Version 10 - User experiences at Vattenfall

2019-03-14, Roger Halldin

- 1. History of EMPS at Vattenfall
- 2. Data handling with Python and Power BI
- 3. Some thoughts regarding V.10

History of EMPS at Vattenfall

- Vattenfall have used EMPS since the 90's
- All the experienced users (+15 years of EMPS) are retired
- New users with other requirements for development as well as programming knowledge
- Need for streamlining and automatisation and more time for analysing

In the beginning...

- Running EMPS from dos-prompt
- Some Fortran code to help running and small scripts
- Excel for indata and results
- A lot of manual work, copy and paste

Second step

- Excel to steer EMPS with VBA and PowerShell
- Results in Excel
- Most input data automated from db
- Run in cloud

Third step

- Database and Excel for data input
- Use Python for data import, transformation and validation
- Run in cloud
- Possible for more automatic runs, data checking and transformations

What is HDF5?

НЪЕ	HDFView 3.0
File	Window Tools Help
2	🖆 🛷 🖪 🗓
Re	cent Files F.\Share\v38_v10\model.h5 v Clear Text
- (model.h5 a rea_connections iii connections iii number_of_connection iii area_names
are	a_names at / [model.h5 in F:\Share\v38_v10] [dims0, start0, count53, stride1] 💦 🙀

Window Tools Help			HDFView 3.0						-
· 🗃 🧐 🖪 🖪									
ecent Files F1Share\v38_v10v	detsimres	.hб						 Clear 	Text
🖪 detsimres.h5									
🖌 🍓 area_results		🕅 val at /area_results/hydro_prod/ [detsimres.h5 in FA 🗖 🗶							
> 🛀 bypass	Table Import/Export Data Data Display								
a energy_used_tor_p									
val	0-based								
> Q pumped_energy	0.0 = 0.123868864								
> 🛀 reservoir	1.00	0	1	2	3	4			
> Calispillage		0.12366	1.0825182	13.811245	9.272611	6.0413203	0.=		
Generation	1	0.11392	1.9272989	13.58111	7.818754	7.18037	0		
	2	0.49747	1.0925667	13.848551	8.892175	7.5014324	0.		
	3	0.15322	1.252624	13.772715	9.2745495	7.545603	1.		
	4	0.10518	1.347694	13.4517	8.49471	7.564943	1		
	6	0.0939603	1.4400839	13.767516	9.290678	5.815598	0		
III >	<		1.0201933	10.09220	17.12044	0.04107	2		
DFView root - C\Program Files\I	-	-	_	_	_	_	_		•

• A few lines of code to get data into dataframe (results)

```
4 import samres
5 sr = samres.SamResData('f:/share/v38_v10', startYear = 2018)
6 hydroProd = sr.GetHydroProduction()
7
8
```

0		hydroProd - Dictionary (30 elements)				3		Area 1	- DataFrame	
				1	Ĩ	Index	0	1	2	
	Key	Туре	Size	Value		2018-09-17	15 07937	10 002101	2 7716102	2 771
	Area 1	DataFarma	(7150 51)	Column names: 0, 1, 2, 3, 4, 5,		00:00:00	13.0/03/	10.095191	2.7710195	2.//1
	Alcal	Datarrame	(7150, 51)	10, 11, 12, 13, 14, 15, 16		2018-09-17	3,7614331	3,7294638	3,758771	3,739
	Area 2		(7450 54)	Column names: 0, 1, 2, 3, 4, 5,		08:00:00				
	Area Z	2 DataFrame	(/150, 51)	10, 11, 12, 13, 14, 15, 16		2018-09-17	18.84796	18,647314	18.793852	18.69

- Class SamResData simple and generic
 - areas, time resolution and so on read from .h5 and thus generic
 - Example changing from 5 time steps to hourly will not change any code
 - Example Adding new cable or thermal plant will not change any code

• A few more lines of code for typical aggregation:

- Getting data and creating files less than 30 seconds
 - Demand, hydro, wind, thermal, exchange, inflows, reservoirs
 - Aggregated to NP areas, weekly, all scenarios

	А	В	С	D
1	Date	Scenario	Area	Value
2	2018-09-17	0	NO1	266.1899
3	2018-09-24	0	NO1	248.5359
4	2018-10-01	0	NO1	238.4353
5	2018-10-08	0	NO1	267.6642
6	2018-10-15	0	NO1	231.1942
7	2018-10-22	0	NO1	190.2348
8	2018-10-29	0	NO1	197.8166
9	2018-11-05	0	NO1	194.3877
10	2018-11-12	0	NO1	227.8059
11	2018-11-19	0	NO1	240.0385
12	2018-11-26	0	NO1	194.8824
13	2018-12-03	0	NO1	194.5456
14	2018-12-10	0	NO1	192.5084
	0040 40 47			004 0077

Input Data

• A few lines of code to get capacity for line and modify it:

```
3 import model_data
4 import datetime
5
6 model = model_data.ModelData('F:/share/v38_v10')
7 powerlines = model_data.PowerLines(model)
8
9 cap = powerlines.GetCapacity(21)
10 outage = [{'From':datetime.datetime(2018,1,1), 'To':datetime.datetime(2018,1,12), 'Value': 300.0}]
11 powerlines.ModifyCapacity(21, outage)
12 powerlines.SaveCapacity()
13
14
15
```

]	
Index	0
19:00:00	
2018-01-11 20:00:00	300
2018-01-11 21:00:00	300
2018-01-11 22:00:00	300
2018-01-11 23:00:00	300
2018-01-12 00:00:00	300
2018-01-12 01:00:00	1950
2018-01-12 02:00:00	1950
2018-01-12	1950

- Class PowerLines uses Sintef's API
 - Functionality to fit most common tasks, initiation is reading all lines and capacities

- Added functionality:
 - Get capacity from one area to another by name (both directions)
 - Modify capacity for a list of from/to dates (as in example)
 - And so on..

Result Handling: Basic Components of Power BI

Power BI Desktop

Locally installed application to develop reports and dashboards

Power BI Service

Cloud based SaaS (Software as Service) to share Live Dashboards & Interactive Reports across the organization

Power BI Mobile

Up-to-date, touch-enabled mobile access to business information

VATTENFALL

Result Handling: Power BI Desktop – How biuld your own report

Examples of analysing result in Power BI

Examples of analysing result in Power BI

With a click:

- Change price area
- Change time discretization, e.g. daily, weekly, monthly, yearly
- View different fundamentals, e.g. production, price, demand etc

Some thought about version 10

- "SINTEF Upgrade" from v9 to v10 works and even found issues in our own data that was wrong
- Saminn, enmdat, med, etc -> LTM Long Term Model
- Better error checking (from Sintef and Vattenfall) and warnings in v.10 compared to v.9
- · Easier to compare input and output data
- Faster and easier to get the result from HDF
 - Get the result when you need it and fast!
 - No need to use kurvetegn to get textfiles
 - Easy transforming between different time resolutions and areas using Python, Vattenfall API
- Easier to use time series
- EMPS date format = Python ISO-calendar
- Better separation of model and input data

