

Multi-Point Stress Approximation Module in MRST

September 13, 2021

Multi-Point Stress Approximation (MPSA)

• The MPSA method applies for linear elasticity:

 $\begin{aligned} -\nabla \cdot .\pi &= \mathbf{f} & \text{momentum balance} \\ \pi &= \mathbf{C}\varepsilon & \text{stress constitutive relation} \\ \varepsilon &= \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathsf{T}}) & \text{strain} \\ \mathbf{u} & \text{displacement} \end{aligned}$

- The method was proposed and analysed in Nordbotten: "Convergence of a Cell-Centered Finite Volume Discretization for Linear Elasticity" (2015)
- We the version imposing symmetry weakly, MPSAW, as proposed in Keilegavlen and Nordbotten: "Finite volume methods for elasticity with weak symmetry" (2017)

Multi-Point Stress Approximation

- The advantage of the method is that it is a finite volume type of method. In particular,
 - The method is cell-centered
 - The method ensures a **discrete momentum conservation** equation. We have continuous forces at the faces. (similar to discrete mass conservation equation for finite volume methods).
- The method can be seen as an extension of MPFA-O to linear elasticity.
- The module is available at

https://bitbucket.org/mrst/mpsaw

• Joint work with the University of Bergen.

Basic ideas behind MPFA/MPSA

K: cell u_K : value at cell-center σ : face $u_{K,\sigma,s}$: value at cell-face-nodes : vertex

Gradient reconstruction in a *cell-node* region.

$$abla_{d} \mathbf{u}_{\mathrm{K},\mathrm{s}} = \sum_{\sigma} (\mathbf{u}_{\mathrm{K},\sigma,\mathrm{s}} - \mathbf{u}_{\mathrm{K}}) \mathbf{g}_{\mathrm{K},\sigma,\mathrm{s}}.$$

Here, $g_{K,\sigma,s}$ are chosen such that reconstruction is **consistent**

SINTEF

Nodal reduction

For MPFA (then u is a pressure), We can express $u_{K,\sigma,s}$ as a linear combination of u_K , using

- pressure continuity at the faces
- flux continuity at the faces

Symmetry requirement

- Imposing in the same way
 - displacement continuity at the faces
 - force continuity at the faces

does not work in the case of linear elasticity because we have a symmetry constraint.

• To illustrate that, note that we cannot find a **affine** displacement *u* with matches a given displacement value and forces at the faces in a triangle

because $\varepsilon(u)$ is symmetric (3 free variables) and we have two vectors T_{σ_i} (4 given variables).

🕥 SINTEF

Weak symmetry

• We relax the symmetry condition by replacing $\varepsilon(u)$ with

$$\varepsilon_{\mathsf{weak},d}(u)_{\mathsf{K},\mathsf{s}} = \frac{1}{2}(\nabla_d u_{\mathsf{K},\mathsf{s}} + \langle \nabla_d u \rangle_{\mathsf{s}}^{\mathsf{T}})$$

where $< \nabla_d u >_s$ is an average of the reconstructed gradient around the node.

- The nodal reconstruction is now possible (assuming displacement and force continuity)
- The symmetry of the strain $\varepsilon_{weak,d}$ holds weakly in the sense that its average is, by construction, symmetric.

Overview of the test cases in the module

• The examples are presented here:

https://bitbucket.org/mrst/mpsaw/src/master/examples/

- assemblyMpfaExample.m : Assembly of the basic MPSA matrices.
- mpsaExample : Set of examples with basic geometries and boundary conditions.
- tiltedExample.m : Example with non-cartesian directions sliding constraints.
- convergencetests : Directory with convergence tests that validate the implementation. The test cases for MPSA are taken from seminal paper, those for Biot system are new.
- assemblyBiotExample : Assembly of the basic MPSA-MPFA matrices for coupled flow-geomechanics systems.
- biotBlackoilExample.m : Example of coupled blackoil-geomechanics system.
- biotCompositionalExample.m : Example of coupled compositional-geomechanics system.

Compaction case on a complex grid

• Example of a complex grid (different types of cell)

grid

• Compaction test : fixed displacement at bottom, constant force at the top.

Some details on assembly

- We denote u_{nfd} : displacement at the node-face dofs in \mathbb{R}^{nfd}
 - $\textbf{\textit{u}}_{cd}$: displacement at the cell dofs in \mathbb{R}^{cd}
- The Dirichlet boundary conditions are imposed as Lagrange multipliers (see next slide). The system is assembled as

$$\begin{pmatrix} \mathsf{A}_{11} & \mathsf{A}_{12} & -\mathsf{D} \\ \mathsf{A}_{21} & \mathsf{A}_{22} & 0 \\ \mathsf{D}^\mathsf{T} & \mathsf{A}_{22} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{u}_{\mathsf{nfd}} \\ \mathbf{u}_{\mathsf{cd}} \\ \boldsymbol{\lambda}_{\mathsf{bc}} \end{pmatrix} = \begin{bmatrix} \texttt{extforce} \\ \texttt{force} \\ \texttt{bcvals} \end{bmatrix}$$

where extforce: Neumann forces at boundary in the node-face (\mathbb{R}^{nfd}) force : volumetric forces in the cell dofs (\mathbb{R}^{cd}) bcvals : value of the Dirichlet linear forms (see next slide) (\mathbb{R}^{bc})

• Function signature:

function assembly = assembleMPSA(G, prop, loadstruct, eta, tbls, mappings, varargin)

where prop provides the material properties (see setupStiffnessTensor) and loadstruct
the Dirichlet boundary condition and extforce and force. The value eta determines the
location of the continuity point.

General Boundary Conditions

- Basic illustration given in tiltedexample of a rotated grid $(\theta = 10 \text{ degrees}).$
- We impose rolling condition at the bottom and on the left-hand side, by the two following linear forms (encoded in *D*)

 $\sin(\theta)u_1 - \cos(\theta)u_2 = 0$ for nodes at bottom $\cos(\theta)u_1 + \sin(\theta)u_2 = 0$ for nodes at left

```
and we impose a normal force at the top.
```

• We recover the exact linear solution

Poroelasticity

• Single phase

$$\begin{aligned} -\nabla \cdot \pi - \alpha \nabla p + &= f & \text{Momentum balance} \\ \frac{\partial}{\partial t} (\alpha \nabla \cdot u + S_{\epsilon} p) - \nabla \cdot \frac{k}{\mu} \nabla p &= q & \text{Mass conservation for fluid:} \end{aligned}$$

• Biot system is the linearised version. The second equation is replaced with

$$\alpha \nabla \cdot \mathbf{u} + \rho \mathbf{p} - \tau \nabla \cdot \mathbf{K} \mathbf{q} = \mathbf{q}$$

Poroelasticity - assembly

• For poroelasticity, we have, before nodal reduction,

$$\begin{pmatrix} A_{11} & A_{12} & 0 & A_{14} & A_{15} & 0 \\ A_{21} & A_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & A_{33} & A_{34} & 0 & A_{36} \\ A_{41} & A_{42} & A_{43} & A_{44} & 0 & 0 \\ A_{51} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & A_{63} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{u}_{nfd} \\ \boldsymbol{u}_{cd} \\ \boldsymbol{p}_{nf} \\ \boldsymbol{p}_{c} \\ \boldsymbol{\lambda}_{bcmech} \\ \boldsymbol{\lambda}_{bcfluid} \end{pmatrix} = \begin{bmatrix} \text{extforce} \\ \text{force} \\ \text{extflux} \\ \text{src} \\ \text{bcvalsmech} \\ \text{bcvalsfluid} \end{bmatrix}$$

- The coupling terms are in red. Note that they are not symmetric, because we use two different discrete gradient operators.
- Function signature

function assembly = assembleBiot(G, props, drivingforces, eta, tbls, mappings, varargin)

• The variable props gather the material properties (mechanical, fluid and coupling parts) and drivingforces the boundary conditions and source terms.

Convergence test for Biot system

- The script biotConvergenceFunc verifies the convergence of the implementation, as follows
- We choose a displacement and a pressure fields

$$u_1 = y(1 - x)sin(2\pi xy)$$
$$u_2 = zy^2 \cos(x)$$
$$u_3 = xyz$$
$$p = u_1$$

• We compute **analytically** the stimulation terms (source terms in Biot) and the boundary conditions (use different types on different sides). Those are used in as input in biotConvergenceFunc

Coupled simulations compositional - geomechanics

- The scripts biotBlackoilExample and biotCompositionalExample illustrate couplings that integrate MRST reservoir solvers.
- The equation for the black-oil model
 - Momentum equation : $\nabla \cdot \pi \nabla (bp_b) + \rho_b g = 0$
 - Mass conservation equations for black-oil:

$$\begin{split} \partial_t(\phi b_o s_o) + \nabla \cdot (b_o v_o) &= b_o q_o, \\ \partial_t(\phi b_w s_w) + \nabla \cdot (b_w v_w) &= b_w q_w, \\ \partial_t[\phi(b_g s_g + b_o r_s s_o)] + \nabla \cdot (b_g v_g + b_o r_s v_o) &= b_g q_g + b_o r_s q_o. \end{split}$$

- Darcy's law : $\mathbf{v}_{\alpha} = -(\mathbf{k}_{r\alpha}/\mu_{\alpha})\mathbf{K}(\nabla \mathbf{p}_{\alpha} \rho_{\alpha}\mathbf{g}\nabla \mathbf{z})$
- Pore volume change : $\phi \phi_0 = b \nabla \cdot u + \frac{1}{N} (p_b p_0)$
- Constitutive relations for Biot pressure $p_b = p_b(\mathbf{p}, \mathbf{s})$ and also p_α (through capillary pressures)

Implementation using state functions

- We introduce two StateFunctionGrouping
 - MechPropertyFunctions : for the evaluation of mechanical variables
 - **BiotPropertyFunctions** : for the evaluation of the terms related to the couplings
- In MechPropertyFunctions, we find use
 - FaceNodeDisplacement : computes the displacement at the face node location from the cell values
 - **ConsistentDiv** : computes the *consistent* divergence (obtained from the consistent gradient reconstruction)
 - Strain : computes the strain
 - Stress : computes the stress
- In BiotPropertyFunctions, we find use
 - **Dilatation** : computes the dilation term (÷*u* term)
 - BasePoreVolume : capture the pore volume from the reservoir model

Compositional model

- We implement BiotCompositionalModel using the statefunction mechanism.
- We recover the state function of the generic compositional model

model = setupStateFunctionGroupings@GenericBlackOilModel(model, varargin{:});

• We augment or modify them as follows

• In this way, we overwrite the following statefunction of the generic blackoil model

PoreVolume , PermeabilityPotentialGradient , PhaseUpwindFlag

but otherwise inherit all its functionalities - with minimal code intrusion.

coupled compositional simulation

- We consider a *skewed* grid (see MRST book) and a standard injection scenario.
- We consider coupling with both MPFA and TPFA.
- We can observe the consistency error on the mechanical part of the solution

