
Multi-Point Stress Approximation Module in

MRST

September 13, 2021



Multi-Point Stress Approximation (MPSA)

• The MPSA method applies for linear elasticity:

−∇ · .π = f momentum balance

π = Cε stress constitutive relation

ε =
1

2
(∇u+∇uT) strain

u displacement

• The method was proposed and analysed in Nordbotten:“Convergence of a Cell-Centered Finite Volume

Discretization for Linear Elasticity” (2015)

• We the version imposing symmetry weakly, MPSAW, as proposed in Keilegavlen and

Nordbotten:“Finite volume methods for elasticity with weak symmetry” (2017)

1/16



Multi-Point Stress Approximation

• The advantage of the method is that it is a finite volume type of method. In particular,

• The method is cell-centered

• The method ensures a discrete momentum conservation equation. We have continuous

forces at the faces. (similar to discrete mass conservation equation for finite volume

methods).

• The method can be seen as an extension of MPFA-O to linear elasticity.

• The module is available at

https://bitbucket.org/mrst/mpsaw
• Joint work with the University of Bergen.

2/16

https://bitbucket.org/mrst/mpsaw


Basic ideas behind MPFA/MPSA

uK

uK,σ,s

s

KK

σσ

K : cell

σ: face
s : vertex

uK : value at cell-center

uK,σ,s: value at cell-face-node

Gradient reconstruction in a cell-node region.

∇duK,s =
∑
σ

(uK,σ,s − uK)gK,σ,s.

Here, gK,σ,s are chosen such that reconstruction is

consistent

Nodal reduction

For MPFA (then u is a pressure), We can express uK,σ,s as a linear combination of uK , using

• pressure continuity at the faces

• flux continuity at the faces
3/16



Symmetry requirement

• Imposing in the same way

• displacement continuity at the faces

• force continuity at the faces

does not work in the case of linear elasticity because we have a symmetry constraint.

• To illustrate that, note that we cannot find a affine displacement u with matches a given

displacement value and forces at the faces in a triangle

uC

Tσ1

Tσ2

nσ1

nσ2

Find affine u such that

Cε(u)nσi
= Tσi

u(xC) = uC

where ε(u) = 1
2 (∇u+∇uT).

because ε(u) is symmetric (3 free variables) and we have two vectors Tσi
(4 given variables).

4/16



Weak symmetry

• We relax the symmetry condition by replacing ε(u) with

εweak,d(u)K,s =
1

2
(∇duK,s +< ∇du >T

s )

where< ∇du >s is an average of the reconstructed gradient around the node.

• The nodal reconstruction is now possible (assuming displacement and force continuity)

• The symmetry of the strain εweak,d holds weakly in the sense that its average is, by

construction, symmetric.

5/16



Overview of the test cases in the module

• The examples are presented here:

https://bitbucket.org/mrst/mpsaw/src/master/examples/
• assemblyMpfaExample.m : Assembly of the basic MPSA matrices.

• mpsaExample : Set of examples with basic geometries and boundary conditions.

• tiltedExample.m : Example with non-cartesian directions sliding constraints.

• convergencetests : Directory with convergence tests that validate the implementation. The

test cases for MPSA are taken from seminal paper, those for Biot system are new.

• assemblyBiotExample : Assembly of the basic MPSA-MPFA matrices for coupled

flow-geomechanics systems.

• biotBlackoilExample.m : Example of coupled blackoil-geomechanics system.

• biotCompositionalExample.m : Example of coupled compositional-geomechanics system.

6/16

https://bitbucket.org/mrst/mpsaw/src/master/examples/


Compaction case on a complex grid

• Example of a complex grid (different types of cell)

• Compaction test : fixed displacement at bottom, constant force at the top.

grid
Divergence of diplacement

deformed grid

7/16



Some details on assembly

• We denote unfd: displacement at the node-face dofs in Rnfd

ucd : displacement at the cell dofs in Rcd

• The Dirichlet boundary conditions are imposed as Lagrange multipliers (see next slide). The

system is assembled as A11 A12 −D

A21 A22 0
DT A22 0

unfd
ucd
λbc

 =

extforce
force
bcvals


where extforce: Neumann forces at boundary in the node-face (Rnfd)

force : volumetric forces in the cell dofs (Rcd)

bcvals : value of the Dirichlet linear forms (see next slide) (Rbc)

• Function signature:

function assembly = assembleMPSA(G, prop, loadstruct, eta, tbls, mappings, varargin)

where prop provides the material properties (see setupStiffnessTensor) and loadstruct
the Dirichlet boundary condition and extforce and force. The value eta determines the

location of the continuity point.

8/16



General Boundary Conditions

• Basic illustration given in

tiltedexample of a rotated grid

(θ = 10 degrees).

• We impose rolling condition at the

bottom and on the left-hand side, by

the two following linear forms

(encoded in D)

sin(θ)u1 − cos(θ)u2 = 0 for nodes at bottom

cos(θ)u1 + sin(θ)u2 = 0 for nodes at left

and we impose a normal force at the

top.

• We recover the exact linear solution

;

9/16



Poroelasticity

• Single phase

−∇ · π − α∇p+ = f Momentum balance

∂

∂t
(α∇ · u+ Sεp)−∇ · k

µ
∇p = q Mass conservation for fluid:

• Biot system is the linearised version. The second equation is replaced with

α∇ · u+ ρp− τ∇ · Kq = q

10/16



Poroelasticity - assembly

• For poroelasticity, we have, before nodal reduction,
A11 A12 0 A14 A15 0
A21 A22 0 0 0 0
0 0 A33 A34 0 A36

A41 A42 A43 A44 0 0
A51 0 0 0 0 0
0 0 A63 0 0 0




unfd
ucd
pnf
pc

λbcmech

λbcfluid

 =


extforce

force
extflux

src
bcvalsmech
bcvalsfluid


• The coupling terms are in red. Note that they are not symmetric, because we use two

different discrete gradient operators.

• Function signature

function assembly = assembleBiot(G, props, drivingforces, eta, tbls, mappings, varargin)

• The variable props gather the material properties (mechanical, fluid and coupling parts) and

drivingforces the boundary conditions and source terms.

11/16



Convergence test for Biot system

• The script biotConvergenceFunc verifies the convergence of the implementation, as follows

• We choose a displacement and a pressure fields

u1 = y(1− x)sin(2πxy)

u2 = zy
2
cos(x)

u3 = xyz

p = u1

• We compute analytically the stimulation terms

(source terms in Biot) and the boundary conditions

(use different types on different sides). Those are

used in as input in biotConvergenceFunc

12/16



Coupled simulations compositional - geomechanics

• The scripts biotBlackoilExample and biotCompositionalExample illustrate couplings

that integrate MRST reservoir solvers.

• The equation for the black-oil model

• Momentum equation : ∇ · π −∇(bpb) + ρbg = 0
• Mass conservation equations for black-oil:

∂t(φboso) +∇ · (bovo) = boqo,

∂t(φbwsw) +∇ · (bwvw) = bwqw,

∂t[φ(bgsg + borsso)] +∇ · (bgvg + borsvo) = bgqg + borsqo.

• Darcy’s law : vα = −(krα/µα)K(∇pα − ραg∇z)
• Pore volume change : φ− φ0 = b∇ · u+ 1

N
(pb − p0)

• Constitutive relations for Biot pressure pb = pb(p, s) and also pα (through capillary

pressures)

13/16



Implementation using state functions

• We introduce two StateFunctionGrouping
• MechPropertyFunctions : for the evaluation of mechanical variables

• BiotPropertyFunctions : for the evaluation of the terms related to the couplings

• In MechPropertyFunctions, we find use

• FaceNodeDisplacement : computes the displacement at the face node location from the

cell values

• ConsistentDiv : computes the consistent divergence (obtained from the consistent

gradient reconstruction)

• Strain : computes the strain

• Stress : computes the stress

• In BiotPropertyFunctions, we find use

• Dilatation : computes the dilation term (÷u term)

• BasePoreVolume : capture the pore volume from the reservoir model

14/16



Compositional model

• We implement BiotCompositionalModel using the statefunction mechanism.

• We recover the state function of the generic compositional model

model = setupStateFunctionGroupings@GenericBlackOilModel(model, varargin{:});

• We augment or modify them as follows

fluxprops = model.FlowDiscretization;
biotprops = model.BiotPropertyFunctions;
pvtprops = model.PVTPropertyFunctions;
mprops = model.MechPropertyFunctions;

pv = pvtprops.getStateFunction('PoreVolume');

biotprops = biotprops.setStateFunction('BasePoreVolume' , pv);
biotprops = biotprops.setStateFunction('Dilatation' , BiotBlackOilDilatation(model));
pvtprops = pvtprops.setStateFunction('PoreVolume' , BiotPoreVolume(model));
mprops = mprops.setStateFunction('FaceNodeDisplacement' , BiotFaceNodeDisplacement(model));
fluxprops = fluxprops.setStateFunction('PermeabilityPotentialGradient', MpfaKgrad(model));
fluxprops = fluxprops.setStateFunction('PhaseUpwindFlag' , MpfaPhaseUpwindFlag(model));

• In this way, we overwrite the following statefunction of the generic blackoil model

PoreVolume , PermeabilityPotentialGradient , PhaseUpwindFlag

but otherwise inherit all its functionalities - with minimal code intrusion.

15/16



coupled compositional simulation

• We consider a skewed grid (see MRST book) and a standard injection scenario.

• We consider coupling with both MPFA and TPFA.

• We can observe the consistency error on the mechanical part of the solution

MPFA TPFA

saturation

rock dilatation

coefficient

16/16


