

WASTE2ROAD

Biofuels from WASTE TO ROAD transport LC-SC3-RES-21-2018 (818120)

Deliverable Report

Deliverable ID	D7.4			
Deliverable name	Training seminars			
Lead beneficiary	VTT			
Contributors	Kristian Melin, Robbie Venderbosch, Mieke Nieder-			
	Heitmann, Tamer Alhalabi, Christian Lindfors, Anne			
	Roubaud, Helene Lutz, Rune Lødeng, Johnny Stuen,			
	Gerhard Muggen and Marjut Suomalainen			
Due date Annex 3	31.03.2022 (M42)			
Date of final version	29.03.2022			
Dissemination level	Public			
Document approval	Duncan Akporiaye	29.03.2022		
	•		H)	

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 818120.

PROPRIETARY RIGHTS STATEMENT

This document contains information which is proprietary to the WASTE2ROAD consortium. The document or the content of it shall not be communicated by any means to any third party except with prior written approval of the WASTE2ROAD consortium.

Description of the deliverable content and purpose

The objective of WP 7 is to provide a robust mechanism for the dissemination and communication of the Waste2Road project activities and results. WP 7 will promote the Waste2Road project and results as widely and as efficiently as possible to all relevant stakeholders, scientific publications and media. A variety of platforms will be used to reach different stakeholders from public and private organizations, colleagues from related European projects, graduate students and the press. VTT and PDC will organize with the project partners two seminars for higher level students using Aspen Plus as a tool to evaluate and develop biogenic waste co-refining and involve in a workshop in the field of refinery processing, where results from these flow sheeting activities can be further exploited. The first biomass liquefaction modelling webinar was held in 22nd of April 2020 for higher-level university students together with the 4Refinery EU project at Aalto University in Finland. The second seminar was organized 20th of April 2021 for students around Europe. This deliverable D7.4 "Training seminar" highlights the content of webinars presentations that were presented by VTT, RESPOL, MOL, BTG, Aalborg University, PDC, CEA, TU Wien, Sintef, EGE and BTG Bioliquids.

The deliverable D7.4 will be submitted twice during the project period, at M24 and at M42. This deliverable is a second version, including the results from both the first and second seminar.

Table of Contents

1	Introduction	. 4
2	Webinar program	. 4
3	Webinar key learning points	. 5
4	Appendix	. 7

1 Introduction

Biomass liquefaction modelling webinars were held on 22nd of April 2020 and 20th of April 2021 for higher-level university students. Webinar presentations covered several aspects of modelling biomass in fast pyrolysis and hydrothermal liquefaction processes. Different experiences in co-processing of bio-crudes in refineries have been presented as well. The first webinar was held basically for the chemical engineering and plant design students at Aalto University, but the event was also open for other people from the industry. The second seminar was organized for students around Europe. The webinars were very successful with approximately 40-50 participants in each seminar. Appendix contains some slides that were presented in the webinars.

2 Webinar program

Both webinars were focusing on the production of biocrudes by fast pyrolysis and HTL and coprocessing the biocrudes in the oil refinery. The first seminar contained also a modelling exercise for the students. The agenda for the seminars are presented in Table 1 and Table 2.

8:30-8:45	Logging into the webinar			
8:45-9:00	Introduction to the topic of the webinar			
	Kristian Melin, VTT			
	Pekka Oinas, Aalto University			
9:00-9:30	Latest developments in pyrolysis and upgrading			
9:30-10:00	Latest developments and activities in co-processing biocrudes by FCC and other			
	technologies			
	Rebeca Yuste Pilar, Repsol, Spain			
10:00-10:30	Co-hydrotreatment of bio-crudes. Pilot plant experiment and engineering			
	consideration.			
	László Leveles, MOL Refining R&D			
10:30-10:40	Break			
10:40-11:10	Modelling of fast pyrolysis with COCO freeware software case Empyro fast pyrolysis			
plant. Robbie Venderbosch, BTG, The Netherlands				
				11:10-11:40
	Thomas Pederson Aalborg University, Denmark			
11:40-12:10	Modelling of biocrude upgrading including stabilization and hydrodeoxygenation			
with aspen and empirical modelling of co-FCC using MODDE.				
	Kristian Melin, VTT			
12:10-12:40	Techno-economic assessment of conceptual processes and life cycle costing.			
	Mieke Nieder-Heitmann, Process Design Center, The Netherlands			
12:40-13:15	Break			
13:15-13:30 Introduction to Modelling exercise with Aspen Plus to modelling fast pyroly				
	Empyro Plan in the Netherlands			
13:30-15:00	Individual work for students			
15:15-15:45	Demo of the modelling exercise and showing the correct results			
15:45-15:50	Final words and end of the webinar			

Table 1. Agenda for the first student seminar.

Deliverable D7.4

Table 2. Agenda for the second student seminar.

8:30-8:45	Logging in to the seminar
8:45-9:00	Introduction to the topic of the webinar
	Christian Lindfors, VTT Technical Research Centre of Finland
9:00-9:30	Fast pyrolysis of waste materials
	Christian Lindfors, VTT, Finland
9:30-10:00	HTL operation with waste materials
	Anne Roubaud, French Alternative Energies and Atomic Energy Commission (CEA),
	France
10:00-10:30	Co-processing of biogenic feedstocks in an FCC pilot plant
	Helene Lutz TU Wien, Austria
10:30-10:40	Break
10:40-11:10	Co-hydroprocessing of bio-oil to obtain diesel middle distillates fuels
	Rune Lødeng Sintef, Norway
11:10-11:40	Stabilization of bio-oil and modelling of fast pyrolysis using COCO software
	Robbie Venderbosch, Biomass Technology Group (BTG), Netherlands
11:40-12:10	Modelling hydrothermal liquefaction process
	Thomas Helmer Pedersen, Aalborg University, Denmark
12:10-12:20	Break
12:20-12:50	Techno-economic assessment of conceptual processes and life cycle costing
	Mieke Nieder-Heitmann, Process Design Center, Netherlands
12:50-13:20	Where is the energy in the city waste?
	Johnny Stuen, Oslo Kommune Energigjenvinningsetaten (EGE), Norway
13:20-14:00	Commercialization activities about pyrolysis
	Gerhard Muggen, BTG Bioliquids, Netherlands
14:00-14:05	Final words and end of the seminar
· · · · · · · · · · · · · · · · · · ·	

3 Webinar key learning points

Fast pyrolysis and HTL are promising technologies to convert solid biomass into an intermediate biocrude. The commercial plants in operation are using clean feedstock, but in future target is to use more waste based material. This will have a big impact not only on the primary liquefaction process, but also on the downstream upgrading processes, which are very sensitive to high metal, sulphur and chlorine contents in the biocrude.

Integration of bio-liquids in a refinery was discussed thoroughly in the webinars. Complexity of biocrude composition was highlighted by presenting comparative overall properties of bio-liquids produced by pyrolysis and hydrothermal liquefaction. Several co-feeding points in a refinery were discussed and justified.

REPSOL, MOL, Sintef and TU Wien shared their experiences in Fluid catalytic cracking and cohydrotreatment, respectively.

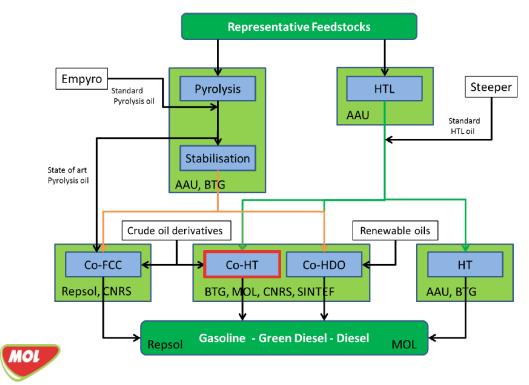
BTG and BTG Bioliquids presented the status of pyrolysis as a mature and cheap process that has great potentials especially when integrated into refineries. Furthermore, a presentation was dedicated to

explain how to use COCO to model a pyrolysis process; COCO is a free modeling tool that students can use for modelling different processes.

Modelling of hydrothermal liquefaction process was introduced by Aalborg University. Presentation focused on non-conventional solid approach in biomass modelling using Aspen plus. Some related calculations were highlighted as well. In addition, integration of hydrothermal liquefaction process in a refinery has been presented as a case study.

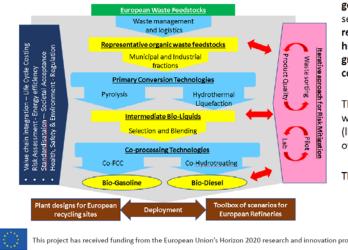
VTT presented Aspen plus as a modelling tool to find a suitable co-processing route. Modelling based on chemical composition, distillation curve or creating an empirical model were methodically explained in the presentation.

In addition to that, PDC presented detailed techno-economical assessment and life cycle costing calculations. Economic parameters such as production cost, IRR and NPV were used to present techno-economical assessment results.


The webinar ended with a modelling exercise for students to practice using Aspen plus. Simplified simulation model was introduced to simulate the fast pyrolysis process in Empyro plant. In the exercise, biomass and pyrolysis products were modelled by using the non-conventional approach and by utilizing a yield reactor with already defined products, respectively.

WASTE2ROAD

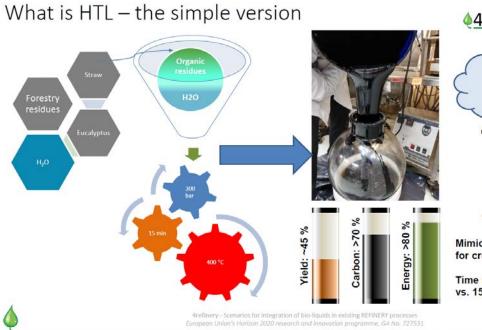
4 Appendix

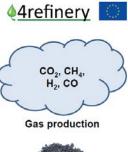

4Refinery concept

4refinery

WASTE2ROAD

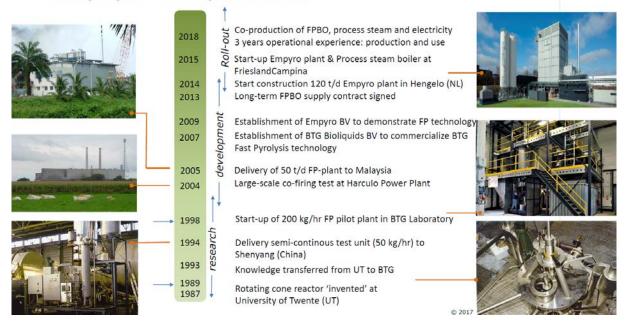
WASTE2ROAD concept


WASTE2ROAD project aims to develop a new generation of cost-effective biofuels from a selected range of low cost and abundant biogenic residues and waste fractions, aiming to achieve high overall carbon yields > 45% while reducing greenhouse gases emissions (GHG) by > 80% compared to fossil fuels.


The consortium covers the full value chain from waste collection and recycling, to bio-conversion (liquefaction) and co-refining, through to validation of the biofuels for the use of road transport.

The project aims to achieve pilot testing at TRL 5.

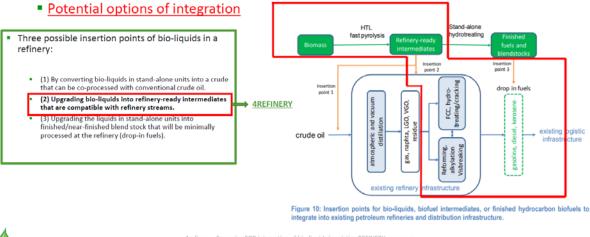
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 818120.



Char & nutrients

Mimics the natural process for crude oil production.

Time reduction: 100 mio. yrs vs. 15 min!


Fast Pyrolysis - development timeline

4refinery

Integration of bio-liquids in refinery

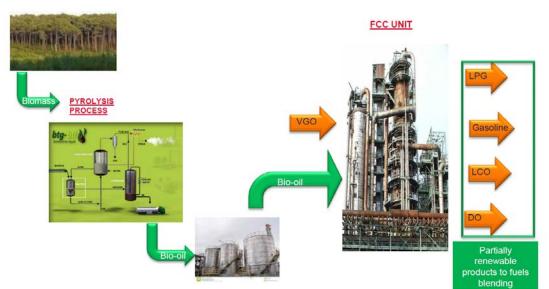
Arefinery - Scenarios FOR integration of bio-liquids in existing REFINERY processes European Union's Horizon 2020 research and innovation program, GA No. 727531

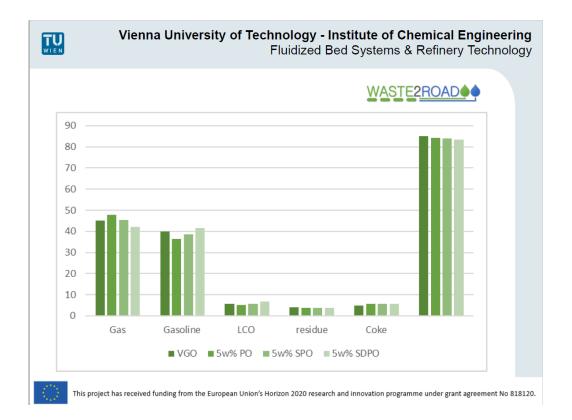
Chemical, physical and technical challenges in processing of renewables

High oxygen content; Exothermic reactions and a high consumption of hydrogen Might include a high H2O content

- Materials; The risk of corrosion due to a high acid number, a high chlorine content and the presence of oxygenated compounds, carboxylic acids
- Contaminants; Deposits causing pressure drop and catalyst deactivation due to the presence of components such as Si and P, and others
- Product Quality; The establish on the density and cold flow properties of the end product,
- Feedstock supply; The ability to secure a reliable supply of renewable feedstocks of sufficient quality

W2R solution is diversity in feedstock types and technology


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 818120.


10

WASTE2ROAD

Aspen Process Economic Ana • Used in many research articles	alyzer	Economics Bath Conomics Active Auto-Evaluate 20 Delete Scenario Economics Solver Cogite	Mapping Sing Evaluation Status
 How to use it: Map equipment Size Evaluate & Analyze Adjust for material of construction 	Map Previou Unit Operations B2HLATER B2NEXCOMPR CxC-010537 CxC-010537 CxC-010537 CxC-010537 CxC-010537 CxC-010537 CxC-010537 CxC-010547 CxC-010547 CxC-01057 CxC-01057	Equipment Tag	- C x Equipment Type Centriligia compressor - horizostal Summary Centrif pump Unit operation Equipment Cuote
 Always 'sanity-check' each unit of equip equipment unit costs may not be accurding Not calculated due to an error, or If it is a batch unit or the residence time is to be adjusted For example: batch processes, adsorption some new equipment units specific to bio- some new equipment units specific to bio- and adjust for time value if required This project has received funding from the European Union's Horizon 2020 research 	ate specific, the co columns, and n processing spen Plus v8.6 i	ost needs nost likely is 2016)	User tag number P149-149 Tarnaka 1 Equipment mapped Quoted cost per item (US0) Currency unit for mati cost Dimeter procession Currency unit for mati cost Dimeter procession Currency unit for mati cost Dimeter procession Currency unit for mati cost Speed (rpm) A204 Speed (rpm) A204 Dimeter procession SSI (1 cost) Dimeter procession SSI (1 cost) Dimeter procession SSI (1 cost) Dimeter procession SSI (1 cost)