with such a simple equation, the choice of what is the best method
to average absolute permeability generally depends on a complex interplay
between the local permeability distribution and the characteristic flow direc-
tions. In certain special cases, one can develop simple methods that average
permeability correctly, but in the general case, all one can do is to develop
computational methods that approximate the true effective permeability of
the upscaled region. How accurate a given approximation is, will depend on
the coarse grid, the specific upscaling method, the purpose for which the up-
scaled values are to be used, and the complexity of the fine-scale permeability
distribution.

Most techniques for upscaling absolute permeability seek an averaged ten-
sor K∗ that reproduces the same total flow through each homogeneous region
as one would obtain if the single-pressure equation (10.5) was solved with the
full fine-scale heterogeneity. In other words, if Ω is the homogeneous region to
which we wish to assign an effective property K∗, this property should fulfill∫

Ω

K(~x)∇p d~x = K∗
∫
Ω

∇p d~x. (10.6)
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This equation states that the net flow rate ~vΩ through Ω is related to the
average pressure gradient ∇Ωp in Ω through the upscaled Darcy law

~vΩ = −K∗∇Ωp. (10.7)

The upscale permeability tensor K∗ is not uniquely defined by (10.6) for a
given pressure field p, and conversely, there does not exist a unique K∗ so that
(10.6) holds for any pressure field. This reflects that K∗ depends on the flow
through Ω, which in turn is determined by the boundary conditions that are
specified on ∂Ω. The better you know the boundary conditions the homoge-
nized region will be subject to in subsequent simulations, the more accurate
estimates you can compute for the upscaled tensor K∗. In fact, if you know
these boundary conditions exactly, you can compute the true effective perme-
ability. In general, you will not know these boundary conditions unless you
have already solved your problem, and the best you can do is to make an ed-
ucated and representative guess that aims to give reasonably accurate results
for a wide range of flow scenarios. Another problem is that the even though the
permeability tensor of a physical system needs to be symmetric and positive
definite (i.e., ~z ·K~z > 0 for all nonzero ~z), there is generally no guarantee that
the effective permeability tensor constructed by an upscaling algorithm fulfill
these properties. The possible absence of symmetry and positive definiteness
shows that the single-phase upscaling problem is fundamentally ill-posed.

10.3.1 Averaging methods

The simplest way to upscale permeability is to use an analytic averaging
formula. One general class of such formulas is the power average,

K∗ = Ap(K) =
( 1

|Ω|

∫
Ω

K(~x)p d~x
)1/p

. (10.8)

Here, p = 1 and p = −1 correspond to the arithmetic and harmonic means,
respectively, while the geometric mean is obtained in the limit p→ 0 as

K∗ = A0(K) = exp
( 1

|Ω|

∫
Ω

log(K(~x)) d~x
)
. (10.9)

The use of power averaging can be motivated by the so-called Wiener-bounds
[188], which state that for a statistically homogeneous medium, the correct
upscaled permeability will be bounded above and below by the arithmetic and
harmonic mean, respectively.

To motivate (10.8), we can look at the relatively simple problem of up-
scaling permeability within a one-dimensional domain [0, L]. From the flow
equation (10.5) and Darcy’s law, we have that

−
(
K(x)p′(x)

)′
= 0 =⇒ v(x) = K(x)p′(x) ≡ constant
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Fig. 10.2. Example of a perfectly stratified isotropic medium with layers perpen-
dicular to the direction of the pressure drop, for which harmonic averaging is the
correct way to upscale absolute permeability.

Since the upscaled permeability K∗ must satisfy Darcy’s law on the coarse
scale, we have that v = −K∗[pL − p0]/L. Alternatively, this formula can be
derived by using (10.6)

K∗
∫ L

0

p′(x)dx = K∗(pL − p0)
(10.6)

=

∫ L

0

K(x)p′(x)dx = −
∫ L

0

vdx = −Lv.

We can now use (10.6) and Darcy’s law to find the expression for K∗

∫ L

0

p′(x)dx = −
∫ L

0

v

K(x)
dx

= K∗
pL − p0

L

∫ L

0

1

K(x)
dx = K∗

(∫ L

0

p′(x)dx
)( 1

L

∫ L

0

1

K(x)
dx
)
,

from which it follows that the correct way to upscale K is to use the harmonic
average

K∗ =
( 1

L

∫ L

0

1

K(x)
dx
)−1

. (10.10)

This result is generally valid only in one dimension, but also applies to the
special case of a perfectly stratified isotropic medium with layers perpendic-
ular to the direction of pressure drop as illustrated in Figure 10.2. It is a
straightforward exercise to extend the analysis above to prove that harmonic
averaging is the correct upscaling in this case. (If you are familiar with Ohm’s
law in electricity, you probably realize that this setup is similar to that of
resistors set in parallel.)

Computing the harmonic average of a permeability field is straightforward
in MRST:

vol = G.cells.volumes;
for i=1:size(rock.perm,2)

crock.perm(:,i) = accumarray(q,vol) ./ ...
accumarray(q,vol./rock.perm(:,i))

end
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Fig. 10.3. Example of a perfectly stratified isotropic medium with layers parallel
to the direction of the pressure drop, for which arithmetic averaging is the correct
way to upscale absolute permeability.

where we, as in the previous section, have assumed that q is a partition vector
that describes the coarse grid.

Another special case is when the layers of a perfectly stratified isotropic
medium are parallel to the pressure drop as shown in Figure 10.3. Since the
permeability is constant along the direction of pressure drop, the pressure will
be linear in the x-direction with p(x, y) = p0 +x(pL−p0)/L. Using (10.6), we
can compute

K∗
∫ H

0

∫ L

0

∂xp(x, y) dx dy = K∗H(pL − p0)

=

∫ H

0

∫ L

0

K(x, y)∂xp(x, y) dx dy =
pL − p0

L

∫ H

0

∫ L

0

K(x, y) dx dy,

from which it follows that the correct upscaling is to use the arithmetic average

K∗ =
1

LH

∫ H

0

∫ L

0

K(x, y) dx dy. (10.11)

These examples show that averaging techniques can give correct upscaling
in special cases, also in three dimensional space. If we now combine these
two examples, we see that we can define the following upscaled permeability
tensors for the isotropic media shown in Figures 10.2 and 10.3,

K∗ =

[
Ax−1(K) 0

0 Ax1(K)

]
and K∗ =

[
Ay1(K) 0

0 Ay−1(K)

]
,

where the superscripts x and y on the averaging operator A from (10.8) sig-
nifies that the operator is only applied in the corresponding spatial direction.
These averaged permeabilities would produce the correct net flow across the
domain when these two models are subject to a pressure differential between
the left and right boundaries or between the top and bottom boundaries. For
other boundary conditions, however, the upscaled permeabilities will generally
give incorrect flow rates.

To try to model flow in more than one direction, also for cases with less
idealized heterogeneous structures modelled by a diagonal fine-scale tensor,
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one can generate a diagonal permeability tensor with the following diagonal
components

K∗ =

Ayz1 (Ax−1(K)) 0 0
0 Axz1 (Ay−1(K)) 0
0 0 Axy1 (Az−1(K))

 .
In other words, we start by computing the harmonic average of each of the di-
agonal permeability components in the corresponding longitudinal direction,
i.e., compute the harmonic average of Kxx along the x direction, and so on.
Then, we compute the arithmetic average in the transverse directions, i.e., in
the y and z directions for Kxx, and so on. This average is sometimes called the
harmonic-arithmetic average and may give reasonable upscaling for layered
reservoirs when the primary direction of flow is along the layers. More impor-
tant, the harmonic-arithmetic average provides a tight lower bound on the
effective permeability whereas the opposite method, the arithmetic-harmonic
average, provides a tight upper bound.

While it is not obvious how to compute the harmonic-arithmetic average
for a general unstructured grid, it is almost straightforward to use MRST to
this end for rectilinear and corner-point grids. For brevity, we only show the
details for the case when the grid has been partitioned uniformly in index
space:

q = partitionUI(G, coarse);
vol = G.cells.volumes;
for i=1:size(rock.perm,2)

dims = G.cartDims; dims(i)=coarse(i);
qq = partitionUI(G, dims);
K = accumarray(qq,vol)./accumarray(qq,vol./rock.perm(:,i));
crock.perm(:,i) = accumarray(q,K(qq).*vol)./accumarray(q,vol);

end

The key idea in the implementation above is that to compute the harmonic
average in one axial direction, we introduce a temporary partition qq that
coincides with the coarse grid in along the given axial direction and with the
original fine grid in the other axial directions. This way, the call to accumarray

has the effect that the harmonic average is computed for one longitudinal
stack of cells at the time inside each coarse block. To compute the arithmetic
average, we simply map the averaged values back onto the fine grid and use
accumarray over the original partition q.

The script averagingExample1 in the book module shows an example of the
averaging methods discussed above. The permeability field is a 45 × 60 sub-
sample of Layer 46 from the fluvial Upper Ness formation in the SPE 10 data
set. In Figure 10.4, we have compared the effective permeabilities on a 15 ×
15 coarse grid computed by arithmetic, harmonic, and harmonic-arithmetic
averaging. From the plots, we see that arithmetic averaging has a tendency to
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Fig. 10.4. Arithmetic, harmonic, and harmonic-arithmetic averaging applied to a
40× 60 subset of Layer 46 from the SPE 10 data set.

preserve high permeability values, harmonic averaging tends to preserve small
permeabilities, while harmonic-arithmetic averaging is somewhere in between.

Although simple averaging techniques like the ones discussed above can
give correct upscaling in special cases, they tend to perform poorly in prac-
tice because the averages do not properly reflect the heterogeneity structures.
Likewise, it is also generally difficult to determine which averaging to use
since what is the best averaging method depends both on the heterogeneity
of the reservoir and the prevailing flow directions. To illustrate this, we con-
sider 8 × 8 × 8 reservoir with three different permeability realizations shown
in Figure 10.5. The three realizations are upscaled to a single coarse block
using arithmetic, harmonic, and harmonic-arithmetic averaging. To assess the
quality of the upscaling, we compare fine-scale and coarse-scale prediction of
net flux across the outflow boundary for three different flow patterns: from
west to east, from south to north, and from bottom to top. Complete source
code for this simulation setup can be found in the script averagingExample2

in the book module.
Table 10.1 reports the ratio between the outflow computed by the coarse

models and the outflow computed on the original fine grid. For the lay-
ered model, arithmetic and harmonic-arithmetic averaging correctly repro-
duces flow in the lateral directions, whereas flow normal to the layers is cor-
rectly reproduced by harmonic and harmonic-arithmetic averaging. For the
two anisotropic models from SPE 10, on the other hand, the flow rates pre-
dicted by the arithmetic and harmonic methods are generally far off. The
combined harmonic-arithmetic method is more accurate, with less than 15%
discrepancy for the Tarbert model and 17–76% discrepancy for the Upper
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Fig. 10.5. Three models used to test the accuracy of averaging techniques. From
left to right: a layered model and two subsets from the Tarbert and the Upper Ness
formation, respectively, from the SPE 10 data set.

Table 10.1. Ratio between flow rate predicted by upscaled and fine-scale models for
three different permeability fields, three flow scenarios, and three upscaling methods.

Model Flow pattern Arithmetic Harmonic Harm-arith

Layered East→West 1.0000 0.2662 1.0000
North→South 1.0000 0.2662 1.0000

Top→Bottom 3.7573 1.0000 1.0000

Tarbert East→West 1.6591 0.0246 0.8520
North→South 1.6337 0.0243 0.8525

Top→Bottom 47428.0684 0.3239 0.8588

Upper Ness East→West 3.4060 0.0009 0.8303
North→South 1.9537 0.0005 0.7128

Top→Bottom 6776.8493 0.0020 0.3400

Ness model. Whether this can be considered an acceptable result will depend
on the what purpose the simulation is to be used for.

Computer exercises:

64. Set up a set of flow simulations with different boundary conditions and/or
well patterns to test the accuracy of the three effective permeability fields
computed in averagingExample1.

65. Implement harmonic-arithmetic averaging for the SAIGUP model. (Hint:
the script cpGridHarmonic in the upscaling module computes harmonic
averaging for the SAIGUP model).

66. Implement the operator Ap in (10.8) as a new utility function.

Page: 283 job: mrst-book macro: svmono.cls date/time: 16-Dec-2015/16:31



284 10 Upscaling Petrophysical Properties

10.3.2 Flow-based upscaling

In our argumentation above, we repeatedly used the simple flow problems to
argue whether a particular averaging method was good or not. Taking this
idea one step further, we could impose representative boundary conditions
along the perimeter of each coarse block and solve the flow problem (10.5)
numerically to determine fine-scale pressures and flow rates and use these to
define net flow rates and average pressure gradients, which can be inverted to
determine effective coarse-scale permeabilities from Darcy’s law. That is, once
p and v have been computed, we use the same type of argument as we used
to determine the formulas for the harmonic and arithmetic averages, except
that we now work with discreetly defined pressures and fluxes. This raises the
immediate question: what kind of boundary conditions should we use?

A number of different boundary conditions have been suggested over the
years. One obvious alternative is to use three different sets of boundary condi-
tions for each block to create a pressure drop across the coarse cell in each of
the three axial directions in the same way as for the computations reported in
Table 10.1 above; see Figure 10.6. By specifying sealing boundary conditions
along the other boundaries, we ensure that the effective flow over the block
follows the same axial direction as the pressure drop. This setup emulates how
permeability is measured on core samples in the laboratory and provides us
with three pairs of flow rates in 3D that can be used to compute an upscaled
permeability tensor with diagonal elements

Kxx = −vxLx
∆px

, Kyy = −vyLy
∆py

, Kzz = −vzLz
∆pz

,

where vx is the net flux, Lx is the characteristic length of the block, and ∆px
is the pressure drop inside the block in the x-direction. With this method, the
off-diagonal elements will always be zero by construction. Strictly speaking,
the assumption of sealing boundaries is only valid in the idealized case when

Fig. 10.6. Illustration of a simple flow-based upscaling method, solving −∇ ·
(K∇p) = 0, with p = 1 and p = 0 prescribed along the inflow and outflow boundaries
respectively, and no-flow boundary conditions elsewhere.
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the permeability field is symmetric with respect to the faces of the coarse grid,
i.e., if the coarse block is surrounded by mirror images of itself, and it can
be shown that this method tends to introduce an upscaling bias towards low
permeability values by thickening shale barriers and narrowing sand channels
[98, 100].

Unless the grid block is located next to a sealing fault or an impermeable
layer, it therefore more natural to assume that the block has open boundaries
so that a pressure differential applied along one of the axial directions will
induce a net flow also in transverse directions. This means that the effective
permeability will be a full tensor. One method to emulate open boundaries is
to prescribe a constant pressure on faces perpendicular to each flow direction
and linear pressure drop along the sides that are parallel to the flow direction
[74, 166] so that the flow can leave or enter these sides. As for the sealing
boundary, a unit pressure drop is applied in each of the axial directions. Use
of linear boundary conditions is only strictly valid if the heterogeneous coarse
block is embedded inside a homogeneous medium and tends to produce per-
meabilities with a bias towards high values [59].

Another popular option is to prescribe periodic boundary conditions [59],
assuming that the grid block is sampled from a periodic medium so that
the fluxes in and out of opposite boundaries will be equal. In other words,
to compute the x-component of the permeability, we impose the following
conditions

p(Lx, y, z) = p(0, y, z)−∆p, v(Lx, y, z) = v(0, y, z),

p(x, Ly, z) = p(x, 0, z), v(x, Ly, z) = v(x, 0, z),

p(x, y, Lz) = p(x, y, 0), v(x, y, Lz) = v(x, y, 0).

(10.12)

and similarly for the other axial directions. This approach gives a symmetric
and positive definite tensor and is usually more robust than specifying sealing
boundaries. Using periodic boundaries tends to give permeabilities that lie
in between the lower and upper bounds computed using sealing and linear
boundaries, respectively.

Let us see how two of these methods can be implemented in MRST
for a rectilinear or corner-point grid. For simplicity, we assume that the d-
dimensional domain to be upscaled is rectangular and represented by grid
G and rock structure rock. We start by setting up structures representing
boundary conditions,

bcsides = {'XMin', 'XMax'; 'YMin', 'YMax'; 'ZMin', 'ZMax'};
for j = 1:d;

bcl{j} = pside([], G, bcsides{j, 1}, 0);
bcr{j} = pside([], G, bcsides{j, 2}, 0);

end
Dp = {4*barsa, 0};
L = max(G.faces.centroids)−min(G.faces.centroids);
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The first structure, bcsides, just contains name tags to locale the correct pair
of boundary faces for each flow problem. The bcl and bcr structures are used
to store a template of all the boundary conditions that will be used. While
this is not needed in order to implement the pressure-drop method, they will
come in handy when setting up the periodic boundary conditions. Finally, Dp
and L contain the prescribed pressure drop and the characteristic length in
each axial direction. With the data structures in place, the loop that does the
upscaling for the pressure-drop method is quite simple

for i=1:d
bc = addBC([], bcl{i}.face, 'pressure' , Dp{1});
bc = addBC(bc, bcr{i}.face, 'pressure', Dp{2});
xr = incompTPFA(initResSol(G, 100*barsa, 1), G, hT, fluid, 'bc', bc);
v(i) = sum(xr.flux(bcr{i}.face)) / sum(G.faces.areas(bcr{i}.face));
dp(i) = Dp{1}/L(i);

end
K = convertTo(v./dp, milli*darcy);

That is, we loop over the axial directions and for each direction we: (i) specify
a pressure from left to right, (ii) compute pressures and fluxes by solving the
resulting Poisson problem, and (iii) compute average velocity v across the out-
flow boundary and the average pressure drop d. Finally, we can compute the
effective permeability by inverting Darcy’s law. The implementation described
above is a key algorithmic component in steady-state upscaling of relative per-
meabilities for multiphase flow and is therefore offered as a separate utility
function upscalePermeabilityFixed in the upscaling module.

The case with periodic boundary conditions is slightly more involved. We
start by calling a routine that modifies the grid structure so that it represents
a periodic domain.

[Gp, bcp] = makePeriodicGridMulti3d(G, bcl, bcr, Dp);
for j=1:d, ofaces{j} = bcp.face(bcp.tags==j); end

Technically, the grid is extended with a set of additional faces that connect
cells on opposite boundaries of the domain. The routine also sets up an ap-
propriate structure for representing periodic boundary conditions, which we
use to extract the faces across which we will later compute outflow. You can
find details of how the periodic grid is constructed in the source code. With
the modified grid in place, the loop for computing local flow solutions reads

dp = Dp{1}*eye(d); nbcp = bcp;
for i=1:d

for j=1:d, nbcp.value(bcp.tags==j)=dp(j,i); end
xr = incompTPFA(initResSol(Gp, 100*barsa, 1), Gp, hT, fluid, 'bcp', nbcp);
for j=1:d

v(j,i) = sum(xr.flux(ofaces{j})) / sum(Gp.faces.areas(ofaces{j}));
end

end
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Fig. 10.7. Upscaling two isotropic permeability fields using flow-based upscaling
with sealing boundaries (s) or periodic boundary conditions (p).

Inside the loop over all axial directions, the first for-loop extracts the correct
pressure drop to be included in the periodic boundary conditions from the
diagonal matrix dp; that is, a pressure drop along the current axial direction
and zero pressure drop in the other directions. Then, we solve the flow problem
and compute the average velocity across the outflow boundaries. Notice that
because of the periodic conditions, we may have outflow also in the boundaries
that have no associated pressure drop, which is why we may get a full-tensor
permeability. Outside the loop, we compute the average pressure drop in each
axial direction and invert Darcy’s law to compute the permeability tensor

dp = bsxfun(@rdivide, dp, L);
K = convertTo(v/dp, milli*darcy)

The implementation described above is offered as a utility function called
upscalePermeabilityPeriodic in the upscaling module. Linear boundaries are
not supported in MRST, but can be implemented by combining elements
from the two cases discussed above: using the function pside to set a pressure
distribution on the boundaries parallel to the flow direction and solving a
small linear system to compute the components of the effective permeability.

Whereas setting up the necessary flow problems is relatively simple when
the grid corresponds to just one coarse block, it is a bit more involved to
do this upscaling efficiently for many blocks at a time. In the upscaling,
we therefore offer a utility function upscalePerm that computes permeability
upscaling using the pressure-drop method.

Let us test the methods on a different permeability fields. Figure 10.7 shows
two examples of upscaling using flow-based upscaling with sealing boundaries
and periodic boundary conditions. For the case to the right, the correlation in
the permeability field is along the y-direction, and both methods compute the
same diagonal upscaled tensor. If we rotate the grid so that the correlation
direction is along the diagonal, using pressure drop along the axial directions
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Fig. 10.8. Three models used to test the accuracy of averaging techniques. From
left to right: an isotropic model with dipping layers and two subsets from the Tarbert
and the Upper Ness formation, respectively, from the SPE 10 data set.

Table 10.2. Ratio between flow rate predicted by upscaled and fine-scale models for
three different permeability fields, three flow scenarios, and three upscaling methods.

Model Flow pattern Harm-arith Sealing Periodic

Layered East→West 0.78407 1.00000 1.02594
North→South 0.49974 1.00000 1.00000
corner→Corner 1.04273 1.30565 1.34228

Tarbert East→West 0.86756 1.00000 0.56111
North→South 0.89298 1.00000 0.53880

Corner→Corner 0.00003 0.00027 39.11923

Upper Ness East→West 0.83026 1.00000 0.40197
North→South 0.71283 1.00000 0.28081

Corner→Corner 0.09546 0.62377 2183.26643

with sealing boundaries still gives a diagonal tensor, whereas the periodic
boundary conditions gives a full tensor. By computing the eigenvalue decom-
position of this tensor, we find that the upscaled tensor is diagonal with values
15 and 19.5 if we rotate the axial directions 45 degrees clockwise. Full source
code for this example can be found in the permeabilityExample1 script.

Let us also repeat the experiment from Table 10.1 on page 283. However,
since both flow-based methods will correctly reproduce flow along or orthogo-
nal to layered media by design, we replace the layered permeability field with
one having a dipping layering. Moreover, we replace the top-to-bottom pres-
sure drop by a pressure drop between diagonally opposite corners as well as
changing the sampling points from the SPE 10 model. Figure10.8 shows the
new permeability fields and Table 10.2 reports the results of the experiment.
Whereas the method with sealing boundary conditions is exact by design for
the first two flow fields, it gives incorrect flow rates for the diagonal flow, in
particular for the Tarbert subsample. With periodic boundary conditions, we
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get the exact flux when the flow direction follows regions of constant perme-
ability from the north to the south side for the isotropic case. For the other
two flow patterns, the flow directions cross dipping layers and we thus get
minor deviations in the lateral direction and somewhat larger deviation for
the diagonal flow. For the anisotropic subsamples, the periodic conditions gen-
erally give less accurate results than the other two methods, except for the
diagonal flow on the Tarbert case.

Computer exercises:

67. The models in the BedModels1 and BedModel2 are examples of fine-scale
rock models that are developed to for use in a workflow that propagates
petrophysical properties from the core scale to the reservoir scale. Use the
methods presented above to upscale the absolute permeability in these
models.

68. Implement a method for upscaling with linear boundary conditions.
69. Estimates computed by the averaging and flow based methods have a cer-

tain ordering, from low to high values: harmonic, harmonic-arithmetic,
sealing boundaries, periodic boundaries, linear boundaries, arithmetic-
harmonic, and arithmetic. Make a small test suite of heterogeneity per-
meability fields and verify this claim.

10.4 Upscaling transmissibility

In the discrete case, the choice of an appropriate upscaling method depends on
the numerical stencil used for the spatial discretization. In previous chapters
we have seen that the two-point finite-volume method is the method of choice
in reservoir simulation. When using this method, grid-block permeabilities are
only needed to compute transmissibilities between neighboring coarse blocks.
It would therefore be more convenient if we instead of computing an effec-
tive permeability tensor associated with each coarse block could compute the
coarse transmissibilities associated with the interface between pairs of neigh-
boring coarse blocks directly. These transmissibilities should be defined so that
they reproduce fine-scale flow fields in an averaged sense. That is, instead of
upscaled block-homogenized tensors K∗, we seek block transmissibilities T ∗ij
satisfying

vij = T ∗ij

(
1

|Ωi|

∫
Ωi

p d~x− 1

|Ωj |

∫
Ωj

p d~x

)
, (10.13)

where vij = −
∫
Γij

(K∇p) · ~n dν is the total Darcy flux across Γij .

The upscaled transmissibilities T ∗ij can be computed in much the same
way as we used to compute upscaled permeabilities above, see Figure 10.9.
Here, we use a pressure drop to drive a flow across the interface Γij between
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Ωi Ωj

Fig. 10.9. Illustration of flow-based upscaling of transmissibility.

two coarse blocks Ωi and Ωj . Thus, by solving (10.5) in the two-block domain
Ωi ∪Ωj subject to suitable boundary conditions, we can compute the average
pressures Pi and Pj in Ωi and Ωj and then obtain T ∗ij directly from the formula

vij = T ∗ij(Pi − Pj). (10.14)

Let us see how this upscaling can be implemented in MRST. That is, we
discuss how to upscale the transmissibility associated with a single interface
between two grid blocks. To this end, let us assume that we have a fine grid
G and a coarse partition vector q that subdivides the grid into two coarse
blocks in the x-direction. We start by constructing a coarse-grid structure, as
introduced in Section 5.2,

CG = generateCoarseGrid(G, q);
CG = coarsenGeometry(CG);

Using the data members in this structure, we can find all faces in the fine grid
that lie on the interface between the coarse blocks as well as determining the
correct sign to apply to the coarse-scale flux

i = find(~any(CG.faces.neighbors==0,2));
faces = CG.faces.fconn(CG.faces.connPos(i):CG.faces.connPos(i+1)−1);
sgn = 2*(CG.faces.neighbors(i, 1) == 1) − 1;

As we have seen above, there are different ways we can set up a localized
flow problem that will give a flux across the interface between the two blocks.
Assuming that the coarse interface will be more or less orthogonal to the x-
axis, we use a pressure drop in this direction and no-flow boundary conditions
on the other sides as shown in Figure 10.9:

bc = pside([], G, 'XMin', Dp(1));
bc = pside(bc, G, 'XMax', Dp(2));
xr = incompTPFA(initResSol(G, 100*barsa, 1), G, hT, fluid, 'bc', bc);
flux = sgn * sum(xr.flux(faces));
mu = fluid.properties();

All that now remains is to compute pressure values Pi and Pj associated
with each coarse block before we can use (10.14) to compute the effective
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Fig. 10.10. Upscaled transmissibility computed on a series of two-block configura-
tions using either centroid values or averaged values for the block pressures. Black
dots show the location of the block centroids from which pressure values are sampled.

transmissibility Following (10.13), Pi and Pj should be defined as the average
pressure inside each block

P = accumarray(q,xr.pressure)./accumarray(q,1);
T = mu*flux/(P(1) − P(2));

Here, we have assumed that all grid cells have the same size. If not, we need
to weight the pressure average by cell volumes. As an alternative, we could
also have used the pressure value at the block centroids, which generally will
give a (slightly) different transmissibility

cells = findEnclosingCell(G,CG.cells.centroids);
P = xr.pressure(cells);

In Figure 10.10 we have used the code above to compute the transmissibil-
ity between two coarse blocks that cover a rectangular domain [0, 200]×[0, 100]
m2. We gradually rotate the interface between the two coarse blocks so that
it goes from vertical towards being horizontal. Complete source code for the
example is found in the script transmissibilityExample1 in the book module.
For the first four pairs of coarse blocks shown in Figure 10.10, there is only a
slight difference between the transmissibilities computed using pressure val-
ues defined as block averages and pressures defined by sampling at the block
centroids. The transmissibilities start to deviate as the block interface ap-
proaches the diagonal. On the other hand, whereas a pressure drop along the
x-axis is a reasonable drive mechanism for the first block pairs, it is highly
questionable for the last two block pairs. Let us, for instance, consider block
pair number seven. If we instead apply the pressure drop along the y-axis to
create a flow that is more perpendicular to the coarse interface, the trans-
missibility computed with block-averaged pressures changes from 2.0e-14 to
8.1e-14, whereas with a pressure drop along both axial directions the value is
8.9e-14. (The latter setup is generally not well-posed as it will have singulari-
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ties at the south-east and north-west corners). Depending upon what type of
flow conditions the block pair will be subject to in subsequent simulations, it
might be better to set a pressure drop orthogonal to the coarse-block interface
or use one of the oversampling methods that will be introduced in the next
section.

An important property of the upscaled transmissibilities T ∗ij is that they
all should be positive across all interfaces that can transmit fluids since this
will ensure that the TPFA scheme defined by∑

j

T ∗ij(pi − pj) = qi,

will reproduce the net grid block pressures p` = 1
|Ω`|

∫
Ω`
p d~x, and hence also

the coarse fluxes vij . Unfortunately, there is no guarantee that the transmis-
sibilities defined by (10.13) are positive, e.g., if the blocks are such that the
chord between the cell centroids does not cross the coarse interface. However,
negative transmissibilities may also occur for regular block shapes if the per-
meability is sufficiently heterogeneous (e.g., as in the SPE 10 model). Even
worse, unique transmissibility values may not even exist, since the upscaling
problem generally is not well-posed, see [189] for a more thorough discussion
of existence and uniqueness. To guarantee that the resulting coarse-scale dis-
cretization is stable, one should ensure that the T ∗ij values are positive. A
typical trick-of-the-trade is to set Tij = max(Tij , 0), or in other words, just
ignore ill-formed connection between neighboring grid blocks. This is gener-
ally not a satisfactory solution, and one should therefore either try to change
the grid, use different pressure points to define the transmissibility, or apply
some kind of fall-back strategy that changes the upscaling method locally.

The upscaling module does not contain any simple implementation of
transmissibility upscaling like the one outlined above. Instead, the module
offers a routine, upscaleTrans, that is designed for the general case where
both the coarse and the fine grids can be fully unstructured and have faces
that do the align with the axial direction. To provide robust upscaling for a
wide range of geological models, the routine relies on a more comprehensive
approach that will be outlined briefly in the next section and also has fallback
strategies to reduce the number of negative permeabilities.

10.5 Global and local-global upscaling

The methods described so far in this chapter have all be local in nature.
Averaging methods derive upscaled quantities solely from the local hetero-
geneous structures, whereas flow-based methods try to account for flow re-
sponses by solving local flow problems with prescribed boundary conditions.
These boundary conditions are the main factor that limits the accuracy of
flow-based methods. In Table 10.2 on page 288, we saw how the neither of
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Fig. 10.11. Illustration of oversampling techniques for upscaling. The size of the
grid block is exaggerated in the right plot.

the local methods were able to accurately capture the correct net flow for the
anisotropic Tarbert and Upper Ness samples with boundary conditions giving
diagonal flow. The main problem for flow-based techniques is, of course, that
we do no know a priori the precise flow that will occur in a given region of the
reservoir during a subsequent simulation. Thus, it is generally not possible to
specify the appropriate boundary conditions for the local flow problems in a
unique manner unless we already have solved the flow problem.

Improved accuracy can be obtained if you use a so-called oversampling
technique which is sometimes referred to as an overlapping method. In over-
sampling methods, the domain of the local flow problem is enlarged with a
border region that surrounds each grid block and boundary conditions, or
other mechanisms for driving flow like wells or source terms, are specified
in the region outside the domain you wish to upscale. The flow problem is
then solved in the whole enlarged region, but the effective permeability ten-
sor is only computed inside the original coarse block. This way, you lessen
the impact of the localization assumption and the particular mechanism used
to drive flow, and the flow across the boundaries of the coarse block is to a
larger extent determined by the local heterogeneity surrounding the block.
The motivation for using an oversampling technique is to better account for
permeability trends that are not aligned with the grid directions and possible
large-scale connectivity in the permeability fields.

To also account for global flow patterns, one can solve the pressure equa-
tion one time, or a few times, on the full geological model and sample fluxes
from the global flow field and impose them as boundary conditions on the local
flow problem used to upscale permeabilities or transmissibilities. In these so-
called global upscaling methods, the pressure solution can either be computed
using representative and specific drive mechanisms or the pressure solution
can be computed using a set of generic conditions that e.g., flow the reservoir
from east to west, north to south, and so on. From a computational point
of view, this approach may seem to contradict the purpose of upscaling, but
can be justified for numerical simulation of compressible and/or multiphase
flow. Indeed, for such transient flows the pressure equation has to be solved
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multiple times throughout the simulation, and the cost of solving the global
pressure equation once (or even a few times) on a fine grid will in many cases
be small compared with the cost of

Computing a global pressure solution can be avoided if one uses a so-called
local-global method [41, 42, 73]. In these methods, pressure solutions obtained
by solving global flow problems on a coarse grid are used to set boundary con-
ditions for local flow problems that determine the upscaled transmissibilities.
Since the initial coarse-grid computation may give quite poor boundary condi-
tions for the local flow problems, these methods use a iterative bootstrapping
procedure to gradually ensure consistency between the local and the global
calculations.

Global and local-global upscaling methods may suffer from negative or
anomalously large transmissibility values. To avoid these, Holden and Nielsen
[84], who were among the first to study global upscaling methods, proposed
an iterative process involving the solution of an optimization problem, that
gradually perturbs the transmissibilities until they fall within a prescribed
interval. A similar technique that avoids the solution the fine-grid problem
was presented in [144]. Chen and Durlofsky [41] observed that unphysical
transmissibilities occur mainly in low-flow regions. Therefore, instead of using
an optimization procedure that alters all transmissibilities in the reservoir,
they proposed to use a thresholding procedure in which negative and very
large transmissibilities are replaced by transmissibilities computed by a local
method. Because the transmissibilities are altered only in low-flow regions, the
perturbation will have limited impact on the total flow through the reservoir.

The script upscaleTrans offers various implementations of global transmis-
sibility upscaling using either specific or generic mechanisms to drive flow in
the full reservoir model. Whereas the generic approach enables you to tailor-
make the coarse-scale model for a particular simulation setup, the generic
approach will give you a more robust upscaling that is less accurate for a spe-
cific simulation setup, but need not be recomputed if you later wish to simu-
late setups with significant changes in the well pattern, aquifer support, and
other factors that affect the global flow patterns in the reservoir. Local-global
methods, however, are not yet supported in MRST. Instead, the software
offers various multiscale methods [63]—including multiscale mixed finite ele-
ments [5, 152], multiscale finite volumes [130, 133], and multiscale restriction-
smoothed basis [134, 135]—offering an alternative approach in which the im-
pact of fine-scale heterogeneity is included more directly into coarse-scale flow
equations.

Computer exercises:

70. Extend the computations reported in Table 10.2 to include oversampling
methods. Does this improve the accuracy of the two flow-based methods?
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71. Implement a function that performs generic global upscaling for uniform
partitions of rectilinear and curvilinear grids. To drive the global flow pat-
tern, you can use a pressure drop in each of the axial directions. How would
you extend your method to more general grids an partitions?

72. Extend the upscaling module to include local-global upscaling methods.

10.6 Upscaling examples

In this section we will go through two examples where the methods discussed
above are used to upscale full reservoir models. In doing so, we will also
introduce you to a simple form of flow diagnostics [168, 137] that can be used
to assess the accuracy of a single-phase upscaling.

10.6.1 Flow diagnostics quality measure

As we have mentioned several times already, a challenging problem with up-
scaling is to predict upfront whether the upscaling will be accurate or not.
To partially answer this question and give an indication of the quality of the
upscaling, we suggest to compare the cumulative well-allocation factors com-
puted using the fine-scale and the upscaled models. As shown in Section 9.1.3
on page 244, a well-allocation factor is the percentage of the flux in or out
of a completion that can be attributed to a pair of injection and production
wells.

To compute these factors, we need to first compute a global, single-phase
pressure solution for the specific well pattern we want to investigate. We
then use the resulting flow field to compute numerical tracer partitions as
discussed in Sections 6.3.4 and 7.3 that can subsequently be used to subdivide
the reservoir volume into subvolumes associated with pairs of injection and
production wells as discussed in Section 9.1. Global methods tend to compute
at least one fine-scale pressure solution as part of the upscaling procedure, but
if a global solution is not available for the specific well pattern, it is generally
not very expensive to compute compared with the cost of the flow-based
upscaling procedure. The same goes for the computation of a coarse-scale
flow field and tracer distributions on the fine and the upscaled model.

To improve the predictive power of well-allocation factors, we may have to
subdivide each well into two or more segments that each consist of a connected
set of completion cells. This way, we can measure the communcation between
different parts of the wells, which is particularly important if the model to
be upscaled includes layers or geological objects with significantly different
permeabilities.
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Fig. 10.12. Porosity distribution in a model with two different rock types before
and after upscaling.

10.6.2 Model with two rock types

We start by considering a small rectangular model that contains two facies
with contrasting petrophysical properties. An injector and a producer are
placed diagonally opposite each other and completed mainly in the high-
permeable parts of the model. Both wells operate at a fixed rate that amounts
to the injection/production of 0.2 pore volumes per year, and to avoid po-
tential problems with cross-flow, gravity forces are neglected. The fine grid
consists of 40× 20× 15 cells, which we seek to upscale to a coarse 5× 5× 15
model. That is, we upscale by a factor 8× 4 in the lateral direction and leave
the vertical layers in an attempt to preserve the vertical communication in the
model as accurately as possible. To this end, we use the upscalePerm function,
which upscales permeability using the flow-based method from Section 10.3.2
with sealing boundary conditions. Figure 10.12 shows the porosities of the fine
and the coarse model. Complete source code for this example can be found in
the script upscalingExample1 of the book module.

To get an indication of the accuracy of this upscaling, we will look at
the cumulative well-allocation factors introduced above. For this particular
model, we have only one producer and one injector, and to better measure
the communication within the reservoir, we subdivide each well into two seg-
ments, an upper and a lower segments, so that we altogether will have four
well-pairs whose well-allocation factors can be used to verify the quality of
the upscaling. The 3D plots in Figure 10.13 show the injection and tracer
partitions defined as regions with tracer concentration larger than 0.5. The
resulting well-allocation factors are shown in Figure 10.14. For each well seg-
ment, we plot a bar chart of the cumulative flux in/out of the completions
that make up the segment, from bottom to top. In the plots, each well seg-
ment is assigned the same unique color that was used in Figure 10.13 and
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Fig. 10.13. Volumetric subdivision into injector-producer pairs by majority vote.
The left plot shows the regions flooded by the upper and lower parts of the injector
shown in blue and cyan, respectively. The right plot shows the drainage regions of
the upper and lower half or the producer shown in yellow and red, respectively. In
both plots, each cell is assigned to the completion that has the highest concentration
value.
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Fig. 10.14. Normalized cumulative well-allocation factors for the four well comple-
tions in the two-facies model. The color bars show well-allocation factors computed
on a coarse model upscaled using upscalePerm, while the black lines show the same
factors computed on the original model. The colored bars and the black lines should
coincide if the upscaled model reproduces the flux allocation correctly.

each bar is subdivided into the fraction of the total in/outflux that belongs
to the different well-pairs the segment is part of.

The bar charts at the top of Figure 10.14 show the allocation factors
computed by the upscaled model for the upper half of the injector (I:1, upper-
left plot), the lower part of the injector (I:2, upper-right plot), the upper part
of the producer (P:1, lower-left plot), and the lower part of the producer (P:2,
lower-right plot). The solid lines denote the same quantities computed for the
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fine-scale model. The closer the color bars and the solid lines are, the better
is the upscaling.

To explain how this type of flow diagnostics should be interpreted, let us
look at the lower-left bar chart, which reports the allocation factors or the
upper-half of the injector (P:1, yellow color). Here, the blue color signifies the
flux that can be attributed to I:1, i.e., the upper-half of the injector, while
the cyan color signifies the flux that can be attributed to I:2. Because the
colored bars are mostly blue, the inflow into the upper half of the injector is
predominantly associated with the I:1–P:1 pair. In other words, P:1 is mainly
supported by the upper half of the injector and hardly in contact with the
lower part. This trend is confirmed by looking at the upper-right bar chart,
which shows that the inflow in the lower half of the injector mainly contributes
to production in the lower part of the injector. The flooded volumes shown to
the left in Figure 10.13 confirm that fluid injected from I:2 will mainly sweep
the volume surrounding the lower of I:2. Similarly, the drainage regions in
the plot to the right show that the drainage region of P:1 only engulfs the
upper parts of I:1. The flooded regions of I:2, on the other hand, engulfs
both P:2 and the lower parts of P:1, and hence the segment of the well will
contribute flux to both segments of the producer, as shown in the upper-left
chart of Figure 10.14. Likewise, the drainage region from P:2 engulfs both I:2

and the lower part of I:1 and hence is supported by flux from both the injector
segments, as shown in the lower-right chart of Figure 10.14.

So, what does the flow diagnostics tell us about our upscaled model? First
of all, the upscaling does obviously not fully reproduce the volumetric con-
nections of the fine-scale model. Looking at well-allocation factors for the
producers in the bottom row of Figure 10.14, we see that the upscaled model
predicts too much flux in the upper segment (P:1, yellow color, left chart) since
the colorbars exceed the solid lines at the top. Likewise, in the lower segment
of the producer (P:2, red color, right chart), we get too low flux. Altogether,
the allocation factors seem to suggest that the main problems are that the
upscaled model misses some of the vertical communication and exaggerates
the connection between I:1 and P:1. We could obviously have used a single
number to measure the overall discrepancy in flux allocation, but in our opin-
ion you will benefit more from a graphical presentation like this as it may
help you to identify the cause of the mismatch between the upscaled and the
original model.

To develop a better coarse model, we can upscale transmissibilities and
well indices using a global method. For a given flow scenario, like the one
above with fixed well positions and constant well controls, one can determine
a set of transmissibilities and well indices that will reproduce a single pressure
step exactly. This may seem desirable, but has the disadvantage that the
linear system becomes negative definite, which in turn may lead to unphysical
solutions away from the scenario used for upscaling. To span a reasonable set
of global flow directions, we will instead use generic boundary conditions that
pressurize the reservoir from east to west, from north to south, and from top
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to bottom. There are several different ways these three global flow fields can
be combined to compute a transmissibility values for each coarse face, see e.g.,
[96]. Here, we use a simple strategy suggested by [105], in which we pick the
one among the three flow field that gives the largest flux across a given coarse
face and insert this into (10.14) to compute the transmissibility associated
with this face. A rationale for this choice is that the accuracy of the coarse
model is most sensitive to the choice of transmissibilities in high-flow regions.

The well indices are upscaled using the following formula (see (6.27) on
page 162)

J∗i = Qi/(Pi − pw) (10.15)

where Qi is the sum over rates of all the perforations inside block i, Pi is
the average block pressure, and pw is the pressure inside the well. To obtain
representative flow fields, we solve nw− 1 pressure equations, where nw is the
number of wells. Each solution is computed by setting a positive pressure in
one well and zero pressure in all the other wells. To combine the flow fields,
we can either use the same strategy as for the transmissibilities and pick the
solution that gives the largest well rate, or as we will do in the current example,
add all well rates and divide by the sum of the corresponding pressure drops.

The approach outlined above has been implemented in the function
upscaleTrans. Unfortunately, there is no guarantee that the upscaled transmis-
sibilities are not negative. To avoid creating an ill-conditioned discretization
matrix, we therefore set all negative transmissibilities to zero, thereby blocking
the corresponding coarse face for flow. This is in our experience an accept-
able solution as long as the upscaled transmissibilities are only intended for a
specific scenario, like herein, since negative transmissibilities tend to appear
because flow is tangential to the coarse interface or as a result of numerical
noise in regions with very low flow. If your upscaling, on the other hand, aims
to serve a more general purpose with varying well patterns and/or boundary
conditions, you would need to implement a more sophisticated strategy that
falls back to a local flow-based method, an averaging method, or a combination
of these.

Figure 10.15 shows the resulting match in well-allocation factors, which is
significantly better than when using a simple permeability upscaling. In part,
this is a result of improved transmissibilities, and in part because we now have
upscaled the well indices.

10.6.3 SPE10 with six wells

You have already encountered Model 2 from the 10th SPE Comparative So-
lution Project multiple times throughout the book. Because of its simple grid
and strong heterogeneity and the fact that it is freely available online, this
data set has become a community benchmark that is used for many different
purposes. The original aim of the project was to “compare upgridding and
upscaling approaches and the ability to predict performance of a waterflood
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Fig. 10.15. Normalized cumulative well-allocation factors for the four well comple-
tions in the two-facies model. The color bars show well-allocation factors computed
on a coarse model upscaled using upscaleTrans, while the black lines show the same
factors computed on the original model.

through a million cell geological model”, and in [49] you can read about the
relative merits of the various methods used in the upscaling studies that that
were submitted to the project by August 2000. In short, the study showed
that the data set is generally very difficult to upscale accurately using single-
phase methods and that the best results are generally obtained by methods
that also account for multiphase effects. Later, however, quite good results
have been obtained using local-global and multiscale methods, see e.g., [2].

In this example, we will compare the ability of four different upscaling
methods to accurately predict single-phase flow. That is, we consider two av-
eraging methods (harmonic and harmonic-arithmetic) and a local flow-based
upscaling with sealing boundary conditions for upscaling permeability, and
the global upscaling method discussed at the end of the previous example for
upscaling transmissibilities and well indices. (However, unlike in the previous
example, we use maximum flow rate to determine both transmissibilities and
well indices). Full source code can be found in the script upscalingExample2.

We start by considering the Tarbert formation, which can be found in the
upper 35 layers of model. To upscale this Cartesian grid model, we choose a
coarsening factor of 10×10×3, and to get an even number of cell layers inside
each grid block, we extend the model slightly by repeating the top layer so
that the fine-scale model altogether has 220×60×36 = 475 200 cells. To get a
slightly more interesting well pattern, we replace the original five-spot pattern
with a pattern consisting of producers in the four corners of the model and
two injectors located near the center of the model, see Figure 10.16. All four
wells operate at a fixed bottom-hole pressure of 200 bar for the producers and
500 bar for the injectors. In Figure 10.17, we verify whether the well-allocation
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rates predict by the four upscaling methods for injector I2 reproduce the fine-
scale results or not. This well has significant communication with all four
producers and hence is more difficult to match than injector I1, which mainly
communicates with P3 and P4.

Harmonic averaging not surprisingly gives well rates that are far from the
fine-scale targets. As explained in Section 10.3.1, the harmonic mean has a bias
against smaller values and tends to underestimate the effective permeability.
Since all wells are controlled by bottom-hole pressure, too low permeability
means too low well rates. If the wells were controlled by total rate, as in the
previous example, the well rates predicted by the harmonic average would have
been more correct, but the predicted pressure build-up around the injector and
the pressure draw-down in the producers would both be too high.

Comparing the local, flow-based method to the harmonic-arithmetic aver-
aging method, we see that the latter is significantly more accurate. By design,
the flow-based method should give accurate prediction of flow along the axial
directions of the grid. Here, however, we have flow that is strongly affected
by heterogeneity and mostly goes in the lateral, diagonal direction and hence
the harmonic-arithmetic method seems to be more suited, in particular if we
consider the computational time of the two methods. In our current implemen-
tation, the flow-based method extracts a subgrid and assembles and inverts
three local matrices for each coarse block. The computational overhead of this
procedure is significant since each new local solve incurs full start-up cost. The
result is that the function upscalePerm has orders of magnitude higher compu-
tational cost than the harmonic-arithmetic averaging, which is implemented
using a few highly efficient calls to accumarray.

Using the global upscaling method, we get almost exact reproduction of
the fine-scale well-allocation factors. The plots may be a bit deceiving because
of the areas where the colorbars extend beyond the solid lines representing
the fine-scale well-allocation. However, bear in mind that the bars and lines
represent cumulative factors, and thus we should only look at the discrepancy
at the top of each colorbar, and if you look closely, you will see that here
the match is excellent. There are two reasons for this: On one hand, using
global flow field will ensure that each upscaling problem has more representa-
tive boundary conditions used for localization and hence can better account
for correlations in the heterogeneity that extend beyond the block. On the
other hand, the global method includes upscaling of well indices that can
have a significant impact on the well rates that determine the flux allocation.
In passing, we also note that although the computational cost of the global
method is significantly lower than that of the local method, primarily since we
here have been able to utilize a highly efficient multigrid solver for the global
flow problems and avoid solving a long sequence of small problems that each
have a large start-up cost.

For completeness, we also include the results of a similar study for the
whole SPE 10 model, see Figure 10.18. this includes the fluvial Upper Ness
formation, which is notoriously difficult to upscale accurately and we also see

Page: 301 job: mrst-book macro: svmono.cls date/time: 16-Dec-2015/16:31



302 10 Upscaling Petrophysical Properties

 

 

P1

 

 

P2

 

 

P3

 

 

P4

 

 

I1

 

 

I2

Fig. 10.16. Model of the Tarbert formation with six wells, two central injectors
and four peripheral producers. The 3D plot shows lateral permeability distribution,
while the bar charts shows normalized cumulative well-allocation factors.
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Fig. 10.17. Well-allocation factors for injector I2 in the Tarbert model computed
on four different coarse models.
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Fig. 10.18. Well-allocation factors for injector I2 in the full SPE 10 model computed
on four different coarse models.

that the harmonic-arithmetic and the global method are no longer as accurate
as for the Tarbert formation. For this 1.1 million grid cell model, an efficient
iterative solver like AGMG is indispensable to be able to compute the fine-
scale solution and perform a global upscaling in MATLAB.

10.6.4 General advice and simple guidelines

Through the various examples in this chapter, we have tried and hopefully
succeeded to convince you that accurate and robust upscaling is a difficult
problem an that there is no single upscaling method that is unequivocally
better than the others. This is one motivation for the tremendous so-called
multiscale methods have received in recent years since these methods offer a
promise of a more systematic and consistent way of bringing the impact of
small-scale heterogeneity variations into simulations on a coarser scale.

What is the best upscaling method for a specific project will depend on
many factors. The most important factor is probably what you intend to
use the upscaled model for. If you are upscaling for a specific scenario, it is
strongly recommended to use a method that employs specific global informa-
tion as this generally will enable you to perform more aggressive coarsening.
If, on the other hand, the upscaled model is to be used to simulate a large
variety of scenarios, or some yet unspecified scenario, you should pick a tech-
nique that is as robust as possible. What this technique is, will depend on
the type of heterogeneity you are facing, the flow patterns that exist in a
reservoir, and so on. For relatively homogeneous reservoirs with flow patterns
that mainly follow the axial directions, a simple averaging technique may be
sufficient, whereas techniques that utilize some kind of global information are
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recommend for highly heterogeneous reservoirs with strong contrasts and large
variations in correlation lengths. Other determining factors include the time
and the computer resources you have available for upscaling, the number of
petrophysical realizations you need to upscale, the required upscaling factor,
etc.

Irregardless of your situation, it is generally recommended that you try
different upscaling and grid coarsening methods. Start by simple averaging
methods that have a low computational cost and can quickly give you a first
estimate of the upscaling uncertainty or more generally the uncertainty in the
petrophysical properties. Check to see if there are features in your model that
need to be resolved by adapting the coarse grid and ensure that you do not
create a coarse grid that will give problems for subsequent flow simulations,
see e.g., the discussion in Section 5.4. Then you can gradually move towards
more sophisticated upscaling methods. For local methods, you should try both
sealing and linear pressure boundaries to provide lower and upper bounds. You
may also need to check the use of oversampling methods to lessen the impact
of boundary conditions used for localization.

At all stages, you should use representative single-phase simulations to
validate your upscaled model against the original fine-scale model. To this
end, we strongly recommend that you use various kinds of flow diagnostics like
the well-allocation factors discussed in the examples above, tracer partitions
that give you the volumetric connections between inflow and outflow, time-
of-flight that gives time lines for displacement fronts, and so on. Herein, we
have computed these quantities using finite-volume discretizations that are
available in MRST, but these flow diagnostic measures can also be computed
using streamline simulation [53], which is generally a very efficient tool for
comparing geomodels and upscaled simulation models. Whether you choose
one or the other, is not that important. What is important, is that you stick to
using single-phase flow physics to avoid mixing in the effect of multiphase flow
parameters like variations in relative permeabilities and capillary pressures,
which need to be upscaled by other means.
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Compressible Flow
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Single-Phase Flow and Rapid Prototyping

In previous chapters we have outlined and explained in detail how to discretize
and solve incompressible flow problems. For multiphase problems we used a
fractional-flow formulation combined with a sequential solution approach in
which flow and transport were computed in consecutive substeps. Sequen-
tial formulations are popular in academia and for research purposes, but are
less used for practical simulation in industry. To the extent simulations are
used in practical reservoir engineering, they are mainly based on compressible
equations discretized by so-called fully-implicit discretizations in which flow
and transport are solved as a coupled system. This approach is very robust
and particularly useful for problems with large variations in time constants
or strong coupling between different types of flow mechanisms.

As a prequel to the discussion of compressible multiphase flow models that
comes later in the book, this chapter will teach you how to discretize the basic
equations for single-phase, compressible flow and explain in detail how you
can use this discretization to develop compact, but yet efficient simulators. To
this end, we will rely heavily on the library for automatic differentiation (AD)
that was briefly introduced Section 2.7 and discrete differential and averaging
operators. As briefly discussed in Section 6.4.2, these discrete operators enable
you to implement discretized flow equations in a form that is compact and
close to their mathematical description, while use of automatic differentiation
ensures that no analytical derivatives have to be programmed explicitly as
long as the discrete flow equations and constitutive relationships are imple-
mented as a sequence of algebraic operations. In MRST, discrete operator and
automatic differentiation is combined with a flexible grid structure, a highly
vectorized and interactive scripting language, and a powerful graphical envi-
ronment. This is in our opinion the main reason why the software has proved
to be a particularly efficient tool for developing new computational methods
and workflow tools. In this chapter, we try to substantiate this claim by show-
ing several examples of rapid prototyping by extending the single-phase model
to include pressure-dependent viscosity, non-Newton fluid behavior, and tem-
perature effects. Complete scripts for all the examples can be found in the
ad−1ph subdirectory of the book module.
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12.1 Implicit discretization

As our basic model, we consider the single-phase continuity equation,

∂

∂t
(φρ) +∇ · (ρ~v) = q, ~v = −K

µ
(∇p− gρ∇z) . (12.1)

The primary unknown is usually the fluid pressure p. Additional equations
are supplied to provide relations between p and the other quantities in the
equation, e.g., by specifying φ = φ(p), an equation-of-state ρ = ρ(p) for the
fluid, and so on; see the discussion in Section 6.2. (Notice that q is defined
slightly differently in (12.1) than in (6.5)).

Using the discrete operators introduced in Section 6.4.2, the basic implicit
discretization of (12.1) reads

(φρ)n+1 − (φρ)n

∆tn
+ div(ρv)n+1 = qn+1, (12.2a)

vn+1 = − K

µn+1

[
grad(pn+1)− gρn+1grad(z)

]
. (12.2b)

Here, φ ∈ Rnc denotes the vector with one porosity value per cell, v is the
vector of fluxes per face, and so on. The superscript refers to discrete times
at which one wishes to compute the unknown reservoir states and ∆t denotes
the distance between two such consecutive points in time.

In many cases of practical interest it is possible to simplify (12.2). For in-
stance, if the fluid is only slightly compressible, several terms can be neglected
so that the nonlinear equation reduces to a linear equation in the unknown
pressure pn+1,

pn+1 − pn

∆tn
− 1

ctµφ
div
(
K grad(pn+1)

)
= qn. (12.3)

However, this is not always possible and for generality we assume that φ and
ρ depend nonlinearly on p so that (12.2) gives rise to a nonlinear system of
equations that needs to be solved in each time step. As we will see later in
this chapter, the viscosity may also depend on pressure, flow velocity, and/or
temperature, which adds further nonlinearity to the system.

In the following, we will mainly work with discretized equations written
in residual form. As an example, the residual form of (12.3) reads

pn+1 − ∆tn

ctµφ
div
(
K grad(pn+1)

)
− pn −∆tnqn = 0.

If we now collect all the discrete equations that make up our model, we can
write the resulting system of nonlinear equations in short vector form as

F (xn+1;xn) = 0, (12.4)
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where xn+1 is the vector of unknown state variables at the next time step and
the vector of current states xn can be seen as a parameter.

Nonlinear systems of discrete equations like (12.4) that arise from the
discretization of partial differential equations are typically solved by Newton’s
method. The main computational cost of solving a nonlinear PDE often lies in
solving the linear systems involved in each Newton iteration. For a discretized
equation on vector form, F (x) = 0, the approximate solution xi+1 in the
(i+ 1)-th iteration is obtained from

∂F (xi)

∂xi
δxi+1 = −F (xi), xi+1 ← xi + δxi+1. (12.5)

Here, J(xi) = ∂F (xi)/∂xi is the Jacobian matrix, while δxi+1 is referred to
as the Newton update at iteration number i + 1. Theoretically, the Newton
process exhibits quadratic convergence under certain smoothness and differen-
tiability requirements on F . Obtaining such convergence in practice, however,
will crucially depend on having a sufficiently accurate Jacobian matrix. Com-
puting the Jacobian matrix can typically be broken down to differentiation
of elementary operations and functions. Nevertheless, if F represents a set of
complex equations, analytical derivation and subsequent coding of the Jaco-
bian can be very time-consuming and prone to errors. Fortunately, computing
Jacobians is a good candidate for automation using automatic differentiation.

The idea of using automatic differentiation to develop reservoir simulators
is not new. This technique was introduced in an early version of the commer-
cial Intersect simulator [55], but has mainly been pioneered through a reim-
plementation of the GPRS research simulator [37]. The new simulator, called
AD-GPRS is primarily based on fully implicit formulations [183, 193, 182] in
which independent variables and residual equations are AD structures imple-
mented using ADETL, a library for forward-mode AD realized by expression
templates in C++ [191, 190]. This way, the Jacobi matrices needed in the
nonlinear Newton-type iterations can be constructed from the derivatives that
are implicitly computed when evaluating the residual equations. In [111], the
authors discuss how to use the alternative backward-mode differentiation to
improve computational efficiency.

12.2 A simulator based on automatic differentiation

We will now present step-by-step how you can use the AD class in MRST
to implement an implicit solver for the compressible, single-phase continuity
equation (12.1). In particular, we revisit the discrete spatial differentiation op-
erators from 6.4.2 and introduce additional discrete averaging operators that
together enable us to write the discretized equations in an abstract residual
form that resembles the semi-continuous form of the implicit discretization
in (12.2). Starting from this residual form, it is relatively simple to obtain a
linearization using automatic differentiation and set up a Newton iteration.
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12.2.1 Model setup and initial state

For simplicity, we consider a homogeneous box-model:

[nx,ny,nz] = deal( 10, 10, 10);
[Lx,Ly,Lz] = deal(200, 200, 50);
G = cartGrid([nx, ny, nz], [Lx, Ly, Lz ]);
G = computeGeometry(G);

rock.perm = repmat(30*milli*darcy, [G.cells.num, 1]);
rock.poro = repmat(0.3 , [G.cells.num, 1]);
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Beyond this point, our implementation is agnostic to details about the grid,
except when we specify well positions on page 345, which would typically
have involved a few more code lines for a complex corner-point model like the
SAIGUP or the Norne models discussed in Sections 4.5 and 4.3.1.

We assume a constant rock compressibility cr. Accordingly, the pore vol-
ume pv of a grid cell obeys the differential equation1 crpv = dpv/dp or

pv(p) = pvr e
cr(p−pr), (12.6)

where pvr is the pore volume at reference pressure pr. To define the relation
between pore volume and pressure, we use an anonymous function:

cr = 1e−6/barsa;
p_r = 200*barsa;
pv_r = poreVolume(G, rock);

pv = @(p) pv_r .* exp( cr * (p − p_r) );
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The fluid is assumed to have a constant viscosity, µ = 5 cP. As for the rock, we
assume a constant fluid compressibility c resulting in the differential equation
cρ = dρ/dp for the fluid density. Accordingly,

ρ(p) = ρre
c(p−pr), (12.7)

where ρr is the density at reference pressure pr. With this set, we can define
the equation-of-state for the fluid:

mu = 5*centi*poise;
c = 1e−3/barsa;
rho_r = 850*kilogram/meterˆ3;
rhoS = 750*kilogram/meterˆ3;
rho = @(p) rho_r .* exp( c * (p − p_r) );
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1 To make a closer correspondence between the computer code and the mathemati-
cal equation, we deliberately violate the advice of never using a compound symbol
to denote a single mathematical quantity.
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show = true(G.cells.num,1);
cellInx = sub2ind(G.cartDims, ...

[I−1; I−1; I; I; I(1:2)−1], ...
[J ; J; J; J; nperf+[2;2]], ...
[K−1; K; K; K−1; K(1:2)−[0; 1]]);

show(cellInx) = false;
plotCellData(G,p_init/barsa, show, ...

'EdgeColor','k' );
plotWell(G,W, 'height' ,10);
view(−125,20), camproj perspective
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Fig. 12.1. Model with initial pressure and single horizontal well.

The assumption of constant compressibility will only hold for a limited
range of temperatures. Surface conditions are not inside the validity range of
the constant compressibility assumption. We therefore set the fluid density ρS
at surface conditions separately since we will need it later to evaluate surface
volume rate in our model of the well, which here is a horizontal wellbore
perforated in eight cells:

nperf = 8;
I = repmat(2, [nperf, 1]);
J = (1:nperf).'+1;
K = repmat(5, [nperf, 1]);
cellInx = sub2ind(G.cartDims, I, J, K);
W = addWell([ ], G, rock, cellInx, 'Name', 'producer', 'Dir' , 'x' );

Assuming the reservoir is initially at equilibrium implies that we must have
dp/dz = gρ(p). In our simple setup, this differential equation can be solved
analytically, but for demonstration purposes, we use one of MATLAB’s built-
in ODE-solvers to compute the hydrostatic distribution numerically, relative
to a fixed datum point p(z0) = pr, where we without lack of generality have
set z0 = 0 since the reservoir geometry is defined relative to this height:

gravity reset on, g = norm(gravity);
[z_0, z_max] = deal(0, max(G.cells.centroids(:,3)));
equil = ode23(@(z,p) g .* rho(p), [z_0, z_max], p_r);
p_init = reshape(deval(equil, G.cells.centroids(:,3)), [], 1);

This finishes the model setup, and at this stage we plot the reservoir with well
and initial pressure as shown in Figure 12.1.

12.2.2 Discrete operators and equations

We are now ready to discretize the model. As seen in Section 6.4.2, the discrete
version of the divergence operator is a linear mapping from the set of faces to
the set of cells, and for a flux field, it sums the outward fluxes for each cell.
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The discrete gradient operator maps from the set of cells to the set of faces,
and for a pressure-field, it computes the pressure increase between neighboring
cells of each face. Because of our assumption of no-flow boundary conditions
(except at the well), we restrict the flow equations to the interior faces of the
grid and start by computing the map between interior faces and cells

N = double(G.faces.neighbors);
intInx = all(N ~= 0, 2);
N = N(intInx, :);

In MATLAB notation with N defined as above, it follows that grad(x) =
x(N(:, 2)) − x(N(:, 1)) = Cx, where the matrix C is defined in the code
below. As a linear mapping, the discrete div-function is simply the negative
transpose of grad; this follows from the discrete version of the Gauss–Green
theorem, (6.57). In addition, we define an average-mapping that for each face
computes the arithmetic average of the neighboring cells, which we will need
to evaluate density values at grid faces:

n = size(N,1);
C = sparse([(1:n)'; (1:n )'], N, ...

ones(n,1)*[−1 1], n, G.cells.num);
grad = @(x) C*x;
div = @(x) −C'*x;
avg = @(x) 0.5 * (x(N (:,1)) + x(N (:,2)));

∂
∂x

∂
∂y

∂
∂z

This is all we need to define the spatial discretization for a homogeneous
medium on a grid with cubic cells. To also account for cell geometries
and heterogeneities in the spatial discretization, we use the MRST-function
computeTrans, which we have seen in Section 7.2 computes the half trans-
missibilities associated with the two-point flux-approximation (TPFA) dis-
cretization. This means that we need to take the harmonic average to obtain
face-transmissibilities, i.e., for neighboring cells i and j, Tij = (T−1

i,j +T−1
j,i )−1

as in (6.51).

hT = computeTrans(G, rock); % Half−transmissibilities
cf = G.cells.faces(:,1);
nf = G.faces.num;
T = 1 ./ accumarray(cf, 1 ./ hT, [nf, 1]); % Harmonic average
T = T(intInx); % Restricted to interior

Having defined the necessary discrete operators, we are in a position to use the
basic implicit discretization from (12.2). We start with Darcy’s law (12.2b),
which for each face f can be written

~v[f ] = −T [f ]

µ

(
grad(p)− g ρa[f ] grad(z)

)
, (12.8)

where the density at the interface is evaluated using the arithmetic average
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ρa[f ] = 1
2

(
ρ[N1(f)] + ρ[N2(f)]

)
. (12.9)

Similarly, we can write the continuity equation for each cell c as

1

∆t

[(
φ(p)[c]ρ(p)[c]

)n+1 −
(
φ(p)[c]ρ(p)[c]

)n]
+ div(ρav)[c] = 0. (12.10)

The two residual equations (12.8) and (12.10) are implemented as anonymous
functions of pressure:

gradz = grad(G.cells.centroids(:,3));
v = @(p) −(T/mu).*( grad(p) − g*avg(rho(p)).*gradz );

presEq = @(p,p0,dt) (1/dt)*(pv(p).*rho(p) − pv(p0).*rho(p0)) ...
+ div( avg(rho(p)).*v(p) );

In the code above, p0 is the pressure field at the previous time step (i.e.,
pn), while p is the pressure at the current time step (pn+1). Having defined
the discrete expression for Darcy-fluxes, we can check that this is in agree-
ment with our initial pressure field by computing the magnitude of the flux,
norm(v(p_init))*day. The result is 1.5× 10−6 m3/day, which should convince
us that the initial state of the reservoir is sufficiently close to equilibrium.

12.2.3 Well model

The production well will appear as a source term in the pressure equation.
We therefore need to define an expression for flow rate in all cells in which the
well is connected to the reservoir (which we will refer to as well connections).
Inside the well, we assuming instantaneous flow so that the pressure drop is
always hydrostatic. For a horizontal well, the hydrostatic term is zero and
could obviously be disregarded, but we include it for completeness and as a
robust precaution, in case we later want to reuse the code with a different
well path. Approximating the fluid density in the well as constant, computed
at bottom-hole pressure, the pressure pc[w] in connection w of well Nw(w) is
given by

pc[w] = pbh[Nw(w)] + g∆z[w] ρ(pbh[Nw(w)]), (12.11)

where ∆z[w] is the vertical distance from the bottom-hole to the connection.
We use the standard Peaceman model introduced in Section 6.3.2 to relate
the pressure at the well connection to the average pressure inside the grid
cell. Using the well-indices provided in W, the mass flow-rate at connection c
is then given by

qc[w] =
ρ(p[Nc(w)])

µ
WI[w]

(
pc[w]− p[Nc(w)]

)
, (12.12)

where p[Nc(w)] is the pressure in the cell Nc(w) containing connection w. In
our code, this model is implemented as follows:
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wc = W(1).cells; % connection grid cells
WI = W(1).WI; % well−indices
dz = W(1).dZ; % depth relative to bottom−hole

p_conn = @(bhp) bhp + g*dz.*rho(bhp); %connection pressures
q_conn = @(p, bhp) WI .* (rho(p(wc)) / mu) .* (p_conn(bhp) − p(wc));

pbh

qc

We also include the total volumetric well-rate at surface conditions as a free
variable. This is simply given by summing all mass well-rates and dividing by
the surface density:

rateEq = @(p, bhp, qS) qS−sum(q_conn(p, bhp))/rhoS;

With free variables p, bhp, and qS, we are now lacking exactly one equation
to close the system. This equation should account for boundary conditions in
the form of a well-control. Here, we choose to control the well by specifying a
fixed bottom-hole pressure

ctrlEq = @(bhp) bhp−100*barsa;

12.2.4 The simulation loop

What now remains is to set up a simulation loop that will evolve the transient
pressure. We start by initializing the AD variables. For clarity, we append _ad

to all variable names to distinguish them from doubles. The initial bottom-
hole pressure is set to the corresponding grid-cell pressure.

[p_ad, bhp_ad, qS_ad] = initVariablesADI(p_init, p_init(wc(1)), 0);

This gives the following AD pairs that make up the unknowns in our system:

p_ad = ADI Properties:
val: [1000x1 double]
jac: {[1000x1000 double]

[1000x1 double]
[1000x1 double]}

∂p

∂p
≡ I

∂p

∂qs
≡ 0

∂p

∂pbh
≡ 0

bhp_ad = ADI Properties:
val: 2.0188e+07
jac: {[1x1000 double]

[1]
[0]}

∂pbh

∂p
≡ 0

∂pbh

∂qs

∂pbh

∂pbh

qS_ad = ADI Properties:
val: 0
jac: {[1x1000 double]

[0]
[1]}

∂qs

∂p
≡ 0

∂qs

∂
qs

∂qs

∂pbh

To solve the global flow problem, we will have to stack all the equations into
one big system for which we can compute the Jacobian and perform a Newton
update. We therefore set indices for easy access to individual variables in the
stack:

[p_ad, bhp_ad, qS_ad] = initVariablesADI(p_init, p_init(wc(1)), 0);
nc = G.cells.num;
[pIx, bhpIx, qSIx] = deal(1:nc, nc+1, nc+2);
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Next, we set parameters to control the time steps in the simulation and the
iterations in the Newton solver:

numSteps = 52; % number of time−steps
totTime = 365*day; % total simulation time
dt = totTime / numSteps; % constant time step
tol = 1e−5; % Newton tolerance
maxits = 10; % max number of Newton its

Simulation results from all time steps are stored in a structure sol. For effi-
ciency, this structure is preallocated and initialized so that the first entry is
the initial state of the reservoir:

sol = repmat(struct('time', [ ], 'pressure ' , [ ], 'bhp', [ ], ...
'qS', []), [numSteps + 1, 1]);

sol(1) = struct('time', 0, 'pressure ' , double(p_ad), ...
'bhp', double(bhp_ad), 'qS', double(qS_ad));

We now have all we need to set up the time-stepping algorithm, which consists
of an outer and an inner loop. The outer loop updates the time step, advances
the solution one step forward in time, and stores the result in the sol structure.
This procedure is repeated until we reach the desired final time:

t = 0; step = 0;
while t < totTime,

t = t + dt; step = step + 1;
fprintf('\nTime step %d: Time %.2f −> %.2f days\n', ...

step, convertTo(t − dt, day), convertTo(t, day));
% Newton loop
resNorm = 1e99;
p0 = double(p_ad); % Previous step pressure
nit = 0;
while (resNorm > tol) && (nit <= maxits)

: % Newton update
:
resNorm = norm(res);
nit = nit + 1;
fprintf(' Iteration %3d: Res = %.4e\n', nit, resNorm);

end
if nit > maxits, error('Newton solves did not converge')
else % store solution

sol(step+1) = struct('time', t, 'pressure ' , double(p_ad), ...
'bhp', double(bhp_ad), 'qS', double(qS_ad));

end
end

The inner loop performs the Newton iteration by computing and assembling
the Jacobian of the global system and solving the linearized residual equation
to compute an iterative update. The first step to this end is to evaluate the
residual for the flow pressure equation and add source terms from wells:
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eq1 = presEq(p_ad, p0, dt);
eq1(wc) = eq1(wc) − q_conn(p_ad, bhp_ad);

Most of the lines we have implemented so far are fairly standard, except
perhaps for the definition of the residual equations as anonymous functions,
and equivalent statements can be found in almost any computer program
solving this type of time-dependent equation by an implicit method. Now,
however, comes what is normally the tricky part: linearization of the equations
that make up the whole model and assembly of the resulting Jacobian matrices
to generate the Jacobian for the full system. And here you have the magic of
automatic differentiation – you do not have to do this at all! The computer
code necessary to evaluate all the Jacobians has been defined implicitly by the
functions in the AD class in MRST that overloads the elementary operators
used to define the residual equations. The calling sequence is obviously more
complex than the one depicted in Figure 2.6 on page 33, but the operators
used are in fact only the three elementary operators plus, minus, and multiply
applied to scalars, vectors, and matrices, as well as element-wise division by
a scalar. When the residuals are evaluated using the anonymous functions
defined above, the AD library also evaluates the derivatives of each equation
with respect to each independent variable and collects the corresponding sub-
Jacobians in a list. To form the full system, we simply evaluate the residuals of
the remaining equations (the rate equation and the equation for well control)
and concatenate the three equations into a cell array:

eqs = {eq1, rateEq(p_ad, bhp_ad, qS_ad), ctrlEq(bhp_ad)};
eq = cat(eqs{:});

In doing this, the AD library will correctly combine the various sub-Jacobians
and set up the Jacobian for the full system. Then, we can extract this Jacobian,
compute the Newton increment, and update the three primary unknowns:

J = eq.jac{1}; % Jacobian
res = eq.val; % residual
upd = −(J \ res); % Newton update

% Update variables
p_ad.val = p_ad.val + upd(pIx);
bhp_ad.val = bhp_ad.val + upd(bhpIx);
qS_ad.val = qS_ad.val + upd(qSIx);

The sparsity pattern of the Jacobian is shown in the plot to the left of the
code for the Newton update. The use of a two-point scheme on a 3D Cartesian
grid gives a Jacobi matrix that has a heptadiagonal structure, except for the
off-diagonal entries in the two red rectangles that arise from the well equation
and correspond to derivatives of this equation with respect to cell pressures.

Figure 12.2 shows a plot of the dynamics of the solution. Initially, the
pressure is in hydrostatic equilibrium as shown in Figure 12.1. As the well
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Fig. 12.2. Time evolution of the pressure solution for the compressible single-phase
problem. The plot to the left shows the well rate (blue line) and average reservoir
pressure (green circles) as function of time, and the plots to the right show the
pressure after two, five, ten, and twenty pressure steps.

starts to drain the reservoir, there is a draw-down in the pressure near the
well which gradually propagates from the well and outward. As a result, the
average pressure inside the reservoir is reduced, which again causes a decay
in the production rate.

Computer exercises:

73. Apply the compressible pressure solver introduced above to the quarter
five-spot problem discussed in Section 7.4.1.

74. Apply the compressible pressure solver to the three different grid models
studied in Section 7.4.3 that were derived from the seamount data set.
Replace the fixed boundary conditions by a no-flow condition.

75. Use the implementation introduced in Section 12.2 as a template to de-
velop a solver for slightly compressible flow (12.3). More details about this
model can be found on page 158 in Section 6.2. How large can cf be be-
fore the assumptions in the slightly compressible model become inaccurate?
Use different heterogeneities, well placements, and/or model geometries to
investigate this question in more detail.

76. Extend the compressible solver in to incorporate other boundary conditions
than no flow.

77. Try to compute time-of-flight by extending the equation set to also include
the time-of-flight equation (6.39). Hint: the time-of-flight and the pressure
equations need not be solved as a coupled system.

78. Same as above, except that you should try to reuse the solver introduced
in Section 7.3. Hint: you must first reconstruct fluxes from the computed
pressure and then construct a state object to communicate with the TOF
solver.
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12.3 Pressure-dependent viscosity

One particular advantage of using automatic differentiation in combination
with the discrete differential and averaging operators is that it simplifies the
testing of new models and alternative computational approaches. In this sec-
tion, we discuss two examples that hopefully demonstrate this aspect.

In the model discussed in the previous section, the viscosity was assumed
to be constant. However, in the general case the viscosity will increase with
increasing pressures and this effect may be significant for the high pressures
seen inside a reservoir. To illustrate, we introduce a linear dependence, rather
than the exponential pressure-dependence used for the pore volume (12.6) and
the fluid density (12.7). That is, we assume that the viscosity is given by

µ(p) = µ0

[
1 + cµ(p− pr)

]
. (12.13)

Having a pressure dependence means that we have to change two parts of our
discretization: the approximation of the Darcy flux across a cell face (12.8)
and the flow rate through a well connection (12.12). Starting with the latter,
we evaluate the viscosity using the same pressure as was used to evaluate the
density, i.e.,

qc[w] =
ρ(p[Nc(w)])

µ(p[Nc(w)])
WI[w]

(
pc[w]− p[Nc(w)]

)
. (12.14)

For the Darcy flux (12.8), we have two choices: either use a simple arithmetic
average as in (12.9) to approximate the viscosity at each cell face,

v[f ] = − T [f ]

µa[f ]

(
grad(p)− g ρa[f ] grad(z)

)
, (12.15)

or replace the quotient of the transmissibility and the face viscosity by the
harmonic average of the mobility λ = K/µ in the adjacent cells. Both choices
introduce changes in the structure of the discrete nonlinear system, but be-
cause we are using automatic differentiation, all we have to do is code the
corresponding formulas. Let us look at the details of the implementation in
MRST, starting with the arithmetic approach.

Arithmetic average

First, we introduce a new anonymous function to evaluate the relation between
viscosity and pressure:

[mu0,c_mu] = deal(5*centi*poise, 2e−3/barsa);
mu = @(p) mu0*(1+c_mu*(p−p_r));

Then, we can replace the definition of the Darcy flux (changes marked in red):

v = @(p) −(T./mu(avg(p))).*( grad(p) − g*avg(rho(p)).*gradz );
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Fig. 12.3. The effect of increasing the degree of pressure-dependence for the vis-
cosity.

and similarly for flow rate through each well connection:

q_conn = @(p,bhp) WI.*(rho(p(wc))./ mu(p(wc))) .* (p_conn(bhp) − p(wc));

In Figure 12.3 we illustrate the effect of increasing the pressure dependence of
the viscosity. Since the reference value is given at p = 200 bar which is close
to the initial pressure inside the reservoir, the more we increase cµ, the lower
µ will be in the pressure draw-down zone near the well. Therefore, we see a
significantly higher initial production rate for cµ = 0.005 than for cµ = 0.
On the other hand, the higher value of cµ, the faster the draw-down effect
of the well will propagate into the reservoir, inducing a reduction in reservoir
pressure that eventually will cause production to cease. In terms of overall
production, a stronger pressure dependence may be more advantageous as it
leads to a higher total recovery and higher cumulative production early in the
production period.

Face mobility: harmonic average

A more correct approximation is to write Darcy’s law based on mobility in-
stead of using the quotient of the transmissibility and an averaged viscosity:

v[f ] = −Λ[f ]
(
grad(p)− g ρa[f ] grad(z)

)
. (12.16)
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The face mobility Λ[f ] can be defined in the same way as the transmissibility
is defined in terms of the half transmissibilities using harmonic averages. That
is, if T [f, c] denotes the half transmissibility associated with face f and cell
c, the face mobility Λ[f ] for face f can be written as

Λ[f ] =
( µ[N1(f)]

T [f,N1(f)]
+

µ[N2(f)]

T [f,N2(f)]

)−1

. (12.17)

In MRST, the corresponding code reads:

hf2cn = getCellNoFaces(G);
nhf = numel(hf2cn);
hf2f = sparse(double(G.cells.faces(:,1)),(1:nhf)',1);
hf2if = hf2f(intInx,:);
fmob = @(mu,p) 1./(hf2if*(mu(p(hf2cn))./hT));

v = @(p) −fmob(mu,p).*( grad(p) − g*avg(rho(p)).*gradz );

Here, hf2cn represents the maps N1 and N2 that enable us to sample the
viscosity value in the correct cell for each half-face transmissibility, whereas
hf2if represents a map from half faces (i.e., faces seen from a single cell) to
global faces (which are shared by two cells). The map has a unit value in row
i and column j if half face j belongs to global face i. Hence, premultiplying a
vector of half-face quantities by hf2if amounts to summing the contributions
from cells N1(f) and N2(f) for each global face f .

Using the harmonic average for a homogeneous model should produce sim-
ulation results that are identical (to machine precision) to those produced by
using arithmetic average. With heterogeneous permeability, there will be small
differences in the well rates and averaged pressures for the specific parame-
ters considered herein. For sub-samples of the SPE 10 data set, we typically
observe maximum relative differences in well rates of the order 10−3.

Computer exercises:

79. Investigate the claim that the difference between using an arithmetic aver-
age of the viscosity and a harmonic average of the fluid mobility is typically
small. To this end, you can for instance use the following sub-sample from
the SPE10 data set: rock = SPE10_rock(41:50,101:110,1:10)

12.4 Non-Newtonian fluid

Viscosity is the material property that measures a fluid’s resistance to flow,
i.e., the resistance to a change in shape, or to the movement of neighboring
portions of the fluid relative to each other. The more viscous a fluid is, the less
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easily it will flow. In Newtonian fluids, the shear stress or the force applied per
area tangential to the force, at any point is proportional to the strain rate (the
symmetric part of the velocity gradient) at that point and the viscosity is the
constant of proportionality. For non-Newtonian fluids, the relationship is no
longer linear. The most common nonlinear behavior is shear thinning, in which
the viscosity of the system decreases as the shear rate is increased. An example
is paint, which should flow easily when leaving the brush, but stay on the
surface and not drip once it has been applied. The second type of nonlinearity
is shear thickening, in which the viscosity increases with increasing shear rate.
A common example is the mixture of cornstarch and water. If you search
YouTube for “cornstarch pool” you can view several spectacular videos of
pools filled with this mixture. When stress is applied to the mixture, it exhibits
properties like a solid and you may be able to run across its surface. However,
if you go too slow, the fluid behaves more like a liquid and you fall in.

Solutions of large polymeric molecules are another example of shear-
thinning liquids. In enhanced oil recovery, polymer solutions may be injected
into reservoirs to improve unfavorable mobility ratios between oil and water
and improve the sweep efficiency of the injected fluid. At low flow rates, the
polymer molecule chains tumble around randomly and present large resis-
tance to flow. When the flow velocity increases, the viscosity decreases as the
molecules gradually align themselves in the direction of increasing shear rate.
A model of the rheology is given by

µ = µ∞ + (µ0 − µ∞)

(
1 +

(
Kc

µ0

) 2
n−1

γ̇2

)n−1
2

, (12.18)

where µ0 represents the Newtonian viscosity at zero shear rate, µ∞ represents
the Newtonian viscosity at infinite shear rate, Kc represents the consistency
index, and n represents the power-law exponent (n < 1). The shear rate γ̇ in
a porous medium can be approximated by

γ̇app = 6

(
3n+ 1

4n

) n
n−1 |~v|√

Kφ
. (12.19)

Combining (12.18) and (12.19), we can write our model for the viscosity as

µ = µ0

(
1 + K̄c

|~v|2

Kφ

)n−1
2

, K̄c = 36

(
Kc

µ0

) 2
n−1

(
3n+ 1

4n

) 2n
n−1

, (12.20)

where we for simplicity have assumed that µ∞ = 0.

Rapid prototyping

In the following, we show how easy it is to extend the simulator developed
in the previous sections to model this non-Newtonian fluid behavior (see
nonNewtonianCell.m). To simulate injection, we increase the bottom-hole
pressure to 300 bar. Our rheology model has parameters:
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mu0 = 100*centi*poise;
nmu = 0.3;
Kc = .1;
Kbc = (Kc/mu0)ˆ(2/(nmu−1))*36*((3*nmu+1)/(4*nmu))ˆ(2*nmu/(nmu−1));

In principle, we could continue to solve the system using the same primary
unknowns as before. However, it has proved convenient to write (12.20) in the
form µ = η µ0 and introduce η as an additional unknown. In each Newton
step, we start by solving the equation for the shear factor η exactly for the
given pressure distribution. This is done by initializing an AD variable for η,
but not for p in etaEq so that this residual now only has one unknown, η.
This will take out the implicit nature of Darcy’s law and hence reduce the
nonlinearity and simplify the solution of the global system.

while (resNorm > tol) && (nit < maxits)

% Newton loop for eta (shear multiplier)
[resNorm2,nit2] = deal(1e99, 0);
eta_ad2 = initVariablesADI(eta_ad.val);
while (resNorm2 > tol) && (nit2 <= maxits)
eeq = etaEq(p_ad.val, eta_ad2);
res = eeq.val;
eta_ad2.val = eta_ad2.val − (eeq.jac{1} \ res);
resNorm2 = norm(res);
nit2 = nit2+1;

end
eta_ad.val = eta_ad2.val;

Once the shear factor has been computed for the values in the previous iterate,
we can use the same approach as earlier to compute a Newton update for the
full system. (Here, etaEq is treated as a system with two unknowns, p and η.)

eq1 = presEq(p_ad, p0, eta_ad, dt);
eq1(wc) = eq1(wc) − q_conn(p_ad, eta_ad, bhp_ad);
eqs = {eq1, etaEq(p_ad, eta_ad), ...

rateEq(p_ad, eta_ad, bhp_ad, qS_ad), ctrlEq(bhp_ad)};
eq = cat(eqs{:});
upd = −(eq.jac{1} \ eq.val); % Newton update

To finish the solver, we need to define the flow equations and the extra equa-
tion for the shear multiplier. The main question to this end is: how should
we compute |~v|? One solution could be to define |~v| on each face as the flux
divided by the face area. In other words, use a code like

phiK = avg(rock.perm.*rock.poro)./G.faces.areas(intInx).ˆ2;
v = @(p, eta) −(T./(mu0*eta)).*( grad(p) − g*avg(rho(p)).*gradz );
etaEq = @(p, eta) eta − (1 + Kbc*v(p,eta).ˆ2./phiK).ˆ((nmu−1)/2);
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Although simple, this approach has three potential issues: First, it does not
tell us how to compute the shear factor for the well perforations. Second, it
disregards contributions from any tangential components of the velocity field.
Third, the number of unknowns in the linear system increases by almost a fac-
tor six since we now have one extra unknown per internal face. The first issue
is easy to fix: To get a representative value in the well cells, we simply average
the η values from the cells’ faces. If we now recall how the discrete divergence
operator was defined, we realize that this operation is almost implemented for
us already: if div(x)=-C’*x computes the discrete divergence in each cell of
the field x defined at the faces, then cavg(x)=1/6*abs(C)’*x computes the
average of x for each cell. In other words, our well equation becomes:

wavg = @(eta) 1/6*abs(C(:,W.cells))'*eta;
q_conn = @(p, eta, bhp) ...
WI .* (rho(p(wc)) ./ (mu0*wavg(eta))) .* (p_conn(bhp) − p(wc));

The second issue would have to be investigated in more detail and this is not
within the scope of this book. The third issue is simply a disadvantage.

To get a method that consumes less memory, we can compute one η value
per cell. Using the following formula, we can compute an approximate velocity
~vi at the center of cell i

~vi =
∑

j∈N(i)

vij
Vi

(
~cij − ~ci

)
, (12.21)

where N(i) is the map from cell i to its neighboring cells, vij is the flux
between cell i and cell j, ~cij is the centroid of the corresponding face, and ~ci
is the centroid of cell i. For a Cartesian grid, this formula simplifies so that an
approximate velocity can be obtained as the sum of the absolute value of the
flux divided by the face area over all faces that make up a cell. Using a similar
trick as we used to compute η in well cells above, our implementation follows
trivially. We first define the averaging operator to compute cell velocity

aC = bsxfun(@rdivide, 0.5*abs(C), G.faces.areas(intInx))';
cavg = @(x) aC*x;

In doing so, we also rename our old averaging operator avg as favg to avoid
confusion and make it more clear that this operator maps from cell values to
face values. Then we can define the needed equations:

phiK = rock.perm.*rock.poro;
gradz = grad(G.cells.centroids(:,3));
v = @(p, eta)
−(T./(mu0*favg(eta))).*( grad(p) − g*favg(rho(p)).*gradz );

etaEq = @(p, eta)
eta − ( 1 + Kbc* cavg(v(p,eta)).ˆ2 ./phiK ).ˆ((nmu−1)/2);

presEq= @(p, p0, eta, dt) ...
(1/dt)*(pv(p).*rho(p) − pv(p0).*rho(p0)) + div(favg(rho(p)).*v(p, eta));
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Fig. 12.4. Single-phase injection of a highly viscous, shear-thinning fluid computed
by four different simulation methods: (i) fluid assumed to be Newtonian, (ii) shear
multiplier η computed in cells, (iii) shear multiplier computed at faces, and (iv)
shear multiplier computed at faces, but η ≡ 1 used in well model.

With this approach the well equation becomes particularly simple since all we
need to do is to sample the η value from the correct cell:

q_conn = @(p, eta, bhp) ...
WI .* (rho(p(wc)) ./ (mu0*eta(wc))) .* (p_conn(bhp) − p(wc));

A potential drawback of this second approach is that it may introduce nu-
merical smearing, but this will, on the other hand, most likely increase the
robustness of the resulting scheme.

In Figure 12.4 we compare the predicted flow rates and average reservoir
pressure for two different fluid models: one that assumes that the fluid is a
standard Newtonian fluid (i.e., η ≡ 1) and one that models shear thinning,
which has been computed by both methods discussed above. With shear thin-
ning, the higher pressure in the injection well causes a decrease in the viscosity
which leads to significantly higher injection rates than for the Newtonian fluid
and hence a higher average reservoir pressure. Perhaps more interesting is the
large discrepancy in the rates and pressures predicted by the face-based and
the cell-based simulation algorithms. If we in the face-based method disre-
gard the shear multiplier q_conn, the predicted rate and pressure build-up
is smaller than what is predicted by the cell-based method and closer to the
Newtonian fluid case. We take this as evidence that the differences between
the cell and the face-base methods to a large extent can be explained by differ-
ences in the discretized well models and their ability to capture the formation
and propagation of the strong initial transient. To further back this up, we
have included results from a simulation with ten times as many time steps in
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Fig. 12.5. Single-phase injection of a highly viscous, shear-thinning fluid; simulation
with ∆t = 1/520 year. The right plot shows the evolution of η as a function of time:
solid lines show min(η) over all cells, dashed lines min(η) over the perforated cells,
and dash-dotted lines average η value.

Figure 12.5, which also includes plots of the evolution of min(η) as a function
of time. Whereas the face-based method predicts a large, immediate drop in
viscosity in the near-well region, the viscosity drop predicted by the cell-based
method is much smaller during the first 20–30 days. This results in a delay in
the peak in the injection rate and a much smaller injected volume.

We leave the discussion here. The parameters used in the example were
chosen quite haphazardly to demonstrate a pronounced shear-thinning effect.
Which method is the most correct for real computations, is a question that
goes beyond the current scope, and could probably best be answered by ver-
ifying against observed data for a real case. Our point here, was mainly to
demonstrate the capability of rapid prototyping that comes with the use of
MRST. However, as the example shows, this lunch is not completely free: you
still have to understand features and limitations of the models and discretiza-
tions you choose to prototype.

Computer exercises:

80. Investigate whether the large differences observed in Figures 12.4 and 12.5
between the cell-based and face-based approaches to the non-Newtonian
flow problem is a result of insufficient grid resolution.

81. The non-Newtonian fluid example has a strong transient during the first
30–100 days. Try to implement adaptive time steps that utilizes this fact.
Can you come up with a strategy that automatically chooses good time
steps?
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12.5 Thermal effects

As another example of rapid prototyping, we extend the single-phase flow
model (12.1) to account for thermal effects. That is, we assume that ρ(p, T ) is
now a function of pressure and temperature T and extend our model to also
include conservation on energy,

∂

∂t

[
φρ
]

+∇ ·
[
ρ~v
]

= q, ~v = −K

µ

[
∇p− gρ∇z

]
(12.22a)

∂

∂t

[
φρEf (p, t) + (1− φ)Er

]
+∇ ·

[
ρHf~v

]
−∇ ·

[
κ∇T

]
= qe (12.22b)

Here, the rock and the fluid are assumed to be in local thermal equilibrium.
In the energy equation (12.22b), Ef is energy density per mass of the fluid,
Hf = Ef + p/ρ is enthalpy density per mass, Er is energy per volume of the
rock, and κ is the heat conduction coefficient of the rock. Fluid pressure p and
temperature T are used as primary variables.

As in the original isothermal simulator, we must first define constitutive
relationships that express the various physical quantities in terms of the pri-
mary variables. The energy equation includes heating of the solid rock, and
we therefore start by defining a quantity that keeps track of the solid volume,
which also depends on pressure:

sv = @(p) G.cells.volumes − pv(p);

For the fluid model, we use

ρ(p, T ) = ρr
[
1 + βT (p− pr)

]
e−α(T−Tr),

µ(p, T ) = µ0

[
1 + cµ(p− pr)

]
e−cT (T−Tr),

(12.23)

where ρr = 850 kg/m3 is the density and µ0 = 5 cP is the viscosity of the fluid
at reference conditions with pressure pr = 200 bar and temperature Tr = 300
K. The constants are βT = 10−3 bar−1, α = 5 × 10−3 K−1, cµ = 2 × 10−3

bar−1, and cT = 10−3 K−1. This translates to the following code:

mu0 = 5*centi*poise;
cmup = 2e−3/barsa;
cmut = 1e−3;
T_r = 300;
mu = @(p,T) mu0*(1+cmup*(p−p_r)).*exp(−cmut*(T−T_r));

beta = 1e−3/barsa;
alpha = 5*1e−3;
rho_r = 850*kilogram/meterˆ3;
rho = @(p,T) rho_r .* (1+beta*(p−p_r)) .* exp(−alpha*(T−T_r));

We use a simple linear relation for the enthalpy, which is based on the ther-
modynamical relations that give
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dHf = cp dT +

(
1− αTr

ρ

)
dp, α = −1

ρ

∂ρ

∂T

∣∣∣
p
, (12.24)

where cp = 4×103 J/kg. The corresponding code for the enthalpy and energy
densities reads:

Cp = 4e3;
Hf = @(p,T) Cp*T+(1−T_r*alpha).*(p−p_r)./rho(p,T);
Ef = @(p,T) Hf(p,T) − p./rho(p,T);
Er = @(T) Cp*T;

We defer discussing the details of these new relationships and only note that
it is important that the thermal potentials Ef and Hf are consistent with the
equation-of-state ρ(p, T ) to get a physically meaningful model.

Having defined all constitutive relationships in terms of anonymous func-
tions, we can set up the equation for mass conservation and Darcy’s law (with
transmissibility renamed to Tp to avoid name clash with temperature):

v = @(p,T) −(Tp./mu(avg(p),avg(T))).*(grad(p) − avg(rho(p,T)).*gdz);
pEq = @(p,T,p0,T0,dt) ...

(1/dt)*(pv(p).*rho(p,T) − pv(p0).*rho(p0,T0)) ...
+ div( avg(rho(p,T)).*v(p,T) );

The energy equation (12.22b) is a bit more complicated. The accumulation
and the heat-conduction terms are on the same form as the operators appear-
ing in (12.22a) and can hence be discretized in the same way. This means that
we use a rock object to compute transmissibilities for κ instead of K:

tmp = struct('perm',4*ones(G.cells.num,1));
hT = computeTrans(G, tmp);
Th = 1 ./ accumarray(cf, 1 ./ hT, [nf, 1]);
Th = Th(intInx);

The remaining term in (12.22b), ∇ · [ρHf ~v], represents advection of enthalpy
and has a differential operator on the same form as the transport equations
discussed in Section 6.4.3 and must hence be discretized by an upwind scheme.
To this end, we introduce a new discrete operator that will compute the correct
upwind value for the enthalpy density,

upw(H)[f ] =

{
H[N1(f)], if v[f ] > 0,

H[N2(f)], otherwise.
(12.25)

With this, we can set up the energy equation on residual form

upw = @(x,flag) x(N (:,1)) .*double(flag)+x(N(:,2)).*double(~flag);

hEq = @(p, T, p0, T0, dt) ...
(1/dt)*(pv(p ).*rho(p, T ).*Ef(p ,T ) + sv(p ).*Er(T ) ...

− pv(p0).*rho(p0,T0).*Ef(p0,T0) − sv(p0).*Er(T0)) ...
+ div( upw(Hf(p,T),v(p,T)>0).*avg(rho(p,T)).*v(p,T) ) ...
+ div( −Th.*grad(T));
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and are thus almost done. As a last technical detail, we must also make sure
that the energy transfer in injection and production wells is modelled correctly
using appropriate upwind values:

qw = q_conn(p_ad, T_ad, bhp_ad);
eq1 = pEq(p_ad, T_ad, p0, T0, dt);
eq1(wc) = eq1(wc) − qw;
hq = Hf(bhp_ad,bhT).*qw;
Hcells = Hf(p_ad,T_ad);
hq(qw<0) = Hcells(wc(qw<0)).*qw(qw<0);
eq2 = hEq(p_ad,T_ad, p0, T0,dt);
eq2(wc) = eq2(wc) − hq;

Here, we evaluate the enthalpy using cell values for pressure and temperature
for production wells (for which qw<0) and pressure and temperatures at the
bottom hole for injection wells.

What remains, are trivial changes to the iteration loop to declare the
correct variables as AD structures, evaluate the discrete equations, collect
their residuals, and update the state variables. These details can be found in
the complete code given in singlePhaseThermal.m and have been left out for
brevity.

Understanding thermal expansion

Except for the modifications discussed above, the setup is the exact same as
in Section 12.2. That is, the reservoir is a 200× 200× 50 m3 rectangular box
with homogeneous permeability of 30 mD, constant porosity 0.3, and a rock
compressibility of 10−6 bar−1, realized on a 10× 10× 10 Cartesian grid. The
reservoir is realized on a 10× 10× 10 Cartesian grid. Fluid is drained from a
horizontal well perforated in cells with indices i = 2, j = 2, . . . , 9, and k = 5,
and operating at a constant bottom-hole pressure of 100 bar. Initially, the
reservoir has constant temperature of 300 K and is in hydrostatic equilibrium
with a datum pressure of 200 bar specified in the uppermost cell centroids.

In the same way as in the isothermal case, the open well will create a pres-
sure draw-down that propagates into the reservoir. As more fluid is produced
from the reservoir, the pressure will gradually decay towards a steady state
with pressure values between 101.2 and 104.7 bar. Figure 12.6 shows that the
simulation predicts a faster pressure draw-down, and hence a faster decay in
production rates, if thermal effects are taken into account.

The change in temperature of an expanding fluid will not only depend on
the initial and final pressure, but also on the type of process in which the
temperature is changed:

� In a free expansion, the internal energy is preserved and the fluid does no
work. That is, the process can be described by the following differential:

dEf
dp

∆p+
dEf
dT

∆T = 0. (12.26)
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Fig. 12.6. To the left, time evolution for pressure for an isothermal simulation (solid
lines) and a thermal simulation with α = 5 ·10−3 (dashed lines). To the right, decay
in production rate at the surface.

When the fluid is an ideal gas, the temperature is constant, but other-
wise the temperature will either increase or decrease during the process
depending on the initial temperature and pressure.

� In a reversible process, the fluid is in thermodynamical equilibrium and
does positive work while the temperature decreases. The linearized func-
tion associated with this adiabatic expansion reads,

dE +
p

ρV
dV = dE + p d(

1

ρ
) = 0. (12.27)

� In a Joule–Thomson process, the enthalpy remains constant while the
fluid flows from higher to lower pressure under steady-state conditions
and without change in kinetic energy. That is,

dHf

dp
∆p+

dHf

dT
∆T = 0. (12.28)

Our case is a combination of these three processes and their interplay will
vary with the initial temperature and pressure as well as with the constants
in the fluid model for ρ(p, T ). To better understand a specific case, we can
use (12.26) to (12.28) to compute the temperature change that would take
place for an observed pressure draw-down if only one of the processes took
place. Computing such linearized responses for thermodynamical functions is
particularly simple using automatic differentiation. Assuming we know the
reference state (pr, Tr) at which the process starts and the pressure pe after
the process has taken place, we initialize the AD variables and compute the
pressure difference:

[p,T] = initVariablesADI(p_r,T_r);
dp = p_e − p_r;
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Then we can solve (12.26) or (12.28) for ∆T and use the result to compute
the temperature change resulting from a free expansion or a Joule–Thomson
expansion:

E = Ef(p,T);
dEdp = E.jac{1};
dEdT = E.jac{2};
Tfr = T_r − dEdp*dp/dEdT;

hf = Hf(p,T);
dHdp = hf.jac{1};
dHdT = hf.jac{2};
Tjt = T_r − dHdp*dp/dHdT;

The temperature change after a reversible (adiabatic) expansion is not de-
scribed by a total differential. In this case we have to specify that p should
be kept constant. This is done by replacing the AD variable p by an ordinary
variable double(p) in the code at the specific places where p appears in front
of a differential, see (12.27).

E = Ef(p,T) + double(p)./rho(p,T);
dEdp = hf.jac{1};
dEdT = hf.jac{2};
Tab = T_r − dEdp*dp/dEdT;

The same kind of manipulation can be used to study alternative linearizations
of systems of nonlinear equations and the influence of neglecting some of the
derivatives when forming Jacobians.

To illustrate how the interplay between the three processes can change
significantly and lead to quite different temperature behavior, we will compare
the predicted evolution of the temperature field for α = 5 × 10−n, n = 3, 4,
as shown in Figures 12.7 and 12.8. The change in behavior between the two
figures is associated with the change in sign of ∂E/∂p,

dE =

(
cp −

αT

ρ

)
dT +

(
βT p− αT

ρ

)
dp, βT =

1

ρ

∂ρ

∂p

∣∣∣
T
. (12.29)

In the isothermal case and for α = 5× 10−4, we have that αT < βT p so that
∂E/∂p > 0. The expansion and flow of fluid will cause an instant heating near
the well-bore, which is what we see in the initial temperature increase for the
maximum value in Figure 12.7. The Joule–Thomson coefficient (αT−1)/(cpρ)
is also negative, which means that the fluid gets heated if it flows from high
pressure to low pressure in a steady-state flow. This is seen by observing the
temperature in the well perforations. The fast pressure drop in these cells
causes an almost instant cooling effect, but soon after we see a transition
in which most of the cells with a well perforation start having the highest
temperature in the reservoir because of heating from the moving fluids. For
α = 5 × 10−3, we have that αT > βT p so that ∂E/∂p < 0 and likewise the
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Fig. 12.7. Time evolution of temperature for a compressible, single-phase problem
with α = 5 · 10−4. The upper plots show four snapshots of the temperature field.
The lower plot shows minimum, average, maximum, and well-perforation values.
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Fig. 12.8. Time evolution of temperature for a compressible, single-phase problem
with α = 5 · 10−3. The upper plots show four snapshots of the temperature field.
The lower plot shows minimum, average, maximum, and well-perforation values.

Page: 366 job: mrst-book macro: svmono.cls date/time: 16-Dec-2015/16:31



12.5 Thermal effects 367

Joule–Thomson coefficient is positive. The moving fluids will induce a cooling
effect and hence the minimum temperature is observed at the well for a longer
time. The weak kink in the minimum temperature curve is the result of the
point of minimum temperature moving from being at the bottom front side
to the far back of the reservoir. The cell with lowest temperature is where the
fluid has done most work, neglecting heat conduction. In the beginning this is
the cell near the well since the pressure drop is largest there. Later it will be
the cell furthest from the well since this is where the fluid can expand most.

Computational performance

The observant reader may have realized that the code presented above con-
tains a number of redundant function evaluations that may potentially add
significantly to the overall computational cost: In each nonlinear iteration we
keep re-valuating quantities that depend on p0 and T0 even though these stay
constant for each time step. This can easily be avoided by moving the def-
inition of the anonymous functions evaluating the residual equations inside
the outer time loop. The main contribution to potential computational over-
head, however, comes from repeated evaluations of fluid viscosity and density.
Because each residual equation is defined as an anonymous function, v(p,T)
appears three times for each residual evaluation, once in pEq and twice in hEq.
This, in turn, translates to three calls to mu(avg(p),avg(T)) and seven calls
to rho(p,T), and so on. In practice, the number of actual function evaluations
is smaller since the MATLAB interpreter most likely has some kind of built-in
intelligence to spot and reduce redundant function evaluations. Nonetheless,
to cure this problem, we can move the computations of residuals inside a func-
tion so that the constitutive relationships can be computed one by one and
stored in temporary variables. The disadvantage is that we increase the com-
plexity of the code and move one step away from the mathematical formulas
describing the method. This type of optimization should therefore only be in-
troduced after the code has been profiled and redundant function evaluations
have proved to have a significant computational cost.

Computer exercises:

82. Perform a more systematic investigation of how changes in α affect the
temperature and pressure behavior. To this end, you should change α sys-
tematically, e.g., from 0 to 10−2. What is the effect of changing β, the
parameters cµ and cT for the viscosity, or cp in the definition of enthalpy?

83. Use the MATLAB profiling tool to investigate to what extent the use of
nested anonymous functions causes redundant function evaluations or in-
troduces other types of computational overhead. Hint: to profile the CPU
usage, you can use the following call sequence

profile on, singlePhaseThermal; profile off; profile report
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368 12 Single-Phase Flow and Rapid Prototyping

Try to modify the code as suggested above to reduce the CPU time. How
low can you get the ratio between the cost of constructing the linearized
system and the cost of solving it?
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