

Flexibility KPIs in single buildings

Case study on space heating flexibility in an Office Building

Benjamin Manrique Delgado Research scientist, Energy and Indoor Climate

Teknologi for et bedre samfunn

- Space heating flexibility is a demand-side management strategy that involves shifting the operation of space heating to avoid high market prices while keeping comfortable conditions for the users.
- The main objectives of the investigation are to:
 - Calculate lifetime costs, including operations and investments.
 - Quantify the savings in operation costs that can be achieved through space heating flexibility in office buildings.
 - Quantify the peak load reduction and of energy savings during stress hours (when high prices typically occur).
 - Show an example calculation of Key Perfomance Indicators for a single building:
 - Δ Energy
 - ∆ Cost
 - Δ Energy during stress hours
 - A Peak load

Case description: prices and tariffs

- For a typical commercial consumer, energy flexibility can provide savings by
 - reducing consumption during hours with high prices if hourly prices are available (Spotpris), and
 - reducing their **peak load** (peak import) if peak power tariffs are applied (Effektledd).
- Energy and Peak power tariffs can be applied for electricity and district heating.
- Pricing scenario:
 - Electricity spot prices of 2012,
 - with technology prices of today (2020).
- The costs are calculated for a period of 60 years, at an interest rate of 4%.

- Space heating flexibility
 - Flexibility can be achieved by storing heat in the building mass.
- Flexibility bounds
 - In these cases, we set an operation window of 2 °C above the dynamic reference temperature, so the building is allowed to be warmer than in typical operation.
- Results
 - Import from the grid is lower when prices are high and vice-versa (1), and
 - Lower peak loads reduces the *effektledd* costs (2).

Office, Regular, District Heating

lower power

Results with Space Heating Flexibility

	Office		
	District Heating		
	Regular	Efficient	Very Eff.
DH [kW]	505	309	231
Investment costs [kNOK]	2 714	1 680	1 268
Annual Operation Cost [kNOK/a]	2 075	1 797	1 249
Lifetime Operation Cost [kNOK]	46 951	40 654	28 250
Total Lifetime Costs [kNOK]	49 665	42 334	29 518
Reduction (compared to typical)	3%	2%	3%

Typical operation

Flexible operation

Office building, Ground-source Heat Pump Investment and operation costs

Results with Space Heating Flexibility

	Office Ground-source Heat Pump		
	Regular	Efficient	Very Eff.
GSHP [kW]	202	124	82
EB [kW]	245	141	118
Space heating tank [kWh] / [liters]	197 / 5 500	154 / 4 300	84 / 2 350
DHW tank [kWh] / [liters]	65 / 1 850	66 / 1 850	72 / 2 000
Investment costs [kNOK]	6 443	4 047	2 757
Annual Operation Cost [kNOK/a]	1 643	1 519	1 045
Lifetime Operation Cost [kNOK]	37 161	34 358	23 635
Total Lifetime Costs [kNOK]	43 604	38 405	26 392
Reduction (compared to typical)	3%	2%	2%

Typical operation

Flexible operation

- Space heating flexibility can achieve
 - Reduced operational costs
 - between -2% and -3%, and
 - Reduced peak load
 - around -28% with district heating, and
 - between -16% and -20% with ground-source heat pumps
 - Increased energy consumption
 - around +1%
- The majority of the savings in operational costs are provided by the peak load reductions (savings in Effektledd tariff).
- Even though the total heating demand increases when space heating flexibility is activated, the cost of this additional energy is offset by the savings.

Teknologi for et bedre samfunn