

Getting Energy Conversion Right New commands related to build unit PQ curves since SHOP 12

User meeting Hydro Scheduling, 13 – 14 March 2019

Jiehong Kong, Research Scientist

SINTEF Energy Research

Outline

- Transition from plant-based to unit-based short-term hydro scheduling
- New commands related to build unit PQ curves
 - \odot Determination of the unit PQ curve
 - \odot Incorporation of power loss in shared penstock
 - \odot Determination of the unit PQ curve without MIP
 - Determination of the unit PQ curve in abnormal situation
 - \odot Printing of unit PQ curves
- New project proposal

Hydropower production function

Mathematical formulation

 $p_{s,t} = G \cdot \eta \cdot h_{s,t}^{GROSS} \cdot q_{s,t}$

Ē

Hydropower production function

Mathematical formulation

Hydropower production function

Mathematical formulation

$$p_{i,s,t} = G \cdot \eta_{i,s}^{GEN}(p_{i,s,t}) \cdot \eta_{i,s}^{TURB}(h_{i,s,t}^{NET}, q_{i,s,t}) \cdot h_{i,s,t}^{NET} \cdot q_{i,s}$$

$$P_{i,t}^{MIN} \cdot \omega_{i,t} \leq p_{i,t} \leq P_{i,t}^{MAX} \cdot \omega_{i,t}$$

$$Q_{i,t}^{MIN}(h_{i,t}^{NET}) \cdot \omega_{i,t} \leq q_{i,t} \leq Q_{i,t}^{MAX}(h_{i,t}^{NET}) \cdot \omega_{i,t}$$

$$h_{i,s,t}^{NET} = h_{s,t}^{GROSS} - \sum_{n \in N_s|_{i \in I_{n,s}}} \alpha_{n,s} \cdot \left(q_{i,s,t} + \sum_{i' \in I_{n,s} \setminus \{i\}} q_{i',s,t} - \Delta h_{s,t}^{INTAKE} \left(l_{k,t-1}(v_{k,t-1}), q_{k,t}^{TOTAL}\right) - \Delta h_{s,t}^{TAIL} \left(l_{k+1,t-1}(v_{k+1,t-1}), q_{k,t}^{TOTAL}\right)$$

- SHOP is formulated as a Mixed Integer Linear Programming (MILP) model
- How to convert the nonlinear & nonconvex hydropower production function into a concave piecewise linear unit PQ curve?

Outline

• Transition from plant-based to unit-based short-term hydro scheduling

- New commands related to build unit PQ curves
 - \odot Determination of the unit PQ curve
 - \odot Incorporation of power loss in shared penstock
 - \odot Determination of the unit PQ curve without MIP
 - Determination of the unit PQ curve in abnormal situation
 - \odot Printing of unit PQ curves
- New project proposal

Determination of the unit PQ curve

Command 1 (Default): Set build_pq_curve /unit_uploading /all_limits

• Pmin/Qmin

O Pmin = MAX(P(turb_min), gen → minprod, min_p_constr, P(min_q_constr)) O Qmin = Q(Pmin)

• Pmax/Qmax

 $O Pmax = MIN(P(turb_max), gen → maxprod, max_p_constr, P(max_q_constr))$ O Qmax = Q(Pmax)

Determination of the unit PQ curve

...

Command 2: Set build_pq_curve /unit_uploading /turb_eff_curves

- Step 2: Determinate the Head-dependent Minimum Water Discharge Q^{MIN}_{i,t}, Best Efficiency point Q^{BEST}_{i,t} and Maximum Water Discharge Q^{MAX}_{i,t} of the Unit
 Only based on the head-dependent turbine efficiency curves
 - Step 8: Define the Final Operating limits
 - Including all the **other limits** by linear interpolation

🕥 SINTEF

Determination of the unit PQ curve

Command 1 (Default): Set build_pq_curve /unit_uploading /all_limits

- When building PQ curve, all the limits (P(turb_min), gen → minprod, min_p_constr, P(min_q_constr)) are taken into account at the same time. If there is a schedule, only one point will be built.
- It is suitable for those who want to run schedule or run on the limits.

Command 2: Set build_pq_curve /unit_uploading /turb_eff_curves

- PQ curve is first built according to the head-dependent turbine efficiency curves. Other limits are linear interpolated later.
- It is suitable for those who want to get the overview of the operation range.

Incorporation of power loss in shared penstock

Mathematical formulation

$$p_{i,s,t} = G \cdot \eta_{i,s}^{GEN}(p_{i,s,t}) \cdot \eta_{i,s}^{TURB}(h_{i,s,t}^{NET}, q_{i,s,t}) \cdot h_{i,s,t}^{NET} \cdot q_{i,s,t}$$

$$P_{i,t}^{MIN} \cdot \omega_{i,t} \leq p_{i,t} \leq P_{i,t}^{MAX} \cdot \omega_{i,t}$$

$$Q_{i,t}^{MIN}(h_{i,t}^{NET}) \cdot \omega_{i,t} \leq q_{i,t} \leq Q_{i,t}^{MAX}(h_{i,t}^{NET}) \cdot \omega_{i,t}$$

$$\begin{aligned} h_{i,s,t}^{NET} &= h_{s,t}^{GROSS} - \sum_{n \in N_s|_{i \in I_{n,s}}} \alpha_{n,s} \cdot \left(q_{i,s,t} + \sum_{i' \in I_{n,s} \setminus \{i\}} q_{i',s,t} \right) \\ &- \Delta h_{s,t}^{INTAKE} \left(l_{k,t-1} (v_{k,t-1}), q_{k,t}^{TOTAL} \right) \\ &- \Delta h_{s,t}^{TAIL} \left(l_{k+1,t-1} (v_{k+1,t-1}), q_{k,t}^{TOTAL} \right) \end{aligned}$$

Ę

Incorporation of power loss in shared penstock

Command 1 (Default): Set power_loss /busbar

- First excludes the penstock loss in the PQ curve, causing over-estimated power generation for the given discharge.
- Then **subtracts** the sum of power loss for each unit, which is equal to the sum of power loss in each penstock, from the plant energy balance constraint, i.e. busbar.
- The sum of power loss in a shared penstock is a cubic function of the total flow through the penstock, which is approximated by a convex piecewise linear function.

Command 2: Set power_loss /pq /previous

- **Directly includes** penstock loss in the PQ curve of the unit.
- Uses the optimal results obtained in the previous iteration.

Command 3: Set power_loss /pq /proportional

12

• **Directly includes** penstock loss in the PQ curve of the unit.

$$h_{i,t}^{NET} = H_t^{GROSS} - \alpha_n \cdot \left(q_{i,t} + \sum_{i' \in I_m \setminus \{i\}} q_{i',t} \right)^2$$

$$\sum_{i\in I} p_{i,t} - \sum_{n\in N} \Delta p_{n,t} = p_t^{SELL}$$

 Assumes that all the units connected to the same penstock always operate at the same fraction of their allowable capacity range.

Numerical results – Comparison of Methods

Com	nmand 1 (Defa	ult)		Command 2		Command 3			
Production	Reservoir	Total Profit	Production	Reservoir	Total Profit	Production	Reservoir	Total Profit	
Revenue	Value		Revenue	Value	Iotal Profit	Revenue	Value		
109,365.24	156,070.49	265,435.73	117,588.81	147,118.76	264,707.57	105,467.63	159,807.10	265,274.73	

Command 1 gives the best result

13

Command 2 causes flip-flop

Incorporation of power loss in shared penstock

Command 1 (Default): Set power_loss /busbar

• Gives **better** optimization result but potentially might **increase computational time**, since the unit penstock loss should be introduced to unit energy balance constraints to improve accuracy, especially when delivering reserves

Command 2: Set power_loss /pq /previous

• When the predicted market price for electricity is **close** to the water value at the end of the scheduling horizon, the power production is likely to **oscillate** between iterations

Command 3: Set power_loss /pq /proportional

• Can avoid the flip-flop problem but suggests the units to **operate in the same pattern**

In a MIP model, binary variables are used.

$$p = P_0 \cdot \boldsymbol{\gamma_t} + \sum_{seg} \frac{dP}{dQ_{seg}} \cdot q_{seg}$$

$$p \ge P_{min} \cdot \boldsymbol{\gamma_t}$$
$$p \le P_{max} \cdot \boldsymbol{\gamma_t}$$

 $\gamma_t \in \{0,1\}$

Point	t	P/Q	PQ curve for G1
1		3.3034	
2		3.3151	
3		3.3236	
4		3.3280	Best point
5		3.3244	
6		3.3154	
7		3.3024	
	10		
.6	-10	0	5 10 15 20 Q (m3/s)

In a LP model, binary variables are relaxed!

$$p = P_0 \cdot \boldsymbol{\gamma_t} + \sum_{seg} \frac{dP}{dQ_{seg}} \cdot q_{seg}$$

$$p \ge P_{min} \cdot \gamma_t$$
$$p \le P_{max} \cdot \gamma_t$$
$$\gamma_t \in \{0, 1\} \quad 0 \le \gamma_t \le 1$$

() SINTEF

MIP	Build_pq_curve	Full_1	Full_2	Full_3	Full_4	Full_5	Incr_1	Incr_2	Incr_3	Total Time
With MIP	Unit_uploading	0.98	1.63	1.36	1.27	1.30	0.04	0.04	0.02	6.64 sec
Without MIP	Unit_uploading	0.22	0.22	0.11	0.10	0.11	0.05	0.04	0.03	0.88 sec
Without MIP	Plant_uploading	0.15	0.08	0.06	0.06	0.07	0.05	0.04	0.03	0.54 sec

Determination of the unit PQ curve in abnormal situation

Ę

Printing of unit PQ curves

Command: print pqcurves /<option> (<filename.xml>)

/ <option></option>	Comment
/all	Print all three types of PQ curves
/original	Print PQ curves calculated based on turbine efficiency curves
/convex	Print PQ curves after convexification
/final	Print PQ curves after extending to Q=0

- The PQ curves can be written on xml format for each unit at each time step for each iteration
- If no filename is given by the user, the file will be saved with the default file
 "pq_curves_full_mode_iter1.xml" where the mode and the iteration number depend on the very
 next iteration
- How many points of the PQ curves will be printed out relies on 1) how the PQ curves are built; 2) the number of segments defined by the user (Default: set nseg /up 3; set nseg /down 3)

Printing of unit PQ curves (When G1 has schedule 100 MW)

Command 1 (Default): Set build_pq_curve /unit_uploading /all_limits

- When building PQ curve, all the limits (*P*(*turb_min*), *gen* → *minprod*, *min_p_constr*, *P*(*min_q_constr*)) are taken into account at the same time. If there is a schedule, only one point will be built.
- It is suitable for those who want to run schedule or run on the limits.

Time_period	Date	Plant_name	Unit_type	Unit_no	Needle_comb_no	PQ_curve_type	Q	Р	dPdQ	Energy_Equivalent
75	2019 1/4 02:00	PLANT001	GEN	1	1	Original	47.90	100.00	0.00	0.58
75	2019 1/4 02:00	PLANT001	GEN	1	1	Convex	47.90	100.00	0.00	0.58
75	2019 1/4 02:00	PLANT001	GEN	1	1	Final	0.00	0.00	0.00	0.00
75	2019 1/4 02:00	PLANT001	GEN	1	1	Final	47.90	100.00	2.09	0.58

					urves PLANT001 1 ;Pts;X unit;Y unit					
Time_period	Date	Plant_name	16650	1 180	.000 3 M3/s %	Q_curve_type	Q	Р	dPdQ	Energy_Equivalent
75	2019 1/4 02:00	PLANT001	28.12	85.8733 87.0319	.,	Original	28.12	54.33	0.00	0.54
75	2019 1/4 02:00	PLANT001	32.78	88.0879 89.0544		Original	35.89	72.11	2.29	0.56
75	2019 1/4 02:00	PLANT001	37.45	89.9446		Original	43.66	90.28	2.34	0.57
75	2019 1/4 02:00	PLANT001	42.11	90.7717 91.5488		Original	47.90	100.00	2.29	0.58
75	2019 1/4 02:00	PLANT001	46.77	92.2643 92.8213		Original	51.43	107.63	2.16	0.58
75	2019 1/4 02:00	PLANT001		93.1090 93.2170		Original	53.90	112.51	1.98	0.58
75	2019 1/4 02:00	PLANT001		93.0390 92.6570		Original	56.36	117.11	1.86	0.58
75	2019 1/4 02:00	PLANT001		92.1746		Original	58.83	121.62	1.83	0.57
75	2019 1/4 02:00	PLANT001	GEN	1	1	Convex	28.12	54.33	0.00	0.54
75	2019 1/4 02:00	PLANT001	GEN	1	1	Convex	43.66	90.28	2.31	0.57
75	2019 1/4 02:00	PLANT001	GEN	1	1	Convex	47.90	100.00	2.29	0.58
75	2019 1/4 02:00	PLANT001	GEN	1	1	Convex	51.43	107.63	2.16	0.58
75	2019 1/4 02:00	PLANT001	GEN	1	1	Convex	53.90	112.51	1.98	0.58
75	2019 1/4 02:00	PLANT001	GEN	1	1	Convex	56.36	117.11	1.86	0.58
75	2019 1/4 02:00	PLANT001	GEN	1	1	Convex	58.83	121.62	1.83	0.57
75	2019 1/4 02:00	PLANT001	GEN	1	1	Final	0.00	-10.72	0.00	0.00
75	2019 1/4 02:00	PLANT001	GEN	1	1	Final	30.57	60.00	2.31	0.55
75	2019 1/4 02:00	PLANT001	GEN	1	1	Final	43.66	90.28	2.31	0.57
75	2019 1/4 02:00	PLANT001	GEN	1	1	Final	47.90	100.00	2.29	0.58
75	2019 1/4 02:00	PLANT001	GEN	1	1	Final	51.43	107.63	2.16	0.58
75	2019 1/4 02:00	PLANT001	GEN	1	1	Final	53.90	112.51	1.98	0.58
75	ZENERATOR attribut Id Type		1 Nom_prod	Min_prod	Max_prod Start_cost	Final	56.36	117.11	1.86	0.58
75	2 ²⁴⁸³⁹ , 0	1 1	120.000	60.000	120.000 180	Final	57.94	120.00	1.83	0.58

Printing of unit PQ curves (When MIP is used)

23

Printing of unit PQ curves (When MIP is relaxed)

Outline

- Transition from plant-based to unit-based short-term hydro scheduling
- New commands related to build unit PQ curves
 - \odot Determination of the unit PQ curve
 - o Incorporation of power loss in shared penstock
 - \odot Determination of the unit PQ curve without MIP
 - Determination of the unit PQ curve in abnormal situation

 \odot Printing of unit PQ curves

• New project proposal

A Case-dependent Intelligent Scheduling System

26

Teknologi for et bedre samfunn