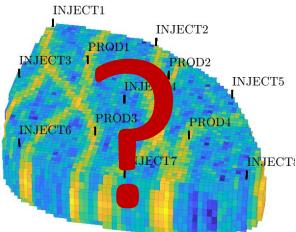


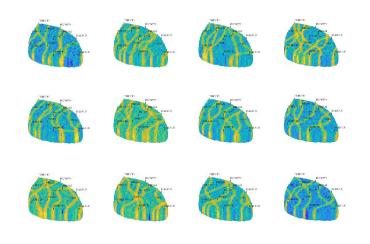
i.

ENSEMBLE SIMULATIONS IN MRST USING THE ENSEMBLE MODULE

1

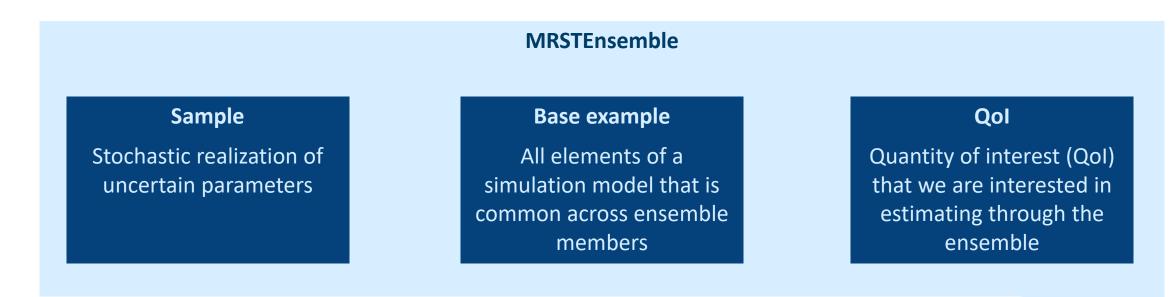
Håvard Heitlo Holm, Øystein Strengehagen Klemetsdal September 15th 2021 MRST Symposium


Uncertainties in subsurface simulation


• Numerical model of subsurface reservoir with parameters θ transforming the initial state x_0 into well responses y at time t:

$$y = G(t; x_0, \theta)$$

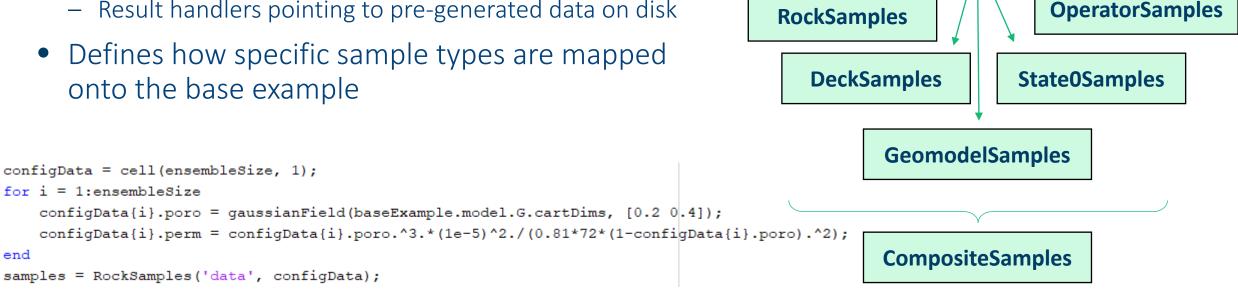
- x_0 , θ not really known, and therefore y is subject to uncertainty.
- Classical Monte Carlo methods give mean and variance of $\bar{y} = \sum_{i=1}^{N_e} y_i$ and $Var(y) = \sum_{i=1}^{N_e} (y_i \bar{y})(y_i \bar{y})^T$ in which


with
$$x_{0,i} \sim p(x_0)$$
 and $\theta_i \sim p(\theta)$.

 \bigcirc

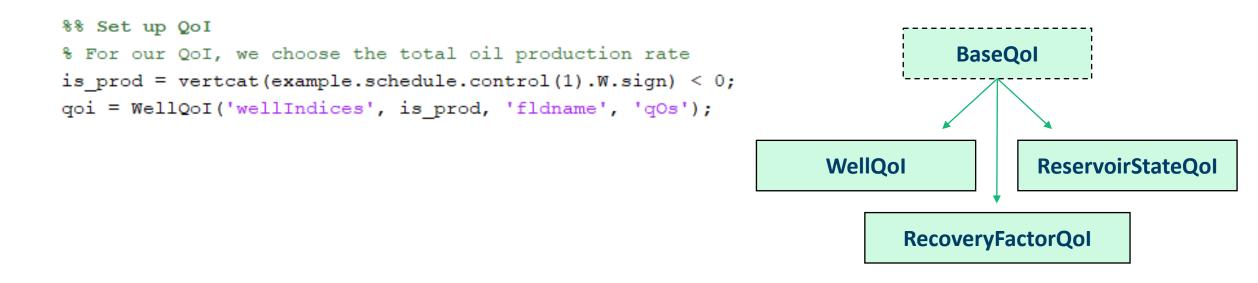
ensemble = MRSTEnsemble(baseExample, samples, qoi, varargin{:});

- Defines everything that is common to all ensemble members
- Instance of MRSTExample from the example-suite module
 Contains model, state0, schedule, and more
 getPackedSimulationProblem()
- Build ensembles from existing examples, or easily define your own
 → Full simulation models defined in dedicated functions

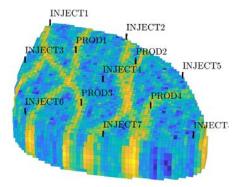

```
baseExample = MRSTExample('egg_wo');
```


for i = 1:ensembleSize

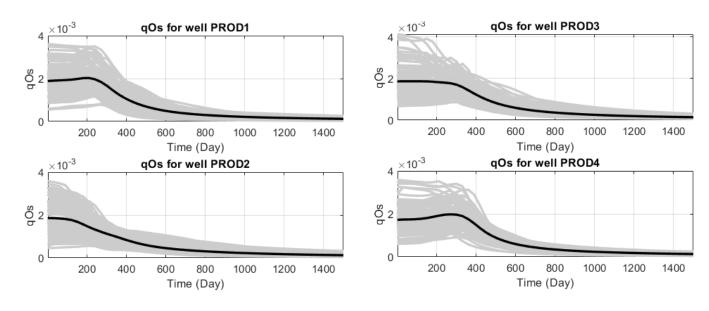
end


- The stochastic component that makes each ensemble member unique
- Can be defined in three ways:
 - Cell array of precomputed data
 - Function that generate stochastic realizations on the fly —
 - Result handlers pointing to pre-generated data on disk
- Defines how specific sample types are mapped onto the base example

BaseSamples



- Storing all data from all simulated ensemble members can be very expensive
- Define subsets of the simulation results that we want to estimate

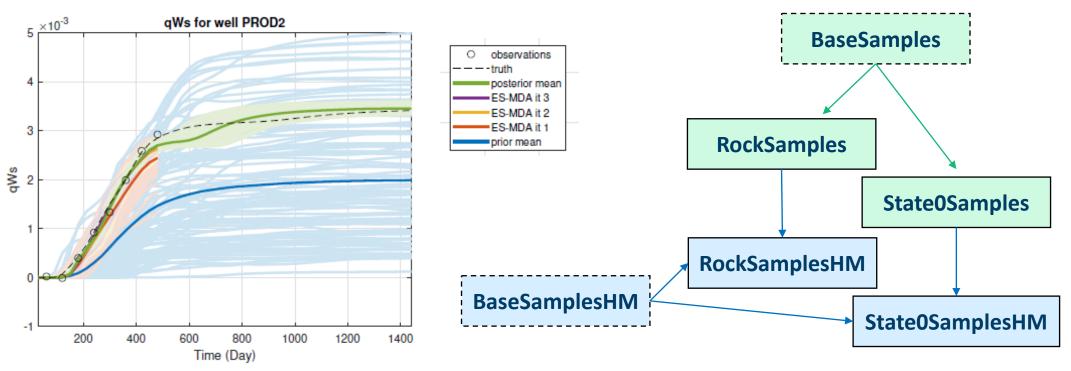


Example: Running the Egg ensemble

- The Egg model [1] is highly channelized wateroil reservoir
- 101 ensemble realizations with different permeability

1		%% Egg ensemble example
2	-	mrstModule add ad-core ad-props ad-blackoil example-suite ensemble
3		
4		<pre>%% Set up base problem</pre>
5	-	<pre>example = MRSTExample('egg_wo');</pre>
6		<pre>% Extract interesting part of the schedule</pre>
7	-	<pre>steps = cumsum(example.schedule.step.val) <= 1500*day;</pre>
8	-	<pre>example.schedule.step.val = example.schedule.step.val(steps);</pre>
9	-	<pre>example.schedule.step.control = example.schedule.step.val(steps);</pre>
10		
11		<pre>%% Set up samples through generator function</pre>
12	-	<pre>generatorFn = @(problem, seed) getDeckEGG('realization', seed-1);</pre>
13	-	processProblemFn = @(problem) getSubSchedule(problem, steps);
14	-	<pre>samples = DeckSamples('generatorFn' , generatorFn ,</pre>
15		'processProblemFn', processProblemFn,
16		'num' , 101);
17		
18		%% Set up QoI
19	-	<pre>is_prod = vertcat(example.schedule.control(1).W.sign) < 0;</pre>
20	-	<pre>qoi = WellQoI('wellIndices', is_prod, 'names', 'qOs');</pre>
21		
22		<pre>%% Set up ensemble and run simulations</pre>
23	-	ensemble = MRSTEnsemble(example, samples, qoi,
24		<pre>'simulationStrategy', 'background');</pre>
25	-	ensemble.simulateEnsembleMembers('plotProgress', true);
26		
26 27		%% Plot the QoI

[1] Jansen, J. D., et al., "The egg model – a geological ensemble for reservoir simulation." Geoscience Data Journal 1.2 (2014): 192-195.


Simulation strategies when running ensembles

Standard MRST and MATLAB

- 'Serial' No parallelization, good for debugging
- 'background' Spawn MATLAB sessions in the background, let the OS distribute the available resources on your system
- 'parallel' MATLAB launches scripts to parallel workers using the 'batch' function from the Parallel Computing Toolbox. Distributed memory parallelization
- 'spmd' Creates parallel workers that share the ensemble member executions. Shared memory parallelization.

- Multi-level Monte Carlo
- History matching (HM)
 - Problem description: $p(\text{samples}|\text{qoi}) \propto p(\text{qoi}|\text{samples})p(\text{samples})$
 - Additional HM classes that inherits from the ensemble classes
 - Reuse ensemble functionality but extend with functionality required for ES-MDA

Technology for a better society