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Linear elasticity: the MRST vemmech module
Example: uniaxial compression of cylinder
- We apply a compressional load along the axis of a cylinder
- The amount of compression depends on whether lateral boundary conditions are free or 

laterally constrained ("roller")
- The ratio of lateral expansion to axial compression is defined by Poisson's parameter.  This 

simple exercise may thus be used as a basic validation of the numerical scheme.

Full example with source code available in Chapter 14 of "Advanced Modelling with
the MATLAB Reservoir Simulation Toolbox (MRST), Cambridge Core (forthcoming)

The cylinder geometry is represented by the 
grid 'G', and boundary conditions (uniaxial 
compression) by the 'el_bc' object. 
In the code snippet on the right, we define 
the stiffness matrix using the 'Enu2C' 
command, then call 'VEM_linElast' to 
compute displacements. 

The cylinder grid and the resulting 
deformation is here shown (side view) for two 
different choices lateral boundary conditions. 
In the first case (middle), lateral boundaries 
are free to expand.  In the second case 
(right), lateral boundaries are constrained, 
leading to less vertical compression for a 
given vertical load.

With unconstrained lateral boundaries, we 
compute the amount of vertical compression 
and lateral expansion, as well as the ratio.  
We verify that this corresponds well with the 
value of Poisson's ratio (nu) used in the 
specification of the stiffness tensor C.  (The 
small discrepancy mainly due to our grid not 
being a perfect cylinder).

• The linear theory allows for the computation of (small) displacements, stresses and strains as a 
response to external loads and body forces.

• In MRST, the function VEM_linElast computes the mechanical deformation.
• The problem is specified in terms of the spatial MRST grid, boundary conditions (forces/constraints) 

and body forces.
• The virtual element method is used in the discretization -> allows use on "difficult" grids.

The linear elastic equations:
'u' represents the spatial (infinitesimal) displacement 
field from an initial configuration.  F is the deformation 
gradient tensor.

The infinitesimal strain tensor є is defined as the 
symmetric part of F.

Generalized Hooke's law specifies a linear relationship
between the strain (є) and stress (ơ) tensor.  The linear 
relationship is described by the rank-4 stiffness tensor 
C.  For "simple" materials, C can be uniquely specified
in terms of two elastic parameters, such as Young's
modulus and Poisson's ratio.

The static balance of forces is expressed in terms of 
the divergence of the strain tensor, and the body force 
vector 'b'.  In addition, boundary conditions must be 
specified.

The VEM_linElast function:

u = VEM_linElast(G, C, el_bc, load);

computed displacement field MRST spatial grid to define shape 
and subdivision of domain.

Stiffness tensor (six coefs. per cell in grid).

Boundary conditions and body 
force data structures.



• The theory of poroelasticity couples the linear elastic system with the equations of fluid flow in a 
porous medium.

• Two-way coupled system: mechanical deformation affect pore volume, and changes in the pore 
pressure field affects mechanical deformation.

• In MRST, coupled mechanics and flow can be modeled using the ad-mechanics module, combining
the linear elasticity computations of VEM_linElast with one-phase or multi-phase flow equations.

• The resulting equations can be solved as a single, fully-coupled system, or in an iterative manner 
using operator splitting.

Coupled mechanics and flow: the ad-mechanics module

Full example with source code available in Chapter 14 of "Advanced Modelling with
the MATLAB Reservoir Simulation Toolbox (MRST), Cambridge Core (forthcoming)

Example: Mandel's problem
- Archetypical example of a poroelastic problem exhibiting non-monotonic pressure behavior that

cannot be accounted for without considering the two-way coupling between mechanics and flow.
- Infinitely long, rectangular slab of poroelastic material interposed between two parallel, rigid an 

impermeable plates.
- Free lateral movement, and free flow of fluid across lateral boundaries.
- Normal load applied along the y-axis.  We measure the evolution of fluid pressure.

The basic, poroelastic equations:
• Modify equations of linear elasticity by adding pressure term to the stress tensor.
• Modify equations of fluid flow by adding a strain term to the accumulation term.
• In both cases, Biot's parameter α is used as a coupling multiplier.

Stress tensor from linear elasticity modified by adding a pressure 
term, p. Biot's parameter is represented by α.

The modified balance-of-forces equation.  Compare 
with its linear elastic counterpart on the previous page.

Darcy-based flow equation for one-phase flow in porous 
media.  (Note that ad-mechanics also supports multi-
phase, nonlinear flow).  The equation is coupled to the 
mechanics system though it's first term.  Time 
derivatives are written using the dot notation.

Models for coupled mechanics/flow in ad-mechanics:

Illustration of the setup of the problem.  The fluid-filled
porous medium is drawn in grey, and interposed between
two rigid plates.  The medium extends infinitely in the z-
direction.  A force F is applied normal to the plates at t=0.

Pressure profile inside the (right half of) poroelastic slab
after simulating Mandel's problem for a period of one
characteristic time.  Note that in order to compute
characteristic time and analytical solution, we need to 
compute several poroelastic constants (see next page) 
derived from those used to specify the original problem.

Pressure profile inside (right half of) slab for different 
multiples of characteristic time.  Note that between time 
τ=0.01 and τ=0.1, we observe a pressure increase at the
middle of the slab, before dropping again at later times.  
This non-monotonous pressure evolution is referred to as 
the Mandel-Cryer effect.



Computing poroelastic parameters
Poroelastic parameters:
• A large number of poroelastic parameters have been defined in literature.
• They are interrelated; a small subset is enough to specify all the others. (Chosen 

parameter values must be internally consistent).
• Which ones are required or useful is highly problem-dependent.
• It can be hard to know how to compute one selection of parameter from a given 

different selection.

poroParams utility function:
• ad-mechanics utility function that computes all poroelastic parameters 

from an arbitrary set of (compatible) input parameter values.
• User inputs porosity, as well as any chosen set of parameter values.
• Function computes all other values fully defined by the provided values.

Table: List of various poroelastic parameters one 
may encounter in literature, roughly sorted by 
category

porosity
known poroelastic parameters
specified by user
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These values could 
not be computed 
from the given 
input

By also specifying 
shear modulus 
(G), all 
poroelastic
parameters 
could now be 
computed


