

The Norwegian Biorefinery Platform SBP-N – Status and Plans

by Prof. Finn L. Aachmann – leader of the Norwegian Seaweed Biorefinery Platform (SBP-N)

Norwegian University of Science and Technology

Foto: Seaweed Solution AS

Seaweed industry in Norway

DIRECTORATE OF FISHERIE

In Norway: ~150 000 tons of harvested seaweed (20% world basis) annually for alginate production. >600 applications and export 1 Billion NOK

Process ~20 -30 000 tons harvested seaweed annually for feed ingredients and agriculture uses. Annual turnover ~180 million NOK.

Since 1970s – mechanical harvest

From Sogndal to Brønnøysund

Well regulated - e.g. harvest every 5th year

Little growth in harvest seaweed volumes for the last 15 years. An increasing demand necessitates utilizing additional species and **cultivated biomass**.

Seaweed industry in Norway

Sugar kelp (Saccharina latissima)

Seaweed producers

Coastline 83 281 km (2nd longest)

Winged kelp (Alaria esculenta)

++

Orkla

Fast growth seedlings to 1-2 m plants in 4-5 months. Requires only sunlight, seawater, and CO₂

Today annually production 500 tons, but rapid development

20 million tons of seaweed will require area equal the size of Trondheimsfjorden

23 Companies with sites along the coast (2021)

Seaweed cultivation in Norway

👅 Suger kelp (Saccharina latissima) 🎽 Winged Kelp (Alaria esulenta) 👅

249 tons (2021)

Aim for 2022 **500** tons (~1000 tons Europa)

- Estimated potential (current quota) 150 000 tons

The Norwegian farmed seaweed industry have unrealized potential

From high value Food to industrial commodities

The Norwegian Biorefinery Platform SBP-N

Cultivated

Harvested N

Made with Freepikcompany by flaticon.com

The main goal of the platform will be to serve as a hub for research, knowledge, methodology and stakeholder networks.

 SBP-N will aid in the regulation of macroalgae cultivation and harvesting industries, and in the characterization of macroalgae-derived products.

 Focus on characterization of the biomass, development of technology enabling future economically and environmentally sustainable biorefinery processes, and establishment of high-value and bulk product pipelines.

Norwegian University of

Science and Technology

The Research Council of Norway

WP 2 – Characterization

National Sampling campaign

I: 8 sites, 12 SL and 3 AE (23.04-01.07 -2020)

II: in collaboration with SES during harvest (2021)

Analytical protocols (SOP) for seaweed - Become available through publications – *and providing better understanding of the biomass*

- ✓ Monosaccharide analysis (MSA) for the sugar composition
- ✓ CHNS overall composition of the organic matter and sulfate being import for fucoidan
- ✓ Extraction protocols how to extract one component and the consequence for the other components in the biomass
- ✓ Dry matter, Ash, mineral content especially iodine and heavy metals
- \checkmark Establishment of method for arsenic speciation in seaweed
- \checkmark Microbial profiling of wild and cultivated seaweed

Keywords: Application-driven research, industry involvement

Sampling campaign III

Understand seasonal variations before and during harvest

Collaboration with SAMS to map geographical differences between Scottish and Norwegian harvesting locations.

Simulate the expected composition of seaweeds to optimize the harvesting time.

Use information from sampling campaigns in combination with other available monitoring data to create a predictive model (climate, nutrients, growth, composition) for optimal harvest for selective products.

WP 3 – Seaweed biorefineries

Pretreatment and Processing

✓ Evaluation of quality of alginate and cellulose from acid preserved seaweed

✓ Evaluation of alginate extraction from fermented Saccharina latissima in collaboration with Ocean Forest

Chemoenzymatic processing and fractionation of seaweed

 \checkmark Chemical sequential extraction and fractionation of four polysaccharides

✓ Ongoing Seaweed biorefinery – how can enzymes aid to increase yield?

✓ Most of the extraction are now performed in *a consolidated manner!*

Production of test-batches for application testing

- ✓ Alginates (SNAP, OptiAlgea, PlastiSea)
- ✓ Fucoidan (SNAP, SFI-IB, SFI-Foods of Norway)
- ✓ Laminarin (Nutrimar, SFI-Foods of Norway, SNAP)

Acid preservation of cultivated brown algae *Saccharina latissima* and *Alaria esculenta* and characterization of extracted alginate and cellulose

Katharina Nøkling-Eide^{1,3}, Fangchang Tan², Shennan Wang³, Qi Zhou², Mina Gravdahl³, Anne-Mari Langeng¹, Vincent Bulone², Finn Lillelund Aachmann³, Håvard Sletta¹, Øystein Arlov^{1*}

¹Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3 B, 703 Trondheim, Norway

²Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden

³Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway

* Corresponding author oystein.arlov@sintef.no

Abstract

Keywords: Application-driven research, industry involvement

Pre-processing of Seaweed

Establish new fermentation and preservation methods for seaweed, which is adapted to down stream processing.

Total Biorefinery

Dualistic understanding of a total biorefinery process

Now we are at a point were a set of pre-prosessing and processing methods enables a range of products. In a dualistic understanding it will also be possible to select product and know the correct pre-processing and processing.

WP 3/4 – Bioactive products

Preparation of pure seaweed components

NOSE CAR

- \checkmark Laminarin extraction protocol \rightarrow testing in fish trials (SFI Foods of Norway)
- ✓ Ongoing activity on fucoidan extraction and fractionation protocol (SNAP, SFI-IB)

Structure-functional relations

Keywords: Application-driven research, industry involvement

Fucoidan

Characterization of Fucoidan from selected Norwegian kelps

Aim to characterize fucoidan from relevant Norwegian kelps. Understand the difference between. Further development of extraction, purification and fractionation protocols will be emphasized.

Fucoidan Modifying Enzymes

Aim to characterize both fucoidan and fucoidan modifying enzymes. Fine-structure elucidation of enzymatically degraded oligosaccharides.

Biological activity

Aim to identify and understand biologically active fucoidans. Biological testing of polymeric, desulphated and oligosaccharides from fucoidan. Based on biological results, relevant feed-trials will be considered.

-OAc

FT 0.5M 0.6M 0.7M 0.8M 0.9M 1 M 3 M

WP 4 – Products and applications

Polysaccharides for high costs and industrial applications

✓ Enzymatic tailored alginate designed to specific applications
 ✓ An alternative ressource of Oligo-G

Proteins and peptides for food and feed applications

✓ Test of seaweed as salt-replacer and flavour ingredients

Processed seaweed as food ingredients

- \checkmark Blanching of Norwegian sugar kelp and winged kelp
- ✓ Effects of novel seaweed ingredients on gluten-free bread quality

Novel products

 ✓ Bioplastics based on alginate, cellulose and residual seaweed materials (PlastiSea)

WP 5 – Sustainability and techno-economical evaluations

Energy Flow, Techno-economical assessment and Value chain

Mass balance

Alginate extraction and separation			In: A2 (m	<u>illed</u> bioma	ss after separ
		tonne	t/h		
Solids [t]		77	0,01		
Water [t]		838	0,10		
Added water [t]					
Dilution before extraction		2 000		Alginate c	oncentration [
Washing on the filter		4 000			
Total water		6 838	0,85		
Total mass		6 915	0,86		
Water in residue [t]		330	0,04	5 % insolu	ible dw in resid
Added chemicals					
NaOH [g/kg]					
NaHCO3 [kg/kg tv]	1,5				
NaOH [t]	0,0				
NaHCO3 [t]	150				
			A3.2		
	'Residue' [t]				
Components	Tatal	Comp	0.1.11	Incolubia	Yield
	Total	[% of dw]	Soluble	insoluble	[%]
Laminaran	0,03	0,2	0,03	0,0	3,5
Mannitol	0,3	1,6	0,32	0,0	2,6
Alginate	2,1	10,4	1,00	1,1	10
Fucoidan	0,1	0,3	0,06	0,0	1,1
Cellulose	6,0	29,6	0,00	6,0	100
Protein	6,7	33,3	0,21	6,5	61
Polyph+Lip+Fucx	2,4	12,0	0,03	2,4	81
Minerals	2,6	12,7	1,23	1,4	6,4
SUM	20,3	100	2,9	17,4	
Seaweed solids	20,3		3	17	0
Added chemicals	7,2		7,2	0,0	
Water	330				
Total mass, inc. chemicals	358				

Selected products ✓ Alginate and fucoidan, from the same raw material

 ✓ Can be extended to isolate cellulose from the residues.

Expand the mass-balance model with cost data – will benefit from SFI-IB, which also involves TEA

Keywords: Application-driven research, industry involvement

Establish bioactivity testing protocol to characterize the biological active of well characterized molecules and factions from seaweed.

Material prototypes (gel-based and/or bioplastics) based on seaweed biopolymers like alginate and cellulose

Make seaweed-based food ingredients making a more natural ingredient in term of salt-replacer, flavour and structural / rheological properties.

Calculation of investment for a biorefinery of alginate and fucoidan.

Operating costs, investment analyses, product prices for profitability as a function of the feedstock costs, biomass costs. Sensitivity analysis on scale, product yields, energy costs.

- Seaweed Applications II
 Opportunities and Challenges 2023
 22-24 March 2023 Jegtvolden
- Newsletters
- SIG Seaweed meeting (annually)
- Seagriculture 2023
- Forskningsdagene (annually)
- Researchers Night (annually)

Thank you for your attention!

SEAWEED INDUSTRY -A part of the solution for a new bioeconomy in Norway

where any area has an har an har and here and here