Hydrogen Safety from Liquid to Gaseous

SH2IFT Final Project Workshop

Olav Roald Hansen May 3rd, 2022

LH2 interesting challenge

What are the hazards, concerns and uncertainties?

- LH2 colder than freezing point of air
- High reactivity / wide flammability / low ignition energy
- Can LH2-vapour detonate?
- Is LH2-vapour dense or buoyant?
- Oxygen enriched condensed air + LH2 detonation ...
- Exothermic ortho to para-conversion ...
- Sloshing will we manage to keep pressure in tank?
- Vent mast explosion?
- Is RPT a concern? What about BLEVE?

Main safety challenges LH2 vessel design

- Storage tank and TCS
- Bunkering
- Fuel cells
- Gas mast
- Ensure stable power generation

Experiments have helped understand LH2

AD Little (1960)

Dispersion, explosion, condensed air detonation ++

NASA (1984)

Limited pool formation – vapour cloud dense and buoyant

PresLHy (2019-2021)

- HSL dispersion/explosion/water spray (condensed air detonation, 2010)
- KIT reactivity and detonation propensity for cold mixtures, pool and condensed air detonation

NPRA & DNV (2019-2020)

- TCS major leak and explosion challenges
- Major LH2 releases with ignition relevant for bunkering

SH₂IFT(2018-2022)

RPT and BLEVE tests

NPRA tests – valuable to give confidence to quantitative models

How to model LH2-release and ignition tests with precision?

- Near field representation, buoyancy aspect, plume behaviour, concentrations and temperatures
- Self-developed pseudo-approach developed 2018 used, see Hansen (2020)

Table 2: Experiments and simulations compared.

Test	Leak direction	Wind	Distance	Concentration Experiment	Simulation	Temperature Experiment	Simulation
5	739 g/s down	4 m/s	30 m	7.6%	~7%	-8.5°C	-9°C
			50 m	2% (T3: 3.5%)	3.5%	-2°C	-3°C
			100 m	1.5%	2.0%	Not readable	0°C
6	833 g/s along wind	2.5 m/s	30 m	21%	22-23%	-35°C	-50 °C
			50 m	2% (missed arc)	8%	-2°C (T4: -13°C)	-20 °C
			100 m	No recordings	Plume lift-off	No recordings	Plume lift-off

Simulation of downward release

Deflagration to detonation transition (DDT)

DDT to be expected for strong hydrogen explosions

- With DDT entire reactive cloud (> 15-18%) may burn within milliseconds •
- Method to model detonation with FLACS with decent precision found (see Hansen & Johnson, 2015)

0

Kjørbo incident – likely DDT and detonation

Significant leak (0.5-1.0 kg/s for 3 s) from ~950 bar storage

- High-momentum release near ground inside enclosure
- Concentrations above 15% H₂ rise upwards
- After ~3 s turbulent gas cloud near release ignites and accelerates to DDT
- Reactive cloud above enclosure detonates
- Hard (impossible?) to explain far-field blast without DDT

DDT and detonation simulations regularly performed in hydrogen studies

- Detonation not always worse than deflagration but different
- Detonation gives strong blast in all directions

Hunden Lulu (1) ble skremt av hydrogeneksplosjonen: – Hoppet ned ni meter

Kjørbo Incident 2019

640 g/s initial rate used (worst case at 3s) Reactive plume 15-60% shown

Gaseous hydrogen – more popular due to cost and availability

The use of MEGC – 20 and 40 ft multi-element compressed gas containers, on the increase

Safety challenges compared to LH2

- Much more leak points
- High pressures
- Vulnerable to fire and impact
- Logistics only 500-1000 kg per container

Safety advantages compared to LH2

- GH2 very buoyant when released (outdoors)
- Energy per cylinder much lower
- No boil-off (but some limited permeation)

HYEX CFD simulation models

Gaseous hydrogen – more popular due to cost and availability

Hydrogen vessel projects on GH2

- Bodø-Moskenes car ferry 3h open sea crossing
- Felleskjøpet Agri-Heidelberg Cement
- MSC Maas retrofit (Futureproof Shipping)
- ZeroCoaster concept (Vard Engineering)
- Gen2Energy / Sirius hydrogen MEGC transport vessels

High-pressure tank ruptures

High-pressure hydrogen tanks

- Impact or jet-fire may lead to tank rupture (~1 per million years)
- Blast from physical explosion
- If ignition is delayed, gas explosion may give 2x-4x stronger blast

FLACS-simulations of tank rupture regularly performed in studies

- High speed of sound in hydrogen gives strong physical explosions
- Challenging to model tank burst, very high flow speeds (> 2000 m/s)

Extracting explosion loads – pressure versus impulse

What will be received blast load onto people and structures?

- Proper modelling of blast source and receiving object
- Load integration using panel method illustrated in Hansen et al. (2016)
- Detailed transient and directional loads on piperack sections can be extracted 15

ig. 11: P-I graph for impact of the whole body.

P 3D (barg)

Summary

Important to understand hydrogen properties and behaviour for safe design

- Experiments helps understand/confirm mechanisms
- For design optimization and permitting/approval processes– quantitative assessments usually required
- Important phenomena to quantify include
 - LH2-vapour dispersion, humidity effects to be considered
 - Tank burst and potential delayed ignition
 - Explosions (leak, dispersion deflagrations/detonations)
- Consequence models and methodology should be validated against relevant experiments
- Risk tolerance criteria are often very strict e.g.
- DSB 1E-5, 1E-6 and 1E-7/year
- IMO fraction of 1E-3 to 1E-4/year

 \Rightarrow For many cases worst-case events must be tolerable (e.g. MEGC tank rupture)

 \Rightarrow Worst-case events should anyway be assessed to understand dynamics – possibly there are ways to mitigate?

Important to assess received explosion load properly – acting force and impulse (H₂ explosions of short duration)

Thank You

Mail: olav@hyexsafe.com Phone: +47 91 17 17 87 www.hyexsafety.com

JULEHUSET

12