Contribution Title

Name of First Author and Name of Second Author

Abstract Each chapter should be preceded by an abstract (no more than 200 words)
that gives the name of the module and summarizes the purpose for which it can be
used. The following is a plausible description of a module from MRST:

The multiscale restricted-smoothing basis (MsRSB) method is the current state-of-
the-art within multiscale methods. MsRSB is very robust and versatile can either
be used as an approximate coarse-scale solver having mass-conservative subscale
resolution, or as an iterative fine-scale solver that will provide mass-conservative
solutions for any given tolerance. The performance of the method has been demon-
strated on incompressible 2-phase flow, compressible 2 and 3-phase black oil mod-
els, as well as compositional models. It has also been demonstrated that the method
can utilize combinations of multiple prolongation operators, e.g., corresponding to
coarse grids with different resolutions, adapting to geological features, adapting to
wells, or moving displacement fronts. This chapter explains the basic ideas of the
MsRSB method, including methods to construct coarse partitions, prolongation, and
restriction operators, reduction of the fine-scale flow equations to a coarse-scale
system, and formulation as part of a two-level iterative solver. We outline the key
functions in the module and show various examples of how the method can be used
as an iterative solver for incompressible and compressible flow on 2D rectilinear
grids, unstructured grids, and 3D stratigraphic grids.

The abstract will also appear online at www.SpringerLink.com and be available
with unrestricted access. This allows unregistered users to read the abstract as a
teaser for the complete chapter.

Name of First Author
Name, Address of Institute, e-mail: name@email .address

Name of Second Author
Name, Address of Institute e-mail: name@email .address

www.SpringerLink.com
name@email.address
name@email.address

2 Name of First Author and Name of Second Author

1 Organizing Your Content into Sections

Use the template authorsample.tex together with the document class svmult.cls
to style the various elements of your chapter content.

1.1 Subsection Heading

Instead of simply listing headings of different levels, we recommend to let ev-
ery heading be followed by at least a short passage of text. Further on, please
use the IATEX automatism for all your cross-referencess and citations. That is, use
\ref{<mylabel>} for cross-references and \cite{<mylabel>} for bibliographic
references. Try to make your reference- and citation labels as unique as possible to
avoid compilation conflicts with other chapters in the book, e.g., by adding the name
of your module to each label \1label{sec:msrsb-mylabel}, and so on.

Please note that the first line of text that follows a heading is not indented, whereas
the first lines of all subsequent paragraphs are.

1.1.1 Subsubsection Heading

The same rule applies here: always let a heading be followed by a short text.

Paragraph Heading

The same rule applies here: always let a heading be followed by a short text.

Subparagraph Heading

The same rule applies here: always let a heading be followed by at least a short
passage of text.

Run-in Heading Boldface Version Some arbitrary text that follows after the run-in
heading to make a sentence that covers more than a single line.

Run-in Heading Boldface and Italic Version A collection of words comes here to
make the text following the heading spread out over more than a single line.

Run-in Heading Displayed Version
And this should be the last sectioning command.

Page: 2 job: authorsample macro: svmult.cls date/time: 29-May-2019/13:52

Contribution Title 3

1.2 Emphasized Paragraphs

If you want to emphasize complete paragraphs of texts we recommend to use
the newly defined class option graybox and the newly defined environment
svgraybox. This will produce a 15 percent screened box ’behind’ your text.

The svmult class also offers other environments to emphasize certain paragraphs

\begin{trailer}{Trailer Head} ... \end{trailer}
\begin{question}{Questions} - \end{question}
\begin{important}{Important} - \end{important}
\begin{warning}{Attention} - \end{warning}
\begin{tips}{Tips} - \end{tips}
\begin{overview}{Overview} - \end{overview}

\begin{backgroundinformation}{Background Information}

\end{backgroundinformation}

We strongly suggest that you avoid using any of these. In particular, we request that
you do not use the environment for computer code:

\begin{programcode}{Program Code}
\begin{verbatim}...\end{verbatim}
\end{programcode}

but instead use the setup defined in mrstbook.sty, which is discussed in more
detail in Section 5 on page 9.

2 Lists

There are three different types of list environments: numbered lists, unnumbered
lists, and definition lists.

Numbered Lists
For typesetting numbered lists we recommend to use the enumerate environment —
it will automatically rendered in line with the preferred layout.

1. Livelihood and survival mobility are oftentimes coutcomes of uneven socioeco-
nomic development.

a. Livelihood and survival mobility are oftentimes coutcomes of uneven socioe-
conomic development.

b. Livelihood and survival mobility are oftentimes coutcomes of uneven socioe-
conomic development.

Page: 3 job: authorsample macro: svmult.cls date/time: 29-May-2019/13:52

4 Name of First Author and Name of Second Author

2. Livelihood and survival mobility are oftentimes coutcomes of uneven socioeco-
nomic development.

Unnumbered Lists
For unnumbered list we recommend to use the itemize environment — it will
automatically be rendered in line with the preferred layout.

* Livelihood and survival mobility are oftentimes coutcomes of uneven socioeco-
nomic development, cf. Table 1.

— Livelihood and survival mobility are oftentimes coutcomes of uneven socioe-
conomic development.

— Livelihood and survival mobility are oftentimes coutcomes of uneven socioe-
conomic development.

* Livelihood and survival mobility are oftentimes coutcomes of uneven socioeco-
nomic development.

Definition Lists

If you want to list definitions or the like, we recommend to use the enhanced
description environment— it will automatically rendered in line with the preferred
layout.

Type 1 That addresses central themes pertainng to migration, health, and disease.
In Section 1, Wilson discusses the role of human migration in infectious
disease distributions and patterns.

Type 2 That addresses central themes pertainng to migration, health, and disease.
In Section 1.1 on page 2, Wilson discusses the role of human migration in
infectious disease distributions and patterns.

3 Mathematical Formulas

Use the standard equation and equation® environments to typeset your equations
in numbered form, e.g.,
axb=c, @))

or in nonnumbered form
axb=c,

using proper punctuation at the end of each equation in either case. For multiline
equations we recommend to use the align, environment from the amsmath package

1 /‘ 1
v
d-a ¢ -y~

[oe] [oe] d_a
(d—a+l)/%drs(d—a+l)/rrd_mdr. 6

d(y) d(y)

VUL ()|

dﬂ(§)=/wd#(§)

Page: 4 job: authorsample macro: svmult.cls date/time: 29-May-2019/13:52

Contribution Title 5

You can also typeset this equation with the multline environment
[VUA ()| < dl /'V — | du(é) = / %du(f)
@ 13 &=yl

:(d—a+1)/%drs(d—a+l)/}:l_mdr, 3)

d(y) d(y)

or using split inside an equation environment

o=t] [
Vil < g [V| 0 = [e

+1)/ (g(z:rz))d <(d- ‘“’1)/ da ¢

d(y) d(y)

“)

For consistent notation throughout the book, we suggest that you use \vec{} for
vectors in physcial space and \tens{} for tensors, i.e.,

-KVp, for single-phase flow,
V-v=g, = . (5)
—KA(S)Vp, for multiphase flow.
For discrete vectors and matrices, one should rather use \vect{} and \mat{},
div(v) = g, v = —Kgrad(p). (6)

Here, we have also used the discrete operators \ddiv and \dgrad defined in the
mrstbook class.

4 Figures and Tables

Tables should, to the extent possible, be constructed without vertical lines and with
as few horizontal lines as possible inside the tabular. The tabular should preferably
extend across the whole line width. You can ensure this by either using paragraph
columns with a specified width, or by altering the column separation. Likewise, if
need be, you can set the space between rows by redefining:

\setlength{\tabcolsep}{5pt} % default value is 6pt
\renewcommand{\arraystretch}{1.5} % default value is 1.0

An alternative way to adjust the rule spacing is to add \noalign{\smallskip}
before or after the \hline and \cline{i-j} commands, as done in Table 1.

Use \includegraphics from the graphicx package to include figures. To
simplify the processing of the full book and make the result as good as possible:

Page: 5 job: authorsample macro: svmult.cls date/time: 29-May-2019/13:52

6 Name of First Author and Name of Second Author

1. Place all your graphics files in a separate directory called £igs/ (or, if necessary,
in subdirectories thereof).

2. Restrict your use of graphics formats to png, pdf, and encapsulated postscript.

3. For plots exported from MATLAB/MRST:

» figures that primary contain lines, text, bar plots, pie charts, etc., should be
exported to a vector graphics format like PDF or encapsulated PostScript.

* plots containing 2D or 3D graphics constructed with MRST commands like
plotGrid and plotCellData are best exported to PNG.

» the export_fig package from MATLAB File Exchange is a useful tool that
simplifies exporting plots.

4. Each figure should ideally include a single graphics file using a consistent and
easy identifiable naming scheme like ausamp-fig-01.pdf, ausampFigQ01.png,
and so on. In particular, if you make complicated figures that combine multiple
graphics files and/or use complex Tikz/PGF/pgfplot commands (as in Figure 1),
we request that you precompile and include these figures as separate files. The
IATEX standalone environment is very useful to this end.

5. Try to crop away unnecessary whitespace. Examples of useful tools to this end
include image manipulation programs like gimp or command-line tools like
mogrify -trim and pdfcrop on linux.

6. Try to avoid enforcing strict placement of figures. What you produce is not a
camera-ready document and using constructions like \begin{figure} [h] (and
even stricter versions) leaves I&TEX little room to optimize pagebreaks and float
placements, and makes the typesetters’ job more difficult.

By default, the figure caption should be placed under the figure. However, if
the figure only occupies a fraction of the text width, you can consider using the
sidecaption, as shown in Figure 1, to place the caption on the left side of the
pager. Beware that the result may not look very visually appealing and that this
declaration only works if the width of the included graphics is less than 7.8 cm. The
caption text will be set raggedright if the width of the caption is less than 3.4 cm.

Two figures can also be arranged side-by-side inside a single figure environ-
ment by using the commands \leftfigure and \rightfigure, which place the
corresponding plots inside two boxes that each covers approximately 46% of the
current text width, and flash the two to the left and right, respectively, as shown in
Figures 2 and 3. The code for this is as follows:

Table 1 Please write your table caption here

Classes Subclass Length Action Mechanism

Translation mRNA“ 22 (19-25) Translation repression, mRNA cleavage
Translation mRNA cleavage 21 mRNA cleavage

Translation mRNA 21-22 mRNA cleavage

Translation mRNA 24-26 Histone and DNA Modification

¢ Table footnote (with superscript)

Page: 6 job: authorsample macro: svmult.cls date/time: 29-May-2019/13:52

Contribution Title 7

Fig. 1 If the width of the
figure is less than 7.8 cm, use
the sidecaption command

to flush the caption on the left Water
side of the page. If the figure
is positioned at the top of the '
page, align the sidecaption oil
with the top of the figure. To
achieve this, you simply need
to use the optional argument Grain
[t] with the sidecaption
command.
u(6) U(e)

u(s) 0(6) u(s) 0(6)

0(5) 0(5) SU(3) 0(5) 0(5) SU(3)
0(3) 0(3) 0(3) 0(3) 0(3) 0(3)
Fig. 2 This is the caption of the Fig. 3 This is the caption of the
figure shown to the left. figure shown to the right.

\begin{figure}

\begin{minipage}{\textwidth}
% Options are: c=center, l=flush left, r=flush right, s=spread
\leftfigure[l]{\includegraphics[width=.35\textwidth]{..}}\hfill%
\rightfigure[r]{\includegraphics[width=.35\textwidth]{.}}
\end{minipage}
\twocaptionwidth{.35\textwidth}{.35\textwidth}
\leftcaption{This is the caption..} \label{fig:left}
\rightcaption{This is the caption ..}\label{fig:right}
\end{figure}

Notice that the captions are specified outside of the minipage environment, as
suggested by Springer’s Reference Guide. However, it is also possible to place
the captions inside the minipage, stack multiple rows of figures, and use different
dimensions for the minipage environments. As with the use of \sidecaption, these
commands should nevertheless be used with some caution to ensure nice-looking
typography. In a similar way, one can use the \subfigures command to subnumber

Page: 7 job: authorsample macro: svmult.cls date/time: 29-May-2019/13:52

8 Name of First Author and Name of Second Author

multiple captions alphabetically within a single figure-environment, as shown in
Figure 4a and 4b. Another alternative is to use a single caption that includes the
description of each of the two subfigures like in Figure 5. Which of these two
options one should use to create subfigures is left to each author to decide.

1 ‘ ‘ 1
— kpw —— ko
0.8 |- s 0.8 |- s
0.6 [s 0.6 [s
0.4 |- g 0.4 |- g
0.2 - . 0.2 - .
0 ! ! 0 \
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Fig. 4a Caption for the first subfigure. Fig. 4b Caption for the second subfigure.
1 ‘ ‘ 1
— kpw —— ko kro
0.8 |- s 0.8 |- s
0.6 [s 0.6 [s
0.4 - . 0.4 - .
0.2 - . 0.2 - .
0 ! ! 0 !
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(@ (b)

Fig. 5 Figure caption describing two subfigures. (a) The left subfigure. (b) The right subfigure.

If you copy figures, tables, or text passages from other works, you must obtain
permission from the copyright holder (usually the original publisher). Please
enclose the signed permission with the manuscript. The sources must be ac-
knowledged either in the captions, as footnotes or in a separate section of the
book.

Page: 8 job: authorsample macro: svmult.cls date/time: 29-May-2019/13:52

Contribution Title 9

5 Program Codes

The main purpose is to teach the reader new models and numerical methods that go
beyond those discussed in the original MRST book [2]. To this end, it is particularly
important that you, as a author, also focus on presenting your implementation in way
so that the reader not only can use your code to solve the problems you have designed
it for, but also can modify and extend your code to fit his/her own purposes.

Notice that when you submit a chapter for review and possible inclusion in
this book, you must also provide a full, functional code for the whole module
and all examples discussed in the text. This implies, in particular, that your
code can only be based on functionality that is already available in a public
version of MRST or functionality described by another chapter of this book. In
the latter case, you also need to provide this code as part of your submission.
During the peer review, our reviewers should be able to recreate the results
of all examples discussed in your chapter. They will also perform a review of
how the module is organized and how it is documented. They will, however,
not be asked to perform an extensive code review.

5.1 Creating a Module

As a general rule, each chapter of this book should describe a specific add-on
module to MRST, or in other words, the code you present should be organized as
an MRST module. A module in MRST is strictly speaking a collection of functions,
object declarations, and example scripts located in a folder. Each module needs to
have a unique name and reside in a different folder than other modules. Our only
requirements are that the code is well tested and documented in a format that does not
deviate too far from that used elsewhere in MRST, uses a clear naming convention
that avoids potential clashes with other parts of MRST, and contains a few tutorial
examples that outline the main functionality and explain the most common syntax.
The code also needs to contain a clear specification of copyright and the license
under which it can be used (the GNU General Public License). In addition, we also
require that your code does not use functionality from MATLAB’s many toolboxes,
which potential users may not have access to.

Although you are free to organize the code as you like, best practices suggest that
you organize the module using a few standard subfolders

examples: Should contain the worked examples that outline the key functionality
of the module, illustrate how you wish the code should be used, and present the
strengths, but also potential weaknesses, of your code. If your examples require
data, these must also be included, preferably in a separate data folder.

Page: 9 job: authorsample macro: svmult.cls date/time: 29-May-2019/13:52

10 Name of First Author and Name of Second Author

models: If your code is based on the AD-OO framework from MRST, your model
classes should be found here.

utils: Additional functionality you expect that the user will need to call. Any
internal functionality you do not expect that any user will call directly, should
preferably be placed in subfolders of utils that are clearly marked as such, e.g.,
called internal or the special private folder, which lets MALAB limit the
scope of these functions.

Other standard folder names include data, src, fluids, and properties. Each
folder should preferably also contain a file Contents.m that outlines its content.
Our reviewers will be asked to evaluate to what extent potential contributions satisfy
these guidelines.

To the extent possible, your code should follow the coding standards that have
been weakly imposed on the rest of MRST:

* Use camelCase to name functions, scripts, and variables. Use CamelCase to
name objects.

* Ensure that your functions have unique names so that they do not unintentionally
overload other functionality from MATLAB or MRST. If you insist on overloading
function names, be warned that this will only work properly if the user loads your
module after the other module that defines the same name.

* Use standard names for common quantities like G for the grid, rock for structs
containing petrophysical data, hT or T for transmissibility, bc for boundary con-
ditions, state for reservoir states, W for well structures, and so on.

» Ensure that your code has a certain degree of backward compatibility. In particular,
try to avoid using very recent functionality so that your module only works with
the most recent releases of MATLAB (and MRST).

e Document all functions (and objects) you expect that the user will call from
his/her own scripts. For functions, describe the input and output data and what
the function does, and provide references to related functions that offer similar
functionality.

5.2 Tutorial Examples

Good tutorials are essential if you want other users of MRST to pick up and use
your code. The intention is that this book should follow the important scientific
principle of complete reproducibility, which in our setting means that the reader of
the book should be able to use your code to reproduce the essential content of all
examples presented in each chapter!. We thus require that all numerical examples
are supported by complete source code written using code sections or live scripts:

! In saying this, we understand that discrepancies may appear as a result of using different MATLAB
or MRST releases, in particular when it comes to plotting, and that a certain manual postprocessing
is inevitable to create publication-quality figures

Page: 10 job: authorsample macro: svmult.cls date/time: 29-May-2019/13:52

Contribution Title 11

Most modules in MRST present their tutorials in the form of MATLAB scripts
with code sections. Code sections, also known as code cells or cell mode, contain
contiguous lines of code you want the reader/user to evaluate as a group in a
MATLAB script, beginning with two comment characters (%%). Typically, a code
cell will perform a specific computation, make a plot, etc., and have a header and
a comment above the code that explains in sufficient detail what the cell does
and/or discusses its result.

MATLAB live scripts and live functions (*.mlx) are interactive documents that
combine MATLAB code with formatted text, equations, and images in a single
environment called the Live Editor. In addition, live scripts store and display
output alongside the code that creates it. This functionality is relatively new
in MATLAB (live scripts in versions R2016a and above, and live functions in
versions R2018a and above), and has so far not been used in any public MRST
modules. We nevertheless welcome its use herein, as long as it helps the reader
understand your tutorials. Notice, however that using live scripts/functions will
limit backward compatibility, and it may therefore be advantageous to also include
standard MATLAB scripts using code sections.

In designing your tutorials, you should consider the following:

1.

Make sure that each tutorial loads all the necessary modules from MRST, includ-
ing your current module, and that it does not specify paths that are specific to
your own computer.

Section the example into natural entities and make sure that you present the
reader with plots of quantities he/she may want to see. Typical examples: if you
load or create a simulation model, the user will typically want to see the grid,
petrophysical parameter, well positions, fluid properties, etc.

If the tutorial requires extensive setup or preprocessing that is not essential to the
main narrative, you should factor these parts out to a separate function/script. If
the setup is very time consuming, you should consider providing a *.mat file
with the results, so that the user can skip this part when studying your example,
but also have the ability to go back and redo the computations leading up to the
contents of the *.mat file if necessary.

. Good tutorials should run within a few minutes at most. If this is not possible, you

should warn the user and provide some kind of feedback that measures progress,
e.g., by reporting iterations/time steps, plotting partial results, or displaying a
MATLAB waitbar.

If your tutorial relies on one or more data sets, make sure that these are available
and come with a license that allows the reader to access and use them.

If your tutorial relies on stochastic data and exhibits significant variations with
these, you should enable the user to specify the random seed (rng(seed)) you
used to obtain the results presented in the book.

. In many cases it is tempting to make parameter-dependent tutorials, in which the

user needs to specify one or more input parameters to choose among different
behavior and/or setups. Warning the user about this in at the top of the tutorial
is generally a good idea, but is unfortunately not always sufficient, since users

Page: 11 job: authorsample macro: svmult.cls date/time: 29-May-2019/13:52

12 Name of First Author and Name of Second Author

of MRST often attempt to run tutorials before reading the details. As a general
rule, you should therefore either supply reasonable defaults choices and/or make
sure that the code checks that the input parameters have been set, e.g., using the
exist function.

5.3 Presenting Code Excerpts

The chapters of this book are expected to follow a similar type of presentation as in the
original MRST book [2]; that is, the presentation should intermingle the discussion
of methods and examples with excerpts from MATLAB and MRST codes. For this
purpose, you should use functionality from the 1istings package, which has been
setup inmrstbook. sty to provide semantic syntax highlighting as in the MATLAB
editor:

1. For inline code excerpts, you can use the \mcode command, which will give
you a different font and color highlighting that reflects the MATLAB syntax:
twophaseJacobian(G, state,rock, fluid, 'pnl',pvl,..). Variables and
names of functions and scripts can also be distinguished from the rest of the
text by using the \verb and \texttt commands, but these do not give seman-
tic highlighting. In some rare cases, it may be necessary to use the underlying
\lstinline| | command, primarily if the code you wish to display contains
comment characters: % this is an inline comment.

2. Displayed code excerpts can be included with the 1stlisting environment. As
an example, the following commands

\begin{lstlisting}
% Radially symmetric grid graded towards the origin
P =[I;
for r = exp(-3.5:.25:0),
[x,y,z] = cylinder(r,16); P = [P [x(1,:); y(1,:)]1];
end
P = unique([P’; 0 0], ’rows’);
\end{lstlisting}

will produce the output

% Radially symmetric grid graded towards the origin
P=11;
for r = exp(-3.5:.25:0),

[x,y,2z] = cylinder(r,16); P = [P [x(1,:); y(L,:)1];
end
P = unique([P'; O 0], 'rows');

3. In some cases, it may be useful to include a figure inside the code listing

Page: 12 job: authorsample macro: svmult.cls date/time: 29-May-2019/13:52

Contribution Title 13

p = initVariablesADI(zeros(nc,1));

g = zeros(nc, 1); % source term

q() =1; qno) =-1; % -> quarter five-spot
eq = div(grad(p))+q; % equation

eq(1l) = eq(l) + p(D); % make solution unique
P = -eq.jac{l}\eq.val; % solve equation

for which we use Tikz in combination with a listing within a minipage nested
within a node

\begin{tikzpicture}
\node[anchor=south west] at (0,0){%
\begin{minipage}{.99\1linewidth}

\begin{lstlisting}
p = initVariablesADI(zeros(nc,1));

\end{lstlisting}%
\end{minipage}
};
\node[anchor=south east] at (11.2,.4) {%
\includegraphics[height=7.5em] {figs/solvePoisson-p}};
\end{tikzpicture}

You may have to adjust the position of the node containing the picture and possibly
also explicitly enforce appropriate line breaks before and after this tikzpicture
environment.

4. Last, but not least, it may be necessary to include output from MATLAB. For
this, we propose that you use the Verbatim environment, which is what we have
used for all text boxes herein. This can easily be configured in many different
ways. We recommend, in particular, that you use leftline and a different text color
distinguish the computer output from other verbatim displays

fluid =
properties: @(varargin)properties(opt,varargin{:})
saturation: @(x,varargin)x.s
relperm: @(s,varargin)relperm(s,opt,varargin{:})

5. If you need to display input data, we suggest that you use the Verbatim environ-
ment with a frame

SWOF

-- SWAT KRW KRO pcow
0.1200000000 0 1.000000000000 0
0.1210000000 0.000000011363636 1.000000000000 0
0.1400000000 0.000000227272727 0.997000000000 0
0.1700000000 0.000000568181818 0.980000000000 0
0.2400000000 0.000001363636364 0.700000000000 0
0.3199999990 0.000002272727261 0.350000004375 0
0.3700000000 0.000002840909091 0.200000000000 0
0.4200000000 0.000003409090909 0.090000000000 0

Page: 13 job: authorsample macro: svmult.cls date/time: 29-May-2019/13:52

14

Name of First Author and Name of Second Author

0.5200000000 0.000004545454545 0.021000000000 0

0.5700000000 0.000005113636364 0.010000000000 0

0.6200000000 0.000005681818182 0.001000000000 0

0.7200000000 0.000006818181818 0.000100000000 0

0.8200000000 0.000007954545455 0.000000000000 0

1.0000000000 0.000010000000000 0 0
/

5.4 Standard Index and Index with MRST Commands

The book will have two 2-column index lists at the end: one for general keyword and
one for MRST (and MATLAB) commands. Entries into the first index are included
through the usual \index{My new keyword} command. In addition, we provides a
new command \moduleindex{modulename} that will collect references to MRST
modules as subentries of a keyword called "Modules". Entries into the second
index are entered through the \mrstindex{myMrstCommandName} command. To
generate the two index lists, you must run two passes of makeindex

makeindex -s styles/mrstsvind.ist myfilename
makeindex -s styles/mrstsvind.ist myfilename.mii -o myfilename.mio

Acknowledgements If you want to include acknowledgments of assistance and the like at the end
of an individual chapter please use the acknowledgement environment — it will automatically be
rendered in line with the preferred layout.

Appendix

When placed at the end of a chapter or contribution (as opposed to at the end of
the book), the numbering of tables, figures, and equations in the appendix section
continues on from that in the main text. Hence please do not use the appendix
command when writing an appendix at the end of your chapter or contribution.
If there is only one the appendix is designated “Appendix”, or “Appendix 17, or
“Appendix 27, etc. if there is more than one.

axb=c)

Page: 14 job: authorsample macro: svmult.cls date/time: 29-May-2019/13:52

Contribution Title 15

References

References may be cited in the text using the standard \cite command, or any of
the extension from the natbib package: \citet gives a citation with author names
included (Aarnes et al. [1]), whereas \citep gives only a number like \cite ([1]).
All authors are expected to provide references as a BibTeX file, and thus you do not
need to think of formatting or ordering of the references. This will be done by the
editors. However, please make sure that you include as much relevant information as
possible and follow the following rules:

* Separate all authors by "and"; this will automatically be changed to appropriate
forms

e If you use initials only in names, please write "Smith, W. G." and not "Smith,
W.G." or "W.G. Smith". Both the latter will be interpreted as W. Smith.

e Put brackets around names and other words in titles that need to be always
capitalized, like {K}rylov subspace method. Do not put brackets around the full
title.

e Try to include DOI numbers whenever possible, but do not include this as a full
url. Do not include other urls to the full online document unless there is no DOI
available.

e ISBN and ISSN numbers are not necessary.

» If possible, try to abbreviate journal names using standard abbreviations.

e Most important: to avoid potential name clashes with BibTeX files from other
chapters, please make sure that you use unique names for your references, e.g., by
adding the name of your module to the citation key like msrsb:mycitationkey

The list below shows four examples of citations as they will appear in a chapter,
following the conventions from the abbrvnat bibstyle:

[1] J. E. Aarnes, T. Gimse, and K.-A. Lie. An introduction to the numerics of
flow in porous media using Matlab. In G. Hasle, K.-A. Lie, and E. Quak, edi-
tors, Geometrical Modeling, Numerical Simulation and Optimisation: Industrial
Mathematics at SINTEF, pages 265-306. Springer—Verlag, Berlin, Heidelberg,
2007. doi:10.1007/978-3-540-68783-2_9.

[2] K.-A.Lie. An introduction to reservoir simulation using MATLAB/GNU Octave:
User guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge
University Press, Cambridge, 2019.

[3] O. Mgyner and K.-A. Lie. A multiscale restriction-smoothed basis method for
high contrast porous media represented on unstructured grids. J. Comput. Phys.,
304:46-71, 2016. doi:10.1016/j.jcp.2015.10.010.

[4] O. Mgyner and H. A. Tchelepi. A multiscale restriction-smoothed basis method
for compositional models. In SPE Reservoir Simulation Conference, 2017.
doi:10.2118/182679-MS.

Page: 15 job: authorsample macro: svmult.cls date/time: 29-May-2019/13:52

http://dx.doi.org/10.1007/978-3-540-68783-2_9
http://dx.doi.org/10.1016/j.jcp.2015.10.010
http://dx.doi.org/10.2118/182679-MS

Index

citations, 2
cross-references, 2

index, 14

permission to print, 8

16

Usage of MRST Functions

initVariablesADI 13
T
twoPhaseJacobian 12

17

	Contribution Title
	Name of First Author and Name of Second Author
	Organizing Your Content into Sections
	Subsection Heading
	Emphasized Paragraphs

	Lists
	Mathematical Formulas
	Figures and Tables
	Program Codes
	Creating a Module
	Tutorial Examples
	Presenting Code Excerpts
	Standard Index and Index with MRST Commands

	Appendix
	Appendix
	References
	References
	Index
	Index
	Usage of MRST Functions

	Usage of MRST Functions

