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Scopes Computational tools specifically developed for
petroleum  engineering applications are potentially

transferrable to simulating contamination processes taking
place in soil-water systems. Since operational conditions (e.g.,
confinement, consolidation, solid surface properties, and
operating pressures) can be different from those encountered
in a deep reservoir, feasibility studies should aim at assessing
the feasibility of such applications.

Aims : We assess the ability of the MRST toolkit (Lie,
2019) to simulate soil contamination by light non-
aqueous phase contaminants (LNAPL). We did so upon
relying on a compositional formulation of the governing
equations employed for reservoir simulations.

Key objectives : (i) compare the MRST solution against
that provided by other specialized software packages
and (i) discuss uncertainties arising from the
parameterization of the system.

Assumptions : (compositional model): (i) the components
form at most three phases of vapor hydrocarbon (gas), liquid
hydrocarbon (oil) and water; and (ii) there is no mass
exchange between the water phase and the hydrocarbon
(gas-oil) phases.

Mathematical model :

We rely on an Equation-of-State (EOS) based compositional
formulation (Moyner and Tchelepi, 2017 for details) of the
system of equations and assume hydrocarbon migration in
isothermal conditions.
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Workflow

- Our study is keyed to the assessment of uncertainties associated
with simulation of multiphase-multicomponent flow migration in
contaminated sites.

- We do so by constructing and calibrating a numerical simulation
models and evaluating their capabilities (in a sensitivity-based
calibration framework) to reproduce some predefined “base-case”
responses.

- We rely on stochastic approaches and advantage from acceptance-
rejection sampling (ARS) algorithm to perform calibration of the
simulation model with an objective to reproduce base-case values.

- We take advantage of Polynomial Chaos Expansions (PCE) as
surrogate models to perform ARS calibrations in reduced
computational costs.
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We rest on problem n. 7 of the TMVOC user guide
(Pruess and Battistelli 2002) to assess the capability
of MRST to characterize LNAPL transport in the
subsurface.

e porosity is setto 30 %

e horizontal and vertical permeability are set to 4
darcy and 1 darcy, respectively.

e Tortuosity is set to zero.

The analyzing problem is a sequence of
three stages :

(1) generation of steady flow prior to
NAPL spill,

(2) NAPL spill in the unsaturated zone,

(3) redistribution of NAPL.
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PCA-based Sensitivity Analysis/
ARS-based Calibration
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Concluding Remarks:

- Our study is keyed to the assessment of uncertainties associated with simulation of multiohase-multicomponent flow
miqgration in contaminated sites.

- We focused on the appraisal of the joint role of relative permeability and capillary pressure on responses of a
compositional reservoir simulation practices.

- Simulation results show that LNAPL Spill hardly influence the saturated zone and LNAPL contaminant phase (as a whole)
tend to stay on (or near) the aquifer surface and will not sink to the impermeable bedrock. It will float almost entirely
upon the water phase as a film, without significant penetration into the water phase.

- Results show a symmetrical distribution of LNAPL in the unsaturated zone (in horizontal direction). In the saturated zone
the total VOC mass fraction is shifted along groundwater flow direction.

- In our test case, uncertainties are mainly linked to the estimations of relative permeabilities during both drainage and
imbibition conditions; when comparing to the effects of capillary pressures.




Concluding Remarks:

- Molar fraction of each VOC in the NAPL phase is analyzed. Results show that the amount of each component is primarily
related to the mass flux entering in the aquifer, and the variations along the vertical direction are a consequence of the
chemical properties of the compounds.

Calibrated model can generally provide reasonable estimation of molar fractions of alkanes (n-pentane and n-decane);
hence reference values for molar fractions of alkyl VOCs are overestimated (benzene, toluene, p-xylene, n-
propylbenzene).
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