

LTM - Developments

 Version 10 (Vansimtap, Samkjøringsmodellen, Samlast, Samnett, ProdRisk)

ProdRisk new functionality

Version 10 -

- Started with a API project initiated and partly financed by Statkraft
 - API project consisted of three phases
 - Result API
 - Input API
 - Calendrical time
 - The two first phases are delivered and approved by Statkraft
 - Calendrical time implemented but not approved
- Additional version 10 implementation not included in API project
 - Tilpro, Snomod, Vansimtap seasonal model, ProdRisk, Samnet, Samlast, Samoverskudd, API to Powel database (Idbatch and Smagrev), ...

Version 10 – Results

- Time series results on new file format:
 - Detsimres.h5 Detailed hydro results
 - Samres.h5 Aggregated hydro, transmission, and market results (previously on SAMRES.SAMK and UTVEKS.SAMK)
- Results always stored with sequential time resolution
- API
 - Use 3. part library for reading Hdf5

Version 10 inputs

- New file formats for times series input (hdf5)
 - Inflow and temperature archive
 - Inflow scenarios for the whole planning period
 - Firm loads
 - Exogenous prices, wind and solar power, transmission capacity
 - Every price dependent contract can be specified with time series for price and capacity
- Python API for specifying all inputs
- New LTM application that replaces Vansimtap user interface
 - Major change Possible to run models with XML based input files

Version 10 other changes

- Use Powel API for coupling to Powels database
 - Inflow statistics and forecasts, reservoir fillings and planned maintenance
- License management system (same as used for Shop)
- Possibility to use calendrical time
- Exogenously made temperature correction of load
 - New type of firm contracts that are scenario dependent
- New ProdRisk functionality

Version 10 project

- Much larger (and costly) project than initially foreseen
 - Involves the whole program code
 - All major developers not available for finalizing the project
 - Complicated testing and error identification
- Very large model flexibility
 - Start process to reduce after version 10
 - E.g., Time resolution (sequential/accumulated)

Version 10 status and implementation

- Major development finished
 - Some known errors
- Propose to assist every utility in the upgrading process starting from
 April 1 one at a time
 - Initial upgrade and testing
 - Document upgrading steps

ProdRisk development (incl. in version 10)

- Linear start up costs
- Improved modelling of non-convex PQ curve in final simulation (by using binary variables)
- Reservoir ramping constraint
- Limits on bypass

LTM related research projects

- MAD project (presentation by Ole Martin)
 - EMPS-W Protype replacement for Samtap, to a much larger degree based on formal optimization
- PriMod (presentation by Mari and Arild)
- HydroCen
 - Future prices (presentation by Linn Emelie)
 - ProdRisk-SHOP simulator
 - ProdRisk API (presentation by Per Eilif)
 - Modelling state dependent constraints in ProdRisk type model

LTM -Future (2020 -)

- Robustness
- Decrease complexity, reduce flexibility
 - A limited transition period to version 10.
- Improved test procedures

• APIs for all inputs, running the models, error messages

Development dimensions

- Inputs, data structures, modularization
 - API project
- Functionality/flexibility
 - E.g. Load forecasting functionality: Snomod, Tilpro, Powel HBV, Ascii based climate correction, API input.
- Algorithms
 - Type of solution method (Samkjøringsmodell, EMPS-W, FanSi, SDDP ...)

Teknologi for et bedre samfunn