
Parallel Local search for the
CVRP on the GPU

Christian Schulz, Geir Hasle, Oddvar Kloster, Atle Riise and
Morten Smedsrud

SINTEF ICT

28. October 2010



Outline Motivation CVRP & REFs GPU 3-opt Summary

Outline

1. Motivation

2. CVRP & REFs

3. Three-opt on GPU

4. Summary

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 2/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

Motivation

Vehicle Routing Problem

Still gap between requirements and performance

Variants of large neighborhood search, variable neighborhood
search, iterated local search proven effective

Why parallelize local search

Local search is an essential part of more advanced strategies
such as metaheuristics

Embarrassingly parallel: Moves independent from each other

⇒ Potential for significant speed up

Why GPU

High computational power and memory bandwidth

Cheap
SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 3/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

Model

CVRP

Given: depot & customer nodes, travelling costs, vehicle
capacity, customer demands

Wanted: Feasible route(s) with minimal length

Model

Based on paper ”A Unified Modeling and Solution Framework
for Vehicle Routing and Local Search-based Metaheuristics”
by Stefan Irnich, INFORMS JOURNAL ON COMPUTING,
Vol. 20, No. 2, Spring 2008, pp. 270-287

Solution represented as a giant tour

Use of classical resource extension functions to model capacity
constraint ⇒ Constant time move evaluation

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 4/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

Classical Resource extension function

Resource vector T ∈ Rn

Each node has a associated resource interval [ai ,bi ]

A classical REF models change in resource from i to j :
f ij(T) = T + tij or f ij(T) = max(aj ,T + tij)

A path is feasible if for each node i there exists a resource
vector Ti ∈ [ai ,bi ] s.th.

f i ,i+1(Ti ) ≤ Ti+1

Segment hierarchy ⇒ Constant time move evaluation

Aggregation:
[3-6]: 3→ 5, 3→ 6,

4→ 6, inverse
[0-9]: 0→ 6, 0→ 9,

3→ 9, inverse
0 1 2 3 4 5 6 · · · 31 32

[0-3] [3-6] [30-32]

[0-9] [27-32]

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 5/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

Classical Resource extension function

Resource vector T ∈ Rn

Each node has a associated resource interval [ai ,bi ]

A classical REF models change in resource from i to j :
f ij(T) = T + tij or f ij(T) = max(aj ,T + tij)

A path is feasible if for each node i there exists a resource
vector Ti ∈ [ai ,bi ] s.th.

f i ,i+1(Ti ) ≤ Ti+1

Segment hierarchy ⇒ Constant time move evaluation

Aggregation:
[3-6]: 3→ 5, 3→ 6,

4→ 6, inverse
[0-9]: 0→ 6, 0→ 9,

3→ 9, inverse
0 1 2 3 4 5 6 · · · 31 32

[0-3] [3-6] [30-32]

[0-9] [27-32]

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 5/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

Method

Initial solution

Star solution: A single route
to each customer

Simple method: Local search with 3-opt move on giant tour

Remove 3 connections/edges ⇒ 4 parts

Reconnect parts in all possible (new) ways ⇒ 7 possibilities

⇒ (7/6)(n − 1)(n − 2)(n − 3) moves (n: #nodes in solution)

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 6/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

What we do on the GPU

Once

Create neighborhood

Each iteration

Create hierarchy
Evaluation of capacity constraint and length objective for each
move
Choosing best move

⇒ Neighborhood and hierarchy live whole time on GPU

0 100 200 300 400

0

50

100

150

#nodes in solution

sp
ee

d
u
p

vs
C
P
U

GTX260 GTX480

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 7/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

What we do on the GPU

Once

Create neighborhood

Each iteration

Create hierarchy
Evaluation of capacity constraint and length objective for each
move
Choosing best move

⇒ Neighborhood and hierarchy live whole time on GPU

Both codes not optimized!

0 100 200 300 400

0

50

100

150

#nodes in solution

sp
ee

d
u
p

vs
C
P
U

GTX260 GTX480

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 7/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

What we do on the GPU

Once

Create neighborhood

Each iteration

Create hierarchy
Evaluation of capacity constraint and length objective for each
move
Choosing best move

⇒ Neighborhood and hierarchy live whole time on GPU

Unfair comparison!
GPU is fast is known
Real task: Efficient usage

of GPU hardware
0 100 200 300 400

0

200

400

600

800

#nodes in solution

sp
ee

d
u
p

vs
C
P
U

GTX260

GTX480

GTX480 opt

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 7/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

GPU analysis

Look at data for largest available solution (399 nodes)

Implementational
approach for

criterion/objective
evaluation

Runtime
on GPU

% of neighborhood
evaluation

≤ 177.4
Gbyte/sec

Hit on L1-cache
for global reads

Average number of instructions per cycle on a multiprocessor
(Fermi can execute 2 instructions on each multiprocessor)

Data for evaluation of criterion (demands)

Data for evaluation of objective (tour length)

Time Time % Bandwidth L1 hit Ipc
(ms) (%) (Gbyte/sec) (%) ≤ 2

1069 42.5 12.2 75.4 0.73
First try

1410 56.1 33.5 80.8 0.68

Max 64 registers, 475 40.8 68.8 86.2 1.64
128 threads, 48k Cache 657 56.3 119.6 93.3 1.39

479 45.3 24.6 89.2 1.60
Parts in registers

544 51.1 49.6 95.5 1.60

Simpler order 295 42.3 38.4 86.6 1.59
(array of structures) 369 53.0 86.2 92.7 1.54

Modulo computations 213 39.4 52.8 87.8 1.60
switched to base 2 op. 295 54.5 104.1 93.1 1.52

Double precision 215 38.9 69.3 87.8 1.60
for tour length 295 53.2 104.1 93.1 1.52

Number of registers per thread limited to 32 as compile option
⇒ Set to 64

Only 32 threads per block, increase

Default 16k Cache, change to 48k

Currently use of array for 4 parts in 3-opt
⇒ In local memory (slow)
⇒ Store in registers

(Registers per thread: before: 32/39, after: 32/37)

Most accessed hierarchy segments identical

All data from a segment needed to compute part

Array of structure: Data cached!

So far: Complicated order to ensure access of neighboring
structures (most of the times)

But: Most accessed hierarchy segments identical, reduced
coalescing due to array of structures

⇒ Use simpler order

Modulo operations expensive

Integer division expensive

Both can be replaced by bitwise operations for powers of 2
So far single precision

What about double precision

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 8/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

GPU analysis

Look at data for largest available solution (399 nodes)

Implementational
approach for

criterion/objective
evaluation

Runtime
on GPU

% of neighborhood
evaluation

≤ 177.4
Gbyte/sec

Hit on L1-cache
for global reads

Average number of instructions per cycle on a multiprocessor
(Fermi can execute 2 instructions on each multiprocessor)

Data for evaluation of criterion (demands)

Data for evaluation of objective (tour length)

Time Time % Bandwidth L1 hit Ipc
(ms) (%) (Gbyte/sec) (%) ≤ 2

1069 42.5 12.2 75.4 0.73
First try

1410 56.1 33.5 80.8 0.68

Max 64 registers, 475 40.8 68.8 86.2 1.64
128 threads, 48k Cache 657 56.3 119.6 93.3 1.39

479 45.3 24.6 89.2 1.60
Parts in registers

544 51.1 49.6 95.5 1.60

Simpler order 295 42.3 38.4 86.6 1.59
(array of structures) 369 53.0 86.2 92.7 1.54

Modulo computations 213 39.4 52.8 87.8 1.60
switched to base 2 op. 295 54.5 104.1 93.1 1.52

Double precision 215 38.9 69.3 87.8 1.60
for tour length 295 53.2 104.1 93.1 1.52

Number of registers per thread limited to 32 as compile option
⇒ Set to 64

Only 32 threads per block, increase

Default 16k Cache, change to 48k

Currently use of array for 4 parts in 3-opt
⇒ In local memory (slow)
⇒ Store in registers

(Registers per thread: before: 32/39, after: 32/37)

Most accessed hierarchy segments identical

All data from a segment needed to compute part

Array of structure: Data cached!

So far: Complicated order to ensure access of neighboring
structures (most of the times)

But: Most accessed hierarchy segments identical, reduced
coalescing due to array of structures

⇒ Use simpler order

Modulo operations expensive

Integer division expensive

Both can be replaced by bitwise operations for powers of 2
So far single precision

What about double precision

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 8/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

GPU analysis

Time Time % Bandwidth L1 hit Ipc
(ms) (%) (Gbyte/sec) (%) ≤ 2

1069 42.5 12.2 75.4 0.73
First try

1410 56.1 33.5 80.8 0.68

Max 64 registers, 475 40.8 68.8 86.2 1.64
128 threads, 48k Cache 657 56.3 119.6 93.3 1.39

479 45.3 24.6 89.2 1.60
Parts in registers

544 51.1 49.6 95.5 1.60

Simpler order 295 42.3 38.4 86.6 1.59
(array of structures) 369 53.0 86.2 92.7 1.54

Modulo computations 213 39.4 52.8 87.8 1.60
switched to base 2 op. 295 54.5 104.1 93.1 1.52

Double precision 215 38.9 69.3 87.8 1.60
for tour length 295 53.2 104.1 93.1 1.52

Number of registers per thread limited to 32 as compile option
⇒ Set to 64

Only 32 threads per block, increase

Default 16k Cache, change to 48k

Currently use of array for 4 parts in 3-opt
⇒ In local memory (slow)
⇒ Store in registers

(Registers per thread: before: 32/39, after: 32/37)

Most accessed hierarchy segments identical

All data from a segment needed to compute part

Array of structure: Data cached!

So far: Complicated order to ensure access of neighboring
structures (most of the times)

But: Most accessed hierarchy segments identical, reduced
coalescing due to array of structures

⇒ Use simpler order

Modulo operations expensive

Integer division expensive

Both can be replaced by bitwise operations for powers of 2
So far single precision

What about double precision

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 9/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

GPU analysis

Time Time % Bandwidth L1 hit Ipc
(ms) (%) (Gbyte/sec) (%) ≤ 2

1069 42.5 12.2 75.4 0.73
First try

1410 56.1 33.5 80.8 0.68

Max 64 registers, 475 40.8 68.8 86.2 1.64
128 threads, 48k Cache 657 56.3 119.6 93.3 1.39

479 45.3 24.6 89.2 1.60
Parts in registers

544 51.1 49.6 95.5 1.60

Simpler order 295 42.3 38.4 86.6 1.59
(array of structures) 369 53.0 86.2 92.7 1.54

Modulo computations 213 39.4 52.8 87.8 1.60
switched to base 2 op. 295 54.5 104.1 93.1 1.52

Double precision 215 38.9 69.3 87.8 1.60
for tour length 295 53.2 104.1 93.1 1.52

Number of registers per thread limited to 32 as compile option
⇒ Set to 64

Only 32 threads per block, increase

Default 16k Cache, change to 48k

Currently use of array for 4 parts in 3-opt
⇒ In local memory (slow)
⇒ Store in registers

(Registers per thread: before: 32/39, after: 32/37)

Most accessed hierarchy segments identical

All data from a segment needed to compute part

Array of structure: Data cached!

So far: Complicated order to ensure access of neighboring
structures (most of the times)

But: Most accessed hierarchy segments identical, reduced
coalescing due to array of structures

⇒ Use simpler order

Modulo operations expensive

Integer division expensive

Both can be replaced by bitwise operations for powers of 2
So far single precision

What about double precision

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 10/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

GPU analysis

Time Time % Bandwidth L1 hit Ipc
(ms) (%) (Gbyte/sec) (%) ≤ 2

1069 42.5 12.2 75.4 0.73
First try

1410 56.1 33.5 80.8 0.68

Max 64 registers, 475 40.8 68.8 86.2 1.64
128 threads, 48k Cache 657 56.3 119.6 93.3 1.39

479 45.3 24.6 89.2 1.60
Parts in registers

544 51.1 49.6 95.5 1.60

Simpler order 295 42.3 38.4 86.6 1.59
(array of structures) 369 53.0 86.2 92.7 1.54

Modulo computations 213 39.4 52.8 87.8 1.60
switched to base 2 op. 295 54.5 104.1 93.1 1.52

Double precision 215 38.9 69.3 87.8 1.60
for tour length 295 53.2 104.1 93.1 1.52

Number of registers per thread limited to 32 as compile option
⇒ Set to 64

Only 32 threads per block, increase

Default 16k Cache, change to 48k

Currently use of array for 4 parts in 3-opt
⇒ In local memory (slow)
⇒ Store in registers

(Registers per thread: before: 32/39, after: 32/37)

Most accessed hierarchy segments identical

All data from a segment needed to compute part

Array of structure: Data cached!

So far: Complicated order to ensure access of neighboring
structures (most of the times)

But: Most accessed hierarchy segments identical, reduced
coalescing due to array of structures

⇒ Use simpler order

Modulo operations expensive

Integer division expensive

Both can be replaced by bitwise operations for powers of 2
So far single precision

What about double precision

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 11/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

Array of Structures or Structure of Arrays

A hierarchy segment has 4 entries:

Interval [a, b]

Cost t

Feasible information f

Array of Structures

bi−1 ti−1 fi−1 ai bi ti fi ai+1 bi+1 ti+1

segmenti

· · · · · ·

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 12/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

Array of Structures or Structure of Arrays

Array of Structures

bi−1 ti−1 fi−1 ai bi ti fi ai+1 bi+1 ti+1

segmenti

· · · · · ·

Structure of Arrays

Normally:

Neighboring threads
access neighboring
entries

Better coalescing

Fewer transactions

Faster

ai−2 ai−1 ai ai+1 ai+2· · · · · ·

bi−2 bi−1 bi bi+1 bi+2· · · · · ·

ti−2 ti−1 ti ti+1 ti+2· · · · · ·

fi−2 fi−1 fi fi+1 fi+2· · · · · ·

segmenti
SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 12/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

GPU analysis

Time Time % Bandwidth L1 hit Ipc
(ms) (%) (Gbyte/sec) (%) ≤ 2

1069 42.5 12.2 75.4 0.73
First try

1410 56.1 33.5 80.8 0.68

Max 64 registers, 475 40.8 68.8 86.2 1.64
128 threads, 48k Cache 657 56.3 119.6 93.3 1.39

479 45.3 24.6 89.2 1.60
Parts in registers

544 51.1 49.6 95.5 1.60

479 43.6 24.6 89.2 1.60
Structure of arrays

584 53.3 46.7 94.1 1.62

Simpler order 295 42.3 38.4 86.6 1.59
(array of structures) 369 53.0 86.2 92.7 1.54

Modulo computations 213 39.4 52.8 87.8 1.60
switched to base 2 op. 295 54.5 104.1 93.1 1.52

Double precision 215 38.9 69.3 87.8 1.60
for tour length 295 53.2 104.1 93.1 1.52

Number of registers per thread limited to 32 as compile option
⇒ Set to 64

Only 32 threads per block, increase

Default 16k Cache, change to 48k

Currently use of array for 4 parts in 3-opt
⇒ In local memory (slow)
⇒ Store in registers

(Registers per thread: before: 32/39, after: 32/37)

Most accessed hierarchy segments identical

All data from a segment needed to compute part

Array of structure: Data cached!

So far: Complicated order to ensure access of neighboring
structures (most of the times)

But: Most accessed hierarchy segments identical, reduced
coalescing due to array of structures

⇒ Use simpler order

Modulo operations expensive

Integer division expensive

Both can be replaced by bitwise operations for powers of 2
So far single precision

What about double precision

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 13/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

GPU analysis

Time Time % Bandwidth L1 hit Ipc
(ms) (%) (Gbyte/sec) (%) ≤ 2

1069 42.5 12.2 75.4 0.73
First try

1410 56.1 33.5 80.8 0.68

Max 64 registers, 475 40.8 68.8 86.2 1.64
128 threads, 48k Cache 657 56.3 119.6 93.3 1.39

479 45.3 24.6 89.2 1.60
Parts in registers

544 51.1 49.6 95.5 1.60

479 43.6 24.6 89.2 1.60
Structure of arrays

584 53.3 46.7 94.1 1.62

Simpler order 295 42.3 38.4 86.6 1.59
(array of structures) 369 53.0 86.2 92.7 1.54

Modulo computations 213 39.4 52.8 87.8 1.60
switched to base 2 op. 295 54.5 104.1 93.1 1.52

Double precision 215 38.9 69.3 87.8 1.60
for tour length 295 53.2 104.1 93.1 1.52

Number of registers per thread limited to 32 as compile option
⇒ Set to 64

Only 32 threads per block, increase

Default 16k Cache, change to 48k

Currently use of array for 4 parts in 3-opt
⇒ In local memory (slow)
⇒ Store in registers

(Registers per thread: before: 32/39, after: 32/37)

Most accessed hierarchy segments identical

All data from a segment needed to compute part

Array of structure: Data cached!

So far: Complicated order to ensure access of neighboring
structures (most of the times)

But: Most accessed hierarchy segments identical, reduced
coalescing due to array of structures

⇒ Use simpler order

Modulo operations expensive

Integer division expensive

Both can be replaced by bitwise operations for powers of 2
So far single precision

What about double precision

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 14/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

GPU analysis

Time Time % Bandwidth L1 hit Ipc
(ms) (%) (Gbyte/sec) (%) ≤ 2

1069 42.5 12.2 75.4 0.73
First try

1410 56.1 33.5 80.8 0.68

Max 64 registers, 475 40.8 68.8 86.2 1.64
128 threads, 48k Cache 657 56.3 119.6 93.3 1.39

479 45.3 24.6 89.2 1.60
Parts in registers

544 51.1 49.6 95.5 1.60

Simpler order 295 42.3 38.4 86.6 1.59
(array of structures) 369 53.0 86.2 92.7 1.54

Modulo computations 213 39.4 52.8 87.8 1.60
switched to base 2 op. 295 54.5 104.1 93.1 1.52

Double precision 215 38.9 69.3 87.8 1.60
for tour length 295 53.2 104.1 93.1 1.52

Number of registers per thread limited to 32 as compile option
⇒ Set to 64

Only 32 threads per block, increase

Default 16k Cache, change to 48k

Currently use of array for 4 parts in 3-opt
⇒ In local memory (slow)
⇒ Store in registers

(Registers per thread: before: 32/39, after: 32/37)

Most accessed hierarchy segments identical

All data from a segment needed to compute part

Array of structure: Data cached!

So far: Complicated order to ensure access of neighboring
structures (most of the times)

But: Most accessed hierarchy segments identical, reduced
coalescing due to array of structures

⇒ Use simpler order

Modulo operations expensive

Integer division expensive

Both can be replaced by bitwise operations for powers of 2

So far single precision

What about double precision

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 15/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

GPU analysis

Time Time % Bandwidth L1 hit Ipc
(ms) (%) (Gbyte/sec) (%) ≤ 2

1069 42.5 12.2 75.4 0.73
First try

1410 56.1 33.5 80.8 0.68

Max 64 registers, 475 40.8 68.8 86.2 1.64
128 threads, 48k Cache 657 56.3 119.6 93.3 1.39

479 45.3 24.6 89.2 1.60
Parts in registers

544 51.1 49.6 95.5 1.60

Simpler order 295 42.3 38.4 86.6 1.59
(array of structures) 369 53.0 86.2 92.7 1.54

Modulo computations 213 39.4 52.8 87.8 1.60
switched to base 2 op. 295 54.5 104.1 93.1 1.52

Double precision 215 38.9 69.3 87.8 1.60
for tour length 295 53.2 104.1 93.1 1.52

Number of registers per thread limited to 32 as compile option
⇒ Set to 64

Only 32 threads per block, increase

Default 16k Cache, change to 48k

Currently use of array for 4 parts in 3-opt
⇒ In local memory (slow)
⇒ Store in registers

(Registers per thread: before: 32/39, after: 32/37)

Most accessed hierarchy segments identical

All data from a segment needed to compute part

Array of structure: Data cached!

So far: Complicated order to ensure access of neighboring
structures (most of the times)

But: Most accessed hierarchy segments identical, reduced
coalescing due to array of structures

⇒ Use simpler order

Modulo operations expensive

Integer division expensive

Both can be replaced by bitwise operations for powers of 2

So far single precision

What about double precision

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 16/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

GPU analysis

Time Time % Bandwidth L1 hit Ipc
(ms) (%) (Gbyte/sec) (%) ≤ 2

1069 42.5 12.2 75.4 0.73
First try

1410 56.1 33.5 80.8 0.68

Max 64 registers, 475 40.8 68.8 86.2 1.64
128 threads, 48k Cache 657 56.3 119.6 93.3 1.39

479 45.3 24.6 89.2 1.60
Parts in registers

544 51.1 49.6 95.5 1.60

Simpler order 295 42.3 38.4 86.6 1.59
(array of structures) 369 53.0 86.2 92.7 1.54

Modulo computations 213 39.4 52.8 87.8 1.60
switched to base 2 op. 295 54.5 104.1 93.1 1.52

Double precision 215 38.9 69.3 87.8 1.60
for tour length 295 53.2 104.1 93.1 1.52

Number of registers per thread limited to 32 as compile option
⇒ Set to 64

Only 32 threads per block, increase

Default 16k Cache, change to 48k

Currently use of array for 4 parts in 3-opt
⇒ In local memory (slow)
⇒ Store in registers

(Registers per thread: before: 32/39, after: 32/37)

Most accessed hierarchy segments identical

All data from a segment needed to compute part

Array of structure: Data cached!

So far: Complicated order to ensure access of neighboring
structures (most of the times)

But: Most accessed hierarchy segments identical, reduced
coalescing due to array of structures

⇒ Use simpler order

Modulo operations expensive

Integer division expensive

Both can be replaced by bitwise operations for powers of 2
So far single precision

What about double precision

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 17/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

Summary & Future Work

Summary

Local search suited for data parallelism

Use of GPU can lead to significant speed ups

Challenge to get full performance of GPU

Future Work

Larger solutions: memory limit

More advanced strategies such as metaheuristics

Keep CPU and GPU busy

Richer problems

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 18/19



Outline Motivation CVRP & REFs GPU 3-opt Summary

Thank you for your attention!

SINTEF ICT Parallel Local search for the CVRP on the GPU 28. October 2010 19/19


	Outline
	Motivation
	CVRP & REFs
	Three-opt on GPU
	Summary

