

SINTEF ICT

Applied Mathematics

2011-05-24

SINTEF A19678 Unrestricted

Report

Efficient Local Search on the GPU

Investigations on the Vehicle Routing Problem

Author(s)

Christian Schulz

PROJECT NO.
90A3 6301

REPORT NO.
SINTEF A19678

VERSION
Version

Document history

VERSION DATE VERSION DESCRIPTION

1 2011-05-24 First version

Efficient Local Search on the GPU – Investigations on the Vehicle Routing

Problem

Christian Schulz

June 15, 2011

Abstract

In the recent years the graphics processing unit, or GPU,
changed from being purely graphics oriented to a more gen-
eral, programmable hardware. It is a very powerful, intrin-
sicly parallel machine that employs the idea of data par-
allelism, i.e., the same procedure is performed on different
data. At the same time the GPU is nowadays a common
part in most PCs, providing a very reasonable yet powerful
tool if it can be harnessed. This has also been recognized
by the scientific community. Research efforts have been re-
ported on where and how the GPU can accelerate compu-
tationally expensive tasks in scientific computing. Discrete
optimization is no exception. Local search is a computa-
tionally expensive method in discrete optimization. It is a
basic ingredient in many so called metaheuristics, which in
the recent years have proven to be very successful in provid-
ing high quality solutions for real world, large size discrete
optimization problems. In local search the same type of op-
eration is performed on a large set of data, exposing exactly
the kind of data parallelism the GPU is designed for. Ear-
lier studies of local search implementations on the GPU have
verified the potential. However, a thorough investigation of
how well the local search process can be adapted to the spe-
cific requirements of the GPU has been lacking so far. In
this paper, we investigate the performance increase poten-
tial of GPU implementations of local search. In particular,
we report on how we managed to incrementally improve the
implementation of a local search algorithm to a given GPU
platform for maximum performance. Our final version uses
the GPU architecture efficiently and is nearly one order of
magnitude faster than the first implementation. As our tar-
get problem we use the well known Vehicle Routing Problem
(VRP). The VRP is a family of computationally very hard
problems with high industrial relevance.

Keywords: GPU , Discrete Optimization , Local search ,
CUDA , VRP , Efficient implementation , Parallel computing ,
Stream processing

1 Introduction

Discrete Optimization Problems (DOPs) abound in busi-
ness, industry, and the public sector. Their computational
complexity (most of them are NP-hard) more often than

not makes human problem solving inadequate, leaving a
large potential for improvement of critical factors such as
economy, customer service, and environmental damage. In
many application areas a decision support tool industry has
emerged. The performance of such tools is largely depend-
ing on two factors: the performance of the DOP solution
method, and the computing power of the hardware platform.
DOPs are also important in science. An increase in our abil-
ity to solve large-size DOPs in reasonable time contributes
to scientific progress in fields such as biology, chemistry, and
physics.

Solution methods for DOPs can largely be divided in ex-
act and approximative methods. Exact methods guaran-
tee to find an optimal solution, but often the response time
is forbidding for real-life DOPs. Approximative methods,
so-called metaheuristics [7, 21] in particular, have proven
effective in providing high quality solutions to practical in-
stances of many types of DOP under realistic response re-
quirements. A basic ingredient in many metaheuristics1 is
Local Search (LS), also called neighborhood search. The bulk
of the computational effort of sequential implementations of
such metaheuristics is typically concentrated on feasibility
and objective assessment of neighbors in LS. Other, so-called
evolutionary metaheuristics, are based on a population of
solutions. Analogously, their bottleneck is normally the as-
sessment of each solution in the population.

The general DOP resolution power has increased tremen-
dously over the past half century. This is due to a com-
bination of methodological improvements and an exponen-
tial development of the power of commodity computers. To
illustrate, commercial Linear Programming solvers had a
speedup factor of roughly six orders of magnitude in the pe-
riod 1987-2000 according to Bixby [3]. He attributes roughly
a factor 1000 to better methods, and the same for more
powerful hardware. Linear Programming is a basis for exact
DOP methods. Still, there is a large gap between user re-
quirements and state-of-the-art solver performance for many
DOP applications.

Around year 2004, the architecture of processors for com-
modity computers started to change. Due to technological
limits, the still prevailing Moore’s law no longer materialized
in the form of a doubling of clock speed every 18 months or
so. Hence, the tongue-in-cheek ”Beach law”2 was no longer

1So-called single solution or trajectory based metaheuristics.
2One way of doubling the performance of your computer program

1

true. Multi-core processors with an increasing number of
cores and higher theoretical performance than their single
core predecessors emerged, but each core had lower clock
speed. DOP methods need task parallelization to benefit
from this development. In addition, there has been a drastic
improvement of performance and general programmability
of stream processing accelerators such as Graphics Process-
ing Units (GPUs). To fully profit from the general recent
and future hardware development on modern PC architec-
tures, heterogeneous DOP methods that combine task and
data parallelism must be developed. Such methods should
self-adapt to the hardware resources at hand. The heteroge-
neous architecture also invites to a fundamental re-thinking
of DOP methods.

The GPU has been utilized for scientific computing for a
decade or so, for instance in linear algebra, geometry, visu-
alization, and PDE-based simulation. There is a substantial
research literature, see [5, 4]. In contrast, the literature on
GPU implementations of DOP methods is scarce.

An early approach to implement tabu search on the GPU
using the graphics pipeline was done by Janiak et al in 2008
[15]. With the development of CUDA (see later) program-
ming the GPU became easier. In [16] Liu uses the GPU for
VLSI circuit optimization. Vidal and Alba apply a cellular
genetic algorithm on the GPU in [23]. Evolutionary algo-
rithms as well as versions of local search were also studied
by Luong et al. [17, 18]. Their results show that a GPU
implementation can outperform the CPU.

In this paper, we investigate GPU implementations of LS.
The study is an important step in research on heterogeneous
computing for DOP on modern PC architectures. To this
end, we utilize a hard DOP, the much studied Vehicle Rout-
ing Problem (VRP). In this context, our goal is neither to
suggest a competitive VRP solution method, nor to prove
once more that the GPU has high computing power. Rather,
our main goal is to carefully assess the performance increase
potential for GPU implementations of LS. In particular, we
report on how we managed to incrementally improve the im-
plementation of an LS algorithm to a given GPU platform
for maximum performance.

The remainder of this paper is structured as follows. In
Section 2, we informally describe the VRP and define the
DCVRP variant that we use in our investigations. In Sec-
tion 3, we define the Discrete Optimization Problem and
give an introduction to local search. In Section 4 we de-
scribe the overall DCVRP solution method and the repre-
sentation used. An introduction to programming the GPU
with CUDA and related tools is given in Section 5. In Sec-
tion 6 we describe in detail our implementation on the GPU
and the steps undertaken to tune the algorithm. Section 7
shortly discusses the problem of filtering neighborhoods on
the GPU. The paper finishes with our conclusion in Section
8.

is to go to the beach for two years and then buy a new computer.

2 The Vehicle Routing Problem

The VRP is a family of hard discrete optimization problems
with high industrial relevance [10]. The classical Capaci-
tated VRP (CVRP) was first described in the Operations
Research literature in [6]. Since then, thousands of papers
have been written on variants of the VRP. The CVRP is
informally described as follows:

A number of identical vehicles with a given ca-
pacity are located at a central depot. They are
available for servicing a set of customer orders, (all
deliveries, or, alternatively, all pickups). Each cus-
tomer order has a specific location and size. Travel
costs between all locations are given. The goal is to
design a least-cost set of routes for the vehicles in
such a way that all customers are visited once and
vehicle capacities are adhered to.

For a thorough treatment of the VRP, we refer to [22] and
[8], but for easy reference we give a definition of the CVRP
here.

2.1 The Capacitated Vehicle Routing
Problem

The classical (symmetrical) CVRP is defined on a weighted
graph G = (N,E). V = {1, . . . ,K} is a set of identical
vehicles, each with capacity Q. The graph nodes N = C ∪
D, where C = {1, . . . , n} represents the set of customer
locations, and D = {n + 1, . . . , n + K + 1} is the set of
(artificial) depot nodes, all with the same location.

The edges e ∈ E ⊆ N × N represent travel possibilities
between nodes. G is usually complete. A non-negative travel
cost we, e ∈ E is associated with each edge. For notational
convenience, we shall use wi,j instead of w(i,j) for edge costs.
In the literature, it is normal to use the Euclidean distance.
A potential service cost particular to each customer may be
represented by adding half of it to the cost of each incoming
and outgoing edge of the customer.

A transportation order exists for each customer j, each
with a non-negative demand qj , requiring that the demand
must be delivered by a single vehicle from the depot to the
customer3.

The goal in CVRP is to find a solution consisting of K
circuits, i.e., one round trip tour for each vehicle, starting
and stopping at the depot, with minimal total travel cost.
Some circuits may be empty, i.e., one does not need to use
all available vehicles. All customers must be served exactly
once (i.e., all transportation orders must be serviced, and no
split deliveries are allowed), and the total demand for each
tour must not exceed the vehicle capacity Q. In a consistent
CVRP instance we obviously have Q ≥ qj , j ∈ {1, . . . , n},
and KQ ≥

∑n
j=1 qj .

Let s = {R1, . . . , RK} denote a candidate solution, where
Rk = (n+k, ck,1, . . . , ck,mk

, n+k+1) denotes the route for

3Equivalently, all orders specify pickups from the customers to the
depot.

2

vehicle k, k = 1, . . . ,K, i.e., the sequence of nodes starting
and finishing with the depot and visiting mk customers. Let
Rk(j), j = 0, . . . ,mk + 1 denote the j-th node in route Rk,
starting and finishing with the depot. The associated route
cost z(Rk) is simply the sum of costs for all edges defined
by the node sequence:

z(Rk) =

mk∑
j=0

wRk(j),Rk(j+1)

Let C(Rk) = {ck,1, . . . , ck,mk
} denote the set of customer

nodes in route Rk. For a feasible solution s we have
∪Kk=1C(Rk) = C (all customers visited), C(Ri)∩C(Rj) = ∅
for i 6= j (no customer in more than one route), ∀i, j ∈
{1, . . . ,mk}, i 6= j : Rk(i) 6= Rk(j) (no route visits the same
customer more than once), and∑

j∈C(Rk)

qj ≤ Q, k = 1, . . . ,K

(no route violates the vehicle capacity).
The objective to be minimized for the CVRP is the sum

of route costs over all routes:

minZ(s) =

K∑
i=1

z(Ri)

The optimal solution may require fewer than K routes. If
there is a goal of minimizing the number of vehicles used,
fixed costs for non-empty routes can be added to the arcs
from the depot nodes to customers.

There is a basic extension to the CVRP: the Distance
Constrained Capacitated VRP (DCVRP). For the DCVRP,
there is an additional constraint: a fixed maximum cost (or
length or duration) of each route must not be exceeded:
z(Ri) ≤ L, i = 1, . . . ,K.

Current state-of-the-art exact methods for the DCVRP
can consistently solve instances with up to some 100 cus-
tomers [2] in reasonable time. Real life VRPs may have
thousands or tens of thousands of customers. For solving
large-size practical cases one needs to resort to some type of
approximative solution method, for instance metaheuristics
based on LS4.

In this paper we use the DCVRP as the DOP for which we
investigate efficient GPU implementations of local search.

3 Discrete Optimization Problems
and Local Search

Here, we give a formal definition of the DOP and the se-
quential variant of local search (LS). For a comprehensive
treatment, we refer to [1].

We define a Discrete Optimization Problem (DOP) in the
following way. A (usually finite) set of solutions S ′ called

4Other remedies to contain complexity are decomposition and ab-
straction.

the solution space is given. A subset S ⊆ S ′ is defined as
the set of feasible solutions, also called the search space.

A function z : S ′ → R, called the objective is defined on
the solution space. The goal is to find a global optimum,
i.e., a feasible solution s∗ ∈ S such that the objective z is
minimized5:

z(s∗) ≤ z(s),∀ s ∈ S

Hence, a DOP may be defined by a pair (S, z). Often, the
solution space is given by the combinatorial nature of the
problem at hand, for instance all permutations of cities in
a travelling salesman problem. Also, the search space S is
typically not given explicitly but defined implicitly through
variables and their domains, together with a set of con-
straints Z = {ζ} on these variables. Each constraint is a
function ζ : S ′ → {0, 1}. Let s′ ∈ S ′ be a (candidate) solu-
tion. A constraint has the property:

ζ(s′) =

{
0 if the solution s′ is infeasible with respect to ζ,

1 if the solution s′ is feasible with respect to ζ.

Given the constraint set Z, the set of feasible solutions
(search space) S is defined by:

S = {s′ ∈ S ′ : ζ(s′) = 1,∀ζ ∈ Z}

We note that the DCVRP is a DOP according to the defi-
nition above.

Local Search (LS), also called Neighborhood Search, is
based on the idea of improvement through modifications of
a current solution. More formally, a neighborhood N is de-
fined as a function N : S → 2S , where 2S denotes the set of
all subsets of S. Given a solution s, N (s) ⊆ S is called the
Neighborhood of s. Normally, but not necessarily, a neigh-
borhood is a small subset of the solution space.

A neighborhood is typically defined on the basis of a cer-
tain type of operation defined by an operator on the solu-
tion. Several operators may be defined for a given DOP.
For the DCVRP we may for instance use the k-opt operator
that selects k edges in a solution and replaces them with k
others.

We define a neighborhood move as the acceptance of
a neighbor solution as the next current solution. The
neighborhood generated by an operator represents poten-
tial moves or neighbors. The neighbors must be checked
for feasibility and change in objective value before a move
is selected. These checks are typically the computational
bottleneck in LS.

Let N be a Neighborhood function for the DOP (S, z).
We define a solution ŝ to be a local optimum if the following
holds:

z(ŝ) ≤ z(s),∀ s ∈ N (ŝ)

Observe that a local optimum is defined relative to a specific
neighborhood. Different neighborhoods will typically give
rise to different sets of local optima.

5A maximization problem may easily be transformed to a minimiza-
tion problem.

3

LS is an iterative improvement procedure. In its basic
form, LS moves between feasible solutions. It needs an ini-
tial solution s0 ∈ S ′ that is the first current solution. There
are alternative general methods for producing an initial solu-
tion. These include random generation, greedy construction,
exact resolution of a reduced or relaxed problem, and pertur-
bation of a previously found solution. A common approach
is greedy construction. Here, one starts with an empty so-
lution and uses a more or less myopic and computationally
cheap heuristic to incrementally build a feasible solution.

Starting with the initial solution s0, LS moves iteratively
from one solution to a better solution. In the kth iteration,
it searches the neighborhood of the current solution sk−1 for
an improving solution. LS stops when there are no improv-
ing solutions in the neighborhood of the current solution. It
follows from the definition above that the final solution is
a local optimum relative to the neighborhood used. If the
search space S is finite, LS must stop in some iteration T ,
where T < |S|.

Note that the above does not precisely define LS. There
may be many improving solutions in the neighborhood of
the current solution. A strategy for the acceptance of im-
proving neighbors is needed. The most common acceptance
strategy is Best Improving : the best (or one of the best, with
a deterministic tie-breaker) improving neighbor is accepted.
Alternative strategies may be employed. For instance, one
may accept the First Improving neighbor. Given an initial
solution, LS has the anytime property : It may be interrupted
at any time and still provide a useful solution. LS, with a
specific search strategy, will define a path in the search space
from the initial solution to a local optimum: (s0, . . . , sT).

Pseudo-code for a sequential version of local search with
the Best Improving strategy is shown in Listing 1. It should
be clear that LS has parts that are embarrassingly parallel,
most notably, the neighborhood exploration.

4 Solution Method and Representa-
tion

Here, we describe the overall DCVRP solution method and
the representations used in our investigations of efficient
GPU implementations of local search.

4.1 Solution method

The optimization method is LS with the k-opt operator, for
k = 2, 3, see Section 3. These operators remove k edges from
the current solution and combine the resulting segments in
all possible ways. The reason for selecting these operators
are their widespread use, their generic nature, and the fact
that their cardinalities are O(n2) and O(n3), respectively.
Normally, the 3-opt neighborhood is regarded as being too
expensive for large VRPs.

The initial solution is generated either with a cheapest
insertion heuristic or by assigning one vehicle to each cus-
tomer. Neither construction method can guarantee that a

Procedure LocalSearch (s0 , z ,N,C)
begin

cur rent := s0 ; // This i s the i n i t i a l s o l u t i o n
l o c a l o p t := fa l se ;
while not l o c a l o p t do
begin

(current , l o c a l o p t):=
ExploreNeighborhood
(current ,N(cur rent) , f ,C) ;

i f l o c a l o p t then r e turn cur rent ;
end

end

Procedure ExploreNeighborhood
(current , Neighbors , f , Cons t ra int s)

begin
bes tne ighbor := cur rent ;
for n in Neighbors do
begin

f e a s i b l e := CheckFea s ib i l i t y (n , Const ra int s) ;
i f f e a s i b l e and f (n) < f (bes tne ighbor) then
begin

bes tne ighbor :=n
end

end
r e turn (bestne ighbor , bes tne ighbor=cur rent)

end

Procedure CheckFea s ib i l i t y
(so lu t i on , Const ra in t s)

begin
for c in Const ra in t s do
begin

i f c (s o l u t i o n)=0 then r e turn fa l se ;
end
r e turn true ;

end

Listing 1: Local Search with Best Improving strategy.

4

given constraint on the number of vehicles is respected. In
order to remove such infeasibilities, we utilize an augmented
objective z with a penalty term zK during the subsequent
LS phase:

z = zw + λKzK , zw = Z(s).

If the number of vehicles in the solution is valid, zK = 0,
otherwise it is equal to the number of vehicles in the solution.
The weight λK is such that a solution with fewer vehicles is
always preferable. However, there is no guarantee that LS
finds a feasible solution if the initial solution is infeasible.
Since the goal of this paper is not to provide a new method
for solving the DCVRP but to study GPU implementations
of local search, we believe that this approach is reasonable.

4.2 Representation

For candidate VRP solutions, we use a giant tour repre-
sentation, i.e., a sequence of customer nodes with artificial
depot nodes as delimiters between routes:

s = (n+1, c1,1, . . . , c1,m1
, n+2, . . . , n+K, cK,1, . . . , cK,mK

, n+K+1)

As edge cost we simply use the Euclidean distance.

Most of the work in a LS iteration consists of generating
the neighborhood, evaluating the neighbors with respect to
the objective and constraints, and comparing them to the
current solution [14]. A neighbor, or potential move, in a
k-opt neighborhood is defined by the k-opt operator that
replaces k current edges with new ones. The k-opt operator
combines k+ 1 segments of the current solution in the giant
tour representation.

More formally, a segment P is simply a part of the solution
s, i.e., an arbitrary subsequence of nodes ηi ∈ N in the giant
tour representation. A segment may span more than one
route. When combining two segments P1 and P2, we will
always assume that P1 ends on the same node as P2 starts
from, i.e., P1 = η0, . . . , ηn and P2 = ηn, . . . , ηk.

The cost associated with a segment is simply the sum of
edge costs for the path from the start node to the finish
node:

zw(P) =

n∑
i=1

wηi−1,ηi .

The cost of a combined segment is the sum of the two seg-
ment costs:

zw(P1 + P2) = zw(P1) + zw(P2).

In the following we describe a way to represent the influ-
ence of each segment to the constraints and the objective,
and how this representation can be used in order to compute
the influence of the combined segments. For details, we refer
to [14].

4.3 Resource Extension Functions

We use classical resource extension functions (CREFs) as
explained by Irnich [13, 14]. In a resource extension function
(REF), the consumption related to a constraint or objective
is represented by a resource t. The resource can for example
be the cost of the route so far, or the current load of the
vehicle. The change in the resource along an edge (ηi, ηj)
is modelled by a REF fi,j : R → R. In addition there is a
resource interval [ai, bi] associated with each node ηi in the
graph, which describes the feasible values for the resource at
this node. A segment P is considered feasible with respect
to the resource t if and only if there exists for each node
ηi ∈ P a resource value Ti ∈ [ai, bi] such that for every edge
(ηi, ηi+1) ∈ P we have

fi,i+1(Ti) ≤ Ti+1.

A CREF is a REF of the form

fi,j(T) = max(aj , T + ti,j),

where ti,j ∈ R models the (constant) change in the re-
source along the edge (ηi, ηj). For the capacity constraint
we simply use ai = 0, bi = Q, ti,j = −Q, j ∈ D and
ti,j = qj , i ∈ N, j ∈ C. For information about how
two CREFs of two segments can be merged to generate the
CREF of the combined segment, we refer to [13, 14].

The route distance constraint in a DCVRP can also be
modeled using CREFs with ai = 0, bi = L with L being
the maximum cost on a single route and ti,j = wηi,ηj . This
approach has however one problem, the resource needs to
be reset in the finishing depot node of a route. This is one
of the reasons why Irnich suggests to split depot nodes into
start depot nodes and end depot nodes. We choose not to
do this, as it would yield the need for another constraint
related to end depot nodes being followed by start depot
nodes. Instead we apply an implicit separation of each depot
node in two nodes. This means, that any CREF for an edge
ending in a depot node is combined with a reset CREF fR
with aR = 0, bR = L and tR = −L where R ∈ D.

Using CREFs to model the capacity and route distance
constraint gives the possibility to aggregate segments, which
in turn leads to constant time evaluation of a potential
move as we will see in the next paragraph. However, the
penalty component of the objective can not be represented
by CREFs. Nevertheless, we can represent all necessary in-
formation per segment and aggregate it. To do this, we
only need the number of inner routes lP in a segment P ,
meaning the number of non-empty complete routes inside
the segment. In addition we need to know whether the seg-
ment starts with a depot node, ends with one, and whether
it contains one at all. The information for the aggregated
segment P from P1 and P2 is then

lP = lP1 + lP2 + γP1,P2

where γP1,P2
= 0 if one of the segments does not contain a

depot node or if P1 ends at a depot node and P2 start at it.
Otherwise, γP1,P2 = 1.

5

Checking the feasibility of a segment with respect to the
number of vehicles using our model is straightforward, as
incomplete routes do not count and the giant tour will start
and end with a depot node and thus lP will be the number
of all (non-empty) routes. However, it is more difficult to
check the feasibility of a segment using REFs without it-
eratively combining all edges and checking for the bounds
along the way. In [13] Irnich explains how using inverse
REFs together with REFs enables a feasibility check of an
aggregated segment using just the REFs and inverse REFs of
the two segments which are combined. This means, the re-
combination and feasibility check of the segments generated
during a k-opt neighbor evaluation can be done in constant
time as long as we have the REFs and their inverse for the
generated segments. By pre-computing those for all possi-
ble segments of the current solution, we get constant time
neighbor evaluation.

Pre-computing the data for every possible segment in the
current solution leads to O(n2) segments which need to be
calculated and stored, where n = |N | is the number of nodes
in the current solution. In order to reduce this amount, Ir-
nich suggests to use a hierarchy of segments [13]. Here the
current solution is split into parts where each part contains
the same number of edges (except the last one, which might
contain less). Then all possible segments inside each part
are pre-computed. In addition one calculates all possible
segments that start and end at the first or last node of the
current solution and at the nodes which split the parts. For
the latter calculations the previously computed segments for
each part can be used. This leads to a one-level hierarchy
(following Irnich’s terminology), where level 0 contains the
segments of the parts and level 1 contains the segments with
several parts. Of course, this idea can be extended by split-
ting the first level again, leading to a two-level hierarchy. In
theory, we can continue that way to generate a l-level hier-
archy. According to Irnich [12], the computational effort is
minimal when each part contains n1/3 nodes for a one-level
hierarchy. For a two-level hierarchy, the minimal effort is
achieved for n1/7 nodes in each part of level zero and n3/7

nodes in the parts of level one6.

5 GPU and Development Tools

The primary task of a graphics processing unit (GPU) used
to be to compute the image which is to be displayed on the
screen. Such images consist of thousands of independent
pixels that, in dynamic settings such as computer gaming,
need to be computed several times per second. These re-
quirements have lead to a highly parallel GPU architecture.
Driven by the constant hunger for better graphics from the
gaming industry, combined with the interest of non-graphic
use of GPUs, these units developed into general purpose
GPUs with high computing power [4]. The scientific commu-
nity soon started to utilize such GPUs for computationally

6This implies that n2/7 parts of level zero form one part of level
one.

intensive tasks through parallel algorithms.
Originally, a GPU was designed to compute the image

which is to be displayed on the screen by a given set of
functions [4]. Any algorithm that was intended to run on a
GPU had to be expressed as part of the graphics pipeline
using graphics APIs such as OpenGL and DirectX. A mod-
ern general purpose GPU, however, is equipped with more
programmer-friendly environments. Most important to the
scientific community are programming languages that map
data parallel algorithms to GPU architectures and accom-
panying development environments. The most important
languages are OpenCL and CUDA. Whereas OpenCL is an
open standard, CUDA is a proprietary programming lan-
guage from NVIDIA, one of the main GPU manufacturers.
For the work presented here we selected CUDA, primarily
because it allows for more detailed control of the GPU. Also,
there were sophisticated and mature development tools.

5.1 The Fermi architecture and CUDA

In this paper we only consider the Fermi architecture, the
latest architecture for NVIDIA GPUs. Different architec-
tures support different aspects of CUDA. This is indicated
by the compute capability of the GPU. Fermi GPUs have
compute capability ≥ 2.0. A GPU with compute capability
2.0 has on board main memory (GPU memory) and several
streaming multiprocessors (SM), each consisting of 32 cores.
Each SM has 64 KB of memory, 32768 32-bit registers, and
other elements which we will not discuss further. The mem-
ory of a SM is used as shared memory and cache, as will be
discussed later.

Programming the GPU using CUDA is by itself a rela-
tively simple process. CUDA extends the C++ language by
a set of keywords that enable the user to write functions, so
called kernels, that are executed on the GPU. Inside a kernel
nearly the whole C++ language can be used 7. Moreover
CUDA provides functions for copying data to and from the
GPU as well as configurating the GPU.

The difficult part of GPU programming is to write an ef-
ficient program that uses the specifics of the GPU for max-
imum performance. For this, one needs to understand the
architecture and how a kernel is executed on the GPU. Ar-
guably, substantial parts of the scarce literature on GPU
implementations of metaheuristics describe a very basic,
straightforward approach that does not utilize the full com-
puting power of GPUs. Our main goal here is to show
that substantial speedups follow from careful implementa-
tion, and to identify the main steps and relevant implemen-
tation issues of a performance optimization process.

5.2 Kernel execution

A kernel is executed on a compute grid consisting of a num-
ber of blocks, where each block again contains a number of
threads, as illustrated in Figure 1. All of the threads exe-
cute the same kernel. The number of blocks in the three

7For CUDA v3.2, only virtual inheritance is missing.

6

Compute grid

Block
(0,0,0)

Block
(1,0,0)

Block
(2,0,0)

Block (2,0,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Block
(0,1,0)

Block
(1,1,0)

Block
(2,1,0)

Block (2,0,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Figure 1: Illustration of CUDA compute grid, block and
thread hierarchy.

T
im

e

1 8 16 24 32

//Non-divergent code
if(c > 0) {

x = e / c;
x *= s;
z = x - a;

} else {
x = 0;
z = a;

}
//Non-divergent code

Figure 2: Warp serialization and masking.

dimensional grid is defined by the programmer. However,
the maximum number of blocks in the z-direction is cur-
rently 1 (for CUDA v3.2). The threads in a block also form
a 3 dimensional layout whose limits are again defined by the
programmer. Nevertheless, the maximum number of total
threads per block is currently 1024. CUDA provides each
thread with the index of its block and its index within the
block. All threads in one block are executed on the same
SM, but different blocks in the compute grid can be executed
on different SM. When a block is executed, the threads are
split into so called warps of 32 threads. Therefore it makes
sense to have a multiple of 32 threads in each block. The
32 threads of one warp execute the same instruction at any
time. Divergence in the code within one warp is handled
by the GPU through warp serialization and masking, as il-
lustrated in Figure 2. This means that while some of the
threads in the warp execute the instructions of one branch,
the other threads are idle. In the worst case all 32 threads
would take different branches. Therefore it is important to
minimize divergence in a warp.

The result of an arithmetic instruction, or data read from
global GPU memory in a thread, is not available to this
thread in the next cycle. The GPU solves this latency prob-
lem by switching to a different warp when one of the threads
within the current warp needs to wait for a result. This
switching comes without any overhead, thanks to the GPU
hardware. The new warp can be from the same or a different
block as the current warp. A Fermi GPU can run up to 8
blocks per SM simultaneously. The latency of an arithmetic
operation is around 18 cycles. As a rule of thumb one can
therefore say that each SM should have at least 18 ·32 = 576
threads to work on. The maximum number of threads a SM
can run at the same time is 1536, which corresponds to 48
warps.

When analyzing an algorithm with respect to its utiliza-

Thread

Block

Grid

Registers, local memory

Shared memory

Global memory

Figure 3: Illustration of the CUDA memory hierarchy.

tion of the GPU there are many measures one can and should
consider. One of these is occupancy, which is the ratio of ac-
tive warps on a SM to the maximum number of warps8.

5.3 Memory hierarchy

Similar to the thread hierarchy, there is also a memory hi-
erarchy on the GPU as shown in Figure 3. The registers
of an SM are distributed evenly over the currently running
threads. Thus each thread has some amount of registers
available. Calculations are performed on the data stored
in these registers, the results again are stored in registers.
A register is private to the thread, meaning no other thread
can read from or write to it. Since there is a limit of registers
available per SM, there is a limit on registers per thread, de-
pending on how many threads are running simultaneously
on the SM. If a thread would need more registers than it
has, data is stored in local memory. This is called register
spilling.

Local memory is again private to each thread, however has
the same high latency as global memory9. Actually, local
memory is created by taking a part of the global memory
and assigning it to the thread, making it private and local.
Arrays where the indexing is not constant are also placed in
local memory. In practice however it is difficult to know in
advance whether an array is placed in the registers or local
memory, as this depends on whether the compiler can detect
constant access or not.

One part of the memory on a SM is used as shared mem-
ory. Shared means it is shared between all threads in one
block, data stored in it can be read and written by all threads
in a block. If a SM has several blocks running at the same
time, the shared memory is split into parts and each block
has its own shared memory. Accessing shared memory is
slower than using registers, but faster than reading or writ-
ing to global memory.

Finally the main memory on the GPU is called global
memory and can be accessed by all threads, blocks and
grids. While data in local and shared memory is lost once
the thread or block is finished, global memory will keep its
data until explicitly released. Unfortunately, accessing GPU
global memory is slow, just as on the CPU. On the Fermi
GPU each SM therefore uses some if its memory as a cache
for global (and local) memory access. The 64 KB memory of
a SM can be split into either 48 KB shared memory and 16
KB cache or 16 KB shared memory and 48 KB cache. When

848 for the Fermi architecture.
9Here and in the following global memory always refers to global

GPU memory.

7

Host program GPU

Copy from CPU mem

Kernel 0 over grid 0

Block
(0,0,0)

Block
(1,0,0)

Block
(0,1,0)

Block
(1,1,0)

Copy to CPU mem

Kernel 1 over grid 1

Block
(0,0,0)

Block
(1,0,0)

Block
(0,1,0)

Block
(1,1,0)

Copy to CPU mem

serialCode(. . .)
memcpy(. . .)

. . . sleep. . .

kernel0(. . .)

. . . sleep. . .

memcpy(. . .)

kernel1(. . .)

. . . sleep. . .

memcpy(. . .)

. . . sleep. . .

T
im

e

Figure 4: Simple use of GPU with single stream.

a warp accesses the global memory, the access pattern in-
fluences the efficiency. It is more efficient when adjacent
threads access adjacent memory locations than if those lo-
cations are scattered throughout the whole global memory.
In the former case the access can be coalesced, meaning the
whole area of memory can be read/written in few operations,
ideally only one.

In addition, a GPU has texture memory and a constant
cache. The latter speeds up uniform access, i.e., all threads
in a warp access the same address, and access to constant
data. Texture memory is usually used in graphics and pro-
vides faster access than global memory. It comes with free
interpolation operations targeted at graphics. However, the
interpolation precision is low, and the texture memory is
optimized for accessing elements close together in a 2 di-
mensional setting. On older GPUs with compute capability
1.x, reading from texture memory could lead to speedups.
On the Fermi architecture, however, global memory access
is cached. Thus it can outperform the texture memory if
used correctly [20].

5.4 GPU-CPU coordination

So far we only discussed how a kernel is executed on the
GPU. The kernels have to be coordinated with the process
running on the CPU. The CPU in this setting is also called
host, whereas the GPU is called device. The device memory
can be allocated, accessed and freed from the host process.
Device memory access from the host means that data can
be copied from the host memory to the device memory and
vice versa using memory copy functions that are part of
the CUDA library. In addition to explicit copying of data
between device and host, host memory can be mapped to
device memory so copying will occur automatically.

Figure 4 illustrates a simple program utilizing the GPU
in a synchronized way. This means that each task is per-
formed after the previous one, whether it involves the CPU,

Host program GPU, stream 0 GPU, stream 1

Copy from
CPU mem

Kernel 2 over grid 2

Block
(0,0,0)

Block
(1,0,0)

Block
(0,1,0)

Block
(1,1,0)

Copy to CPU mem

Kernel 3 over grid 3

Block
(0,0,0)

Block
(1,0,0)

Block
(0,1,0)

Block
(1,1,0)

Copy to CPU mem

Kernel 0 over grid 0

Block
(0,0,0)

Block
(1,0,0)

Kernel 1 over grid 1

Block
(0,0,0)

Block
(1,0,0)

Block
(0,1,0)

Block
(1,1,0)

Copy to CPU mem

serialCode1(. . .)

kernel0(1, . . .)
memcpy(0, . . .)
kernel1(1, . . .)
kernel2(0, . . .)
memcpy(0, . . .)

serialCode2(. . .)

syncStream(0)

. . . sleep. . .

kernel3(0, . . .)
memcpy(1, . . .)
memcpy(0, . . .)

serialCode3(. . .)

syncStream(1)

. . . sleep. . .

T
im

e
Figure 5: Asynchronous multi stream GPU usage.

the GPU or both. Hence most of the time one of them is
waiting for the other. Having a sleeping CPU part is usu-
ally no problem, since the program can use different CPU
threads to perform work while waiting. However, Fermi
GPUs have additional features to avoid latency. Host-device
memory copy can overlap kernel execution. Several kernels
can run concurrently if the grids are small enough. In ad-
dition, Fermi GPUs can have a host to device copy at the
same time as a device to host copy. Hence, a synchronized
work flow is often not utilizing the full power of the GPU.
Instead it makes sense to have an asynchronous work flow
as illustrated in Figure 5.

To utilize these features we need to be able to group tasks
on the GPU together. This is done using streams. All tasks
in one stream are executed in sequence, but tasks from dif-
ferent streams can be performed in arbitrary order. Coor-
dination between a GPU stream and the host can be done
by stream synchronization, as illustrated in Figure 5. Syn-
chronizing a stream induces overhead. Subsequently started
kernels on the stream are only transferred to the GPU after
synchronization.

Often it is not necessary to synchronize the host with
a stream, it suffices to coordinate them. As an example,
assume we have a kernel k1 on stream s. Another kernel
k2 can be performed right after k1. Kernel k3 can only be
issued after the host gets the result of k1. Synchronizing
host and stream s after k1 leads to an idle GPU because
k2 can only be issued after the synchronization. What one
would like to implement on the host is the following: issue
k1, issue k2, wait for k1 to finish, issue k3. This is what
events are for. An event can be recorded on a stream and
queried. An event is completed once all tasks on the stream
before the event are finished. CUDA provides functionality
to synchronize the host or a stream to an event. This has
the advantage that the stream where the event is recorded
does not have to synchronize itself with another stream or

8

the host, it can simply continue with its further tasks once
an event is completed.

5.5 Performance measurement

NVIDIA provides an analysis tool called Compute Visual
Profiler which can trace the performance of the program
and provide various performance metrics. In addition, the
NSIGHT plugin to Visual Studio provides timeline visual-
ization of the program flow. Figure 7 is an example of such
a timeline that will be used to illustrate performance of al-
ternative GPU implementations.

The timeline is split into several rows, each showing activ-
ity related to a different source. The first row shows activity
of the driver API, such as scheduling a kernel or a copying or
synchronizing with the GPU. The second row displays mem-
ory transfer between the CPU and the GPU. The third row
presents the activity of the GPU in terms of kernel execu-
tion or GPU to GPU copy operations. As explained above,
kernels can be executed in different streams. The fourth
row is a grouping row, followed by a row for each stream
that shows the GPU activity in this stream. The counters
group follows, consisting of three more rows: GPU device
utilization, host to device bandwidth utilization, and device
to host bandwidth utilization.

6 Implementations and Results

As mentioned in the introduction there is a wide variety of
GPU implementation papers in different areas of scientific
computing, amongst them a few in discrete optimization. A
typical ”selling point” of these papers are speedup factors of
the GPU implementation relative to a CPU implementation.
There are two problems with this. First, the comparison is
only fair if both the CPU and GPU code are optimized. Con-
sidering the efforts involved in a proper GPU implementa-
tion, the CPU implementation would need to utilize multiple
cores, SSE-instructions, and caching strategies. Such efforts
are rarely seen in the literature. Second, it is already well
known and accepted that GPUs are formidable and pow-
erful tools for computationally intensive tasks. Despite the
first problem described above, the GPU speedup factors re-
ported in discrete optimization papers are generally not im-
pressive. They seem to reveal a basic and fairly naive GPU
implementation. Such investigations are not uninteresting,
but the main challenge in GPU programming proper is to
adapt a given algorithm to the GPU architecture in order
to use as much of the computational power as possible.10

In this section we demonstrate how we adapted our local
search algorithm for the DCVRP to the GPU through an
incremental improvement process with careful tuning, ex-
periments, and performance analysis. We used CUDA as

10In a broader context, a main challenge and opportunity is to design
fundamentally new methods that fully utilize the stream processing
model and the GPU architecture, also in a heterogeneous architecture
with a multi-core CPU.

The Benchmark Version
Setup problem instance data on CPU
Copy problem instance data to GPU
Create initial solution on CPU
Copy initial solution to GPU
Evaluate initial solution on CPU
Create k-opt mapping on CPU
Copy k-opt mapping to GPU
do

Create hierarchies on GPU
Evaluate all constraints and objectives on GPU
Find best neighbor on GPU
Execute best move on GPU
Copy best move to CPU
Execute best move on CPU
Evaluate new current solution on CPU

until local optimum or stop criterion

Figure 6: The Benchmark Version.

programming language. All experiments were performed on
a NVIDIA GeForce GTX 480, which is a Fermi architecture
GPU with compute capability 2.0. The code was compiled
using CUDA 3.2. As test instances, we have used a selec-
tion of 10 CVRP and DCVRP instances from the literature
where the number of nodes in our giant tour representa-
tion vary between 50 and 2400. For instances that do not
originally have a distance or number of vehicles constraint,
such constraints have been added. The main performance
measure is speedup relative to the previously best GPU im-
plementation in the incremental improvement process. Our
initial reference point is the first, basic GPU implementation
that we refer to as The Benchmark Version.

6.1 The Benchmark Version

Due to the fact that CUDA is basically C and C++, it is
fairly easy to implement a first GPU implementation of LS
for the DCVRP. The algorithm is outlined in Figure 6. As a
preprocessing step the problem instance data is established
on the CPU and copied to the GPU. Then the initial solution
is created and evaluated on the CPU and copied to the GPU,
before the mapping necessary to identify the k-opt neighbors
on the GPU (see below) is generated on the CPU and copied
to the GPU.

In each local search iteration, we first create the hierar-
chy for each objective and constraint on the GPU. We use
a one-level hierarchy. The neighborhood evaluation is also
completely executed on the GPU and the results are stored
in global GPU memory. We then apply a classical reduction
operation on the GPU [9] to find the best feasible neighbor
and then execute the corresponding move directly to the so-
lution on the GPU. In this way there is neither a need for
copying the hierarchy nor the neighborhood fitness structure,
i.e., the objective delta value and feasibility information for
each neighbor, between CPU and GPU. The only copy op-
eration necessary in one iteration is the copy of the selected
move from the GPU to the CPU. One could use the value
of the best neighbor to decide whether a local optimum has

9

Figure 7: Timeline of one iteration in a 2-opt neighborhood
for The Benchmark Version and 399 nodes in solution.

been reached. A CPU copy of the solution is redundant.
However, we choose to execute the move on the CPU side
also to keep an updated solution. This costs nearly no time
relative to the neighborhood evaluation and it gives more
flexibility.

A 3-opt neighbor is identified by a four dimensional in-
dex x, y, z, p where the x < y < z coordinates specify the
locations of the edges in the current solution that shall be
removed. A 3-opt neighbor describes only pure 3-opt neigh-
bors that can not be expressed by a 2-opt, yielding only
four possibilities p = 0, 1, 2, 3 of recombining the resulting
segments. A 2-opt neighbor is similarly described by a two
dimensional index x, y where again x < y describe the edges
to be removed. There is only one way of recombining the
segments, so there is no need for a p index. During the
neighborhood evaluation one thread is responsible for one
neighbor and identified by a one-dimensional index. The
mapping between the one-dimensional thread index and the
3-opt neighbor index simply orders the 3-opt neighbors lex-
icographically. Since for each x < y < z combination there
are exactly four 3-opt neighbors, only the lexicographical
order of all possible x, y, z values needs to be precalculated
on the CPU and copied to the GPU. The mapping is con-
stant during the whole local search and needs therefore to
be generated and copied only once. The p component of the
3-opt neighbor index can easily be computed on the GPU
during the neighbor evaluation.

The mapping from thread index to the 2-opt index also
simply orders the 2-opt indices lexicographically. In contrast
to the 3-opt mapping however, there is an explicit formula
available for the mapping, see [18]. Let i be the thread index
and n+ 1 the number of nodes in the solution, then

x = n− 2−
⌊(√

8
(
(n(n− 1))/2

)
− 8i− 7− 1

)/
2
⌋
,

y = 1 + i− x(n− 1) +
(
x(x+ 1)

)/
2.

(1)

In Figure 7 the different tasks during one 2-opt iteration
are marked by colored ellipse. The orange circles indicate
the initialization of delta values to zero and feasibility to
true for all neighbors. The red ellipse show the genera-
tion of the hierarchies, followed by the green ellipse that
marks the neighborhood evaluation. The reduction to the
best neighbor is indicated by the black circle, and copying

Figure 8: Timeline of one iteration in a 2-opt neighborhood
for The Benchmark Version and 2401 nodes in solution.

Figure 9: Timeline of one iteration in a 3-opt neighborhood
for The Benchmark Version and 399 nodes in solution.

the best neighbor to the CPU is marked by the cyan circle.
In Figure 7 the current solution contains 399 nodes. We can
observe that here the generation of the hierarchies actually
takes more time than the neighborhood evaluation. Most
interesting is actually that the GPU is idle about 40% of
the time. This picture changes when considering the 2-opt
neighborhood of a solution with 2401 nodes as shown in Fig-
ure 8. We can see that for this instance, the GPU is busy
most of the time. The neighborhood evaluation is the largest
part of the computational effort. This result is expected,
since the cost for creating the one-level hierarchy is O(n4/3)
whereas the number of neighbors in the 2-opt neighborhood
is O(n2). The picture becomes even more clear when consid-
ering a 3-opt neighborhood with O(n3) neighbors, as shown
in Figure 9.

Time Occ Reg Bw L1 Lm Div
Kernel (ms) (Gb/s) (%)

ζc 346 0.50 37 137 84 24e6 69e4
zw 241 0.67 32 140 75 10e6 68e4

3-opt
zK 217 0.50 35 98 88 13e6 48e4
ζL 562 0.42 47 138 75 25e6 11e5
ζc 0.56 0.50 36 131 80 35e3 1560
zw 0.38 0.50 36 117 76 15e3 1590

2-opt
zK 0.36 0.50 36 93 82 20e3 1598
ζL 0.85 0.42 45 129 76 37e3 2192

Table 1: Performance of kernels of The Benchmark Version
applied to a solution with 399 nodes.

10

During the neighborhood evaluation we use up to eight
kernels, one for each constraint and objective, and differ-
ent kernels for 2-opt and 3-opt neighbors. All floating point
arithmetic is done in double precision. The performance of
these kernels is shown in Table 1, where the numbers are
taken from the Compute Visual Profiler. Here, and in the
following tables, zw is the cost objective, ζc the capacity
constraint, zK the number of vehicles objective, and ζL the
route distance constraint. The columns show the runtime of
the kernel in milliseconds (time), the achieved occupancy
(Occ), the number of registers used (Reg), the achieved
bandwidth in Gbyte per second (Bw), the percentage of
cache hits (L1), the number of local memory access oper-
ations (Lm) and the number of divergent branches (Div).
Please note that L1, Lm and Div are measured only over
one streaming multiprocessor and thus do not provide ab-
solute numbers. The values however are useful to compare
different implementations with each other [19].

The kernels use between 32 and 47 registers, hence there
are not enough registers on a SM for 48 warps. This ex-
plains the observed occupancies of around 0.5. Although
occupancy does not equal speed, a higher occupancy could
enable the SM to hide more latency. The cache usage of 75
percent and above is not perfect, but a reasonable result.

The achieved bandwidth rates of 130 to 140 related to
a theoretical maximum of 177.4 Gbyte per second indicate
that the bandwidth is nearly fully used. Hence memory
bandwidth is probably a limiting factor. This impression
is strengthened by the fact that all kernels make heavy use
of local memory which is slow and fills the bandwidth. In
our CUDA compiler configuration each thread can use up
to 63 registers, so register spilling is unlikely to be the cause
of the local memory usage. Finally, all 3-opt kernels have
a high number of divergent branches, which indicates that
the parallelism in the code flow for different neighbors is far
from ideal.

From the timeline analysis we know that for 3-opt neigh-
borhoods in general and for 2-opt ones of large enough solu-
tions, the neighborhood evaluation is the bottleneck of our
algorithm. The performance study of the related kernels re-
veals that they are far from optimal. We will therefore show
how to improve the kernels in the next subsections.

In the following we will present several figures of the type
of Figure 10. They show the speedup of a new implementa-
tion relative to the current one. The speedup is computed
by considering the time for one LS iteration. This time is
calculated by measuring the time for 100 iterations. If a lo-
cal optimum is found earlier, the search is restarted to reach
100 iterations.

6.2 Segments in registers

A major problem with the kernels in The Benchmark Ver-
sion is the heavy local memory usage. This is due to the
fact that for each k-opt neighbor we split the current solu-
tion in k + 1 segments and store them in local memory. To
reduce local memory usage we therefore move the segments

1,000 2,000
1.3

1.4

1.5

1.6

1.7

2-opt

200 400

1.55

1.6

1.65

1.7

3-opt

Segments in registers

Segments in registers and shared memory usage

Figure 10: Speedup due to less local memory and use of
shared memory. The x-axis shows the number of nodes in
the current solution, the y-axis the speedup.

into registers, which is possible as we only need to store
the aggregated version of each segment. Figure 10 shows
that this indeed leads to a good speedup compared to The
Benchmark Version, although the register usage increases.

Our implementation consists of eight different kernels, two
for each objective and constraint: one for the pure 2-opt
neighborhood, and one for the pure 3-opt neighborhood.
When examining certain performance measures of the im-
plementation, such as the usage of local memory, they could
in theory be different for all kernels. However, that would
mean that each kernel needs a complete and independent
implementation. Between the 2-opt and 3-opt kernels this
is not always possible, as they use the same hierarchy if one
does not want to represent it twice. Moreover, the concept
of how a neighbor is evaluated is the same for all objec-
tives and constraints. The only difference is the way the
aggregation of two segments is performed. Therefore our
implementation splits those two tasks.

We have one 2-opt and one 3-opt kernel that takes care of
aggregating the correct segments by using aggregation oper-
ators. In this way each objective or constraint only needs to
specify these operators to use the kernels, leading to an easy
to use and extendible implementation. However, this design
forces us in several cases to use the same aspects of the im-
plementation for all objectives and constraints. Therefore
the measurements in Figure 10 and similar ones later show
the speedup for evaluating all objectives and constraints.
For the 3-opt comparisons this means that also the 2-opt
times are included, as the complete 3-opt neighborhood is
defined by the union of the pure 3-opt neighbors and the
2-opt neighborhood.

6.3 Shared memory

When computing the aggregation of one segment, we need
to traverse the pre-computed hierarchy. During this traver-
sal the number of nodes in each part of the hierarchy have
to be read several times by each thread from global memory.
These numbers are stored in global memory as the hierarchy
traversal implementation is generic for hierarchies with any

11

Time Occ Reg Bw L1 Lm Div
Kernel (ms) (Gb/s) (%)

ζc 198 0.42 46 3 97 24e5 60e5
zw 171 0.50 36 6 84 0 60e5

3-opt
zK 184 0.50 38 4 97 26e4 60e5
ζL 249 0.33 63 8 86 34e5 96e5
ζc 0.31 0.50 40 9 95 4187 1010
zw 0.26 0.50 36 9 90 331 1038

2-opt
zK 0.28 0.50 36 5 96 989 1034
ζL 0.41 0.33 54 13 89 5404 1593

Table 2: Performance of kernels with segments in registers
and shared memory usage.

number of levels. At the same time these numbers are con-
stant. Hence, by loading them once into the shared memory
of each block, access should be faster. Figure 10 shows that
this is in fact the case. Table 2 shows the performance of the
new kernels with segments in registers and shared memory
usage.

Moving the segments to the registers and using shared
memory increases clearly register usage, which influences
occupancy. But the reduced usage of local memory and
improved cache hit percentage clearly led to improved run-
ning times. Also the bandwidth usage went down to below
10 Gbyte per second for most kernels. This indicates that
memory bandwidth is not a major issue. However, the used
memory layout might have bad access patterns which in turn
will not use the whole bandwidth. On the other hand the
low memory bandwidth could indicate that the algorithm is
now compute bound, meaning that the number of instruc-
tions related to computing are limiting the kernel speed. In
addition the divergence in code flow has increased quite a
bit for the 3-opt kernels.

Figure 10 shows speedup relative to The Benchmark Ver-
sion. In the following we use the best current implemen-
tation as reference for speedup computations. This means
that in the next one we compare to the implementation using
segments in registers and shared memory.

6.4 Avoiding expensive arithmetic opera-
tions

During the aggregation of segments the algorithm needs to
traverse the pre-computed hierarchy. Computing the index
of a segment in the hierarchy includes several modulo oper-
ations and integer divisions, which are quite expensive op-
erations on the GPU. However, if the divisor is a power of
two, those operations can be replaced by bitwise operations
which are much faster. By restricting the part lengths in
the hierarchy to powers of two, we can replace most of the
costly integer operations by bitwise operations. The result-
ing speedup, as shown in Figure 11, has to be examined
more closely. If we compute the number of nodes in a part
such that it is close to optimal, using only parts with power
of two number of nodes will lead to different parts than be-
fore. We therefore study the speedup once for parts with the

1,000 2,000

1.3

1.35

1.4

2-opt

200 400

1.4

1.42

1.44

3-opt

Number of nodes computed Number of nodes fixed

Figure 11: Speedup due to hierarchy containing only parts
with power of two number of nodes. The x-axis shows
the number of nodes in the current solution, the y-axis the
speedup.

1,000 2,000

0.99

1

2-opt

200 400

1

1

3-opt

64 96 128 160 192 224 256

Figure 12: Speedup due to block size for cost objective. The
x-axis shows the number of nodes in the current solution,
the y-axis the speedup.

size computed and once for parts where the size is fixed to 8
nodes per part. Nevertheless, in both cases we can observe
a significant speedup.

6.5 Block size

Before continuing the discussion on the implementation of
kernels, let us focus on block size. So far each kernel was
executed with blocks of 128 threads. However, due to dif-
ferent register usage as well as memory access and caching
patterns, different kernels might perform better with differ-
ent block sizes. In Figure 12, the effect of different block
sizes for the cost objective in the 2-opt and 3-opt kernel is
illustrated. We can see that for the 2-opt kernel using 96 or
128 threads per block is good, whereas for the 3-opt kernel
we should either use 96 or 160 threads per block. We do the
same examination for the other six kernels. For all kernel
changes reported below, we also adjust block size.

6.6 Choice of data structures

In The Benchmark Version we use a simple array of struc-
tures (AoS) to store a hierarchy. This means that each seg-
ment is contained in a structure which is simply put in an
array. The array itself is a jagged three-dimensional array

12

1,000 2,000
0.75

0.8

0.85

0.9

2-opt

SoA, no sm

SoA, no sm

200 400
0.7

0.8

0.9

1
3-opt

SoA, same p, no sm

SoA, same p, sm

SoA, p lex, no sm

SoA, p lex, sm

AoS, same p, sm

Figure 13: Speedup due to SoA/AoS and order related to
the p component of the 3-opt neighbor index. The x-axis
shows the number of nodes in the current solution, the y-
axis the speedup. The acronym sm means shared memory,
lex means lexicographically.

with constant width and height. This gives opportunities
for improving the memory access pattern of our kernels.
Firstly, it is often recommended in the GPU literature to
use a structure of arrays (SoA) instead. This has the advan-
tage that the same elements of adjacent segments lie next
to each other in memory.

Another option is to modify the mapping between the one
dimensional thread index and the corresponding neighbor
index to improve the memory access pattern to the hierar-
chy. Or, instead of modifying the mapping, we can modify
the layout of the segments in the hierarchy to change the
memory access pattern. First we will study the use of AoS
vs SoA. In combination we will modify the mapping to the
3-opt neighbor index with respect to the p component. In-
stead of having the indices ordered lexicographically with
respect to p, meaning (x, y, z − 1, 3) (x, y, z, 0), (x, y, z,
1) (x, y, z, 2) (x, y, z, 3) (x, y, z + 1, 0), we first use all
neighbors with p = 0, then all neighbors with p = 1, and so
on.

The resulting speedups are shown in Figure 13. We can
observe that using AoS with lexicographically ordered p as
in The Benchmark Version is best, as all other variants are
slower. We would nevertheless like to point out that for the
SoA layout, the kernels not using shared memory perform
better. One possible explanation is that the numbers of
nodes per part are already in the cache most of the time, so
uploading them to shared memory is only additional work.

6.7 Index mode

In The Benchmark Version we used a quite complicated in-
dexing of the hierarchy, taking into account whether the
segment is in the middle of a hierarchy part or starts or
ends at a node separating two parts. The goal for this was
to maximize the probability for adjacent threads to access

1,000 2,000

1

1.05

1.1

1.15

2-opt

200 400

1.05

1.1

3-opt

AoS, index mode 2 AoS, index mode 3

AoS, index mode 4 SoA, index mode 4

Figure 14: Speedup due to index mode. The x-axis shows
the number of nodes in the current solution, the y-axis the
speedup.

adjacent segments.

The fact that AoS is better than SoA indicates that this
is actually not so important for the performance of the ker-
nels. Hence we can use simpler and faster indexing modes
for the hierarchy. One possibility is to generate an array of
segments for each node. This array contains the segments
which start at this node and end at a later one. For each
node we add another array containing the segments that end
at this node but start at a later one, basically the inverted
segments of the first array. Altogether this leads to a three
dimensional jagged array, where the first dimension has only
two elements, not-inverted and inverted. The second dimen-
sion always contains n−1 elements, where n is the number of
nodes in the current solution. We call this indexing scheme
index mode two.

A different approach is to merge both arrays per node
into one, having a non-inverted segment being followed by
its inverted one. This leads to a two dimensional jagged
array and is our index mode three. We implement jagged
arrays by having additional information about the starting
positions for the different arrays in global memory. Access-
ing an element in a jagged array therefore needs two global
memory access, one for reading the starting position of the
corresponding array and a second for reading the element in
that array.

An alternative to index mode three with a jagged array
is therefore to simply use a two dimensional array where
the non-used entries are empty. This will waste some global
memory, but saves one additional memory access. This is
index mode four.

The results of using the different indexing modes are
shown in Figure 14. We can see that index mode two is
better than the previous indexing scheme for 2-opt neigh-
borhoods for solutions with up to ≈1750 nodes, but above
that it is worse. It is better for the 3-opt neighborhood for
all tested instances. Indexing mode three is better than two
and in all cases better than the previous scheme, and, as is
to be expected, index mode four is better than index mode
three. An interesting fact is that using SoA with shared
memory and index mode four is equally good as AoS with

13

0,1 0,2 0,3 0,4 0,5

1,2 1,3 1,4 1,5

2,3 2,4 2,5

3,4 3,5

4,5

3,43,5

4,5

1,000 2,000

1

1.02

1.04

1.06

Index mode 4, using (1) Index mode 3, cut triangle

Index mode 4, cut triangle

Figure 15: Left: 2-opt thread - neighbor index mapping us-
ing the cut triangle idea. Right: Speedup due to cut triangle
mapping. The x-axis shows the number of nodes in the cur-
rent solution, the y-axis the speedup.

these settings.
It is not easy to decide whether to use index mode three

or four. Index mode four is faster, but wastes global mem-
ory, which could become a problem for large solutions. We
therefore chose index mode three as our reference implemen-
tation, but will in following comparisons also consider index
mode four.

6.8 2-opt mapping

The current mapping between the thread index and the 2-
opt neighbor index orders the neighbors lexicographically.
In this way adjacent neighbors can often use the same first
segment. However, the mapping itself involves a square
root and a rounding operation. A different type of map-
ping would be to simply consider the 2-opt neighbor indices
to be laid out in a triangle, as illustrated in the left part
of Figure 15. By cutting the top of the triangle and mov-
ing it around one can create a rectangular mapping which is
easy to compute. The disadvantage is that inside the rect-
angle the adjacent neighbors along the line separating base
and top of the triangle have less correlation. Nevertheless,
we can see in the right part of Figure 15 that this simpli-
fied mapping yields a speedup over the mapping given by
formula (1).

6.9 Kernel mode

At this point, the current solution is split into three or four
segments and all of those are kept in registers. This was
done so that the algorithm steps through the solution in a
linear way and thus linearly through the corresponding hi-
erarchy segments. This is to ensure that adjacent threads
access the same or adjacent segments in the hierarchy. As we
learned above, however, such proximity is not always ben-
eficial. We therefore investigate an implementation where
each segment is computed at the time it is needed. In this
way we only need to store two segments in the registers,
the first representing the new computed solution so far, and
the second the next needed segment of the current solution.

1,000 2,000

1.05

1.1

2-opt

Index mode 4, kernel 0

Index mode 3, kernel 1

Index mode 4, kernel 1

200 400

1

1.05

1.1
3-opt

p lex, im 4, kernel 0

Same p, im 3, kernel 1

Same p, im 4, kernel 1

Figure 16: Speedup due to kernel mode. The x-axis shows
the number of nodes in the current solution, the y-axis the
speedup. The acronym im is used for index mode, lex for
lexicographically. Kernel mode zero is the one where all seg-
ments are computed and stored, kernel mode one computes
only the next one needed.

This reduces register usage and could thus lead to higher
occupancy and better performance. That this is in fact the
case is shown in Figure 16. We notice that for the new way
of computing the segments, changing the order related to p
in the mapping for the 3-opt indices back to the one where
neighbors with the same p component are next to each other
yields the best results.

6.10 Number of hierarchy levels

The improvements in the kernels so far were done using a
one-level hierarchy. In general using a l-level hierarchy to
compute one solution segment leads to at most 2l−1 combi-
nations of hierarchy segments. On the other hand, creating
a l-level hierarchy is faster with increasing l. Depending on
the situation, a low or a high l should be beneficial. We
therefore study our implementation with respect to the pre-
vious mentioned aspects also for a zero-level and a two-level
hierarchy. A zero-level hierarchy is basically just the collec-
tion of all possible segments in the current solution. The
results are displayed in Figure 17.

For all hierarchies the AoS layout performs best as does
the cut triangular mapping for 2-opt neighbor indices and
the zero-level hierarchies do not need the shared memory.
We observe that for a 2-opt neighborhood using a one-level
hierarchy actually performs best. For a 3-opt neighborhood
instead the zero-level hierarchy is best. This makes sense, as
the the 3-opt neighborhood has cardinality O(n3), whereas
creating the zero-level hierarchy is O(n2). In addition, only
having a collection of segments removes the need of travers-
ing a hierarchy.

14

1,000 2,000

0.4

0.6

0.8

1

2-opt

im 3, km 1, 0-level

im 4, km 1, 0-level

im 3, km 1, 1-level

im 4, km 1, 1-level

im 3, km 1, 2-level

im 4, km 1, 2-level

200 400

1

2

3-opt

p lex, im 3, km 1, 0-level

p lex, im 4, km 1, 0-level

Same p, im 3, km 1, 1-level

Same p, im 4, km 1, 1-level

p lex, im 3, km 0, 2-level

p lex, im 4, km 0, 2-level

Figure 17: Speedup due to number of levels. The x-axis
shows the number of nodes in the current solution, the y-
axis the speedup. Used acronyms are im for index mode,
km for kernel mode, and lex for lexicographically.

200 400

0.4

0.6

0.8

1

3-opt

Index mode 4, 0-level, mapping in memory

Index mode 3, 0-level, Newton

Index mode 4, 0-level, Newton

Figure 18: Speedup due to Newton based evaluation of 3-
opt mapping. The x-axis shows the number of nodes in the
current solution, the y-axis the speedup.

6.11 Newton based evaluation of 3-opt
mapping

Before we discuss a final change to the implementation, we
would like to shortly mention why we pre-compute the map-
ping between thread index and x, y and z components of the
3-opt neighbor index on the CPU and copy it to the GPU.
As this part of the mapping is a lexicographical order, it is
very easy to compute sequentially. On the GPU side, read-
ing from global memory is not very fast, but it is one simple
operation. In [18] it is suggested to use Newton’s method to
solve a cubic equation in order to compute the mapping dur-
ing the neighborhood evaluation. This approach is elegant
as it reduces the need for explicitly storing the mapping.
Unfortunately, it is also slower, as demonstrated in Figure
18.

Time Occ Reg Bw L1 Lm Div
Kernel (ms) (Gb/s) (%)

ζc 31 1.00 18 12 94 0 17e3
zw 26 1.00 20 42 77 0 2

3-opt
zK 27 1.00 18 35 91 0 0
ζL 76 0.52 28 12 83 0 52e4
ζc 0.07 1.00 18 35 83 0 31
zw 0.05 0.83 21 61 72 0 0

2-opt
zK 0.06 1.00 18 44 84 0 0
ζL 0.16 0.67 30 41 83 0 768

Table 3: Performance of kernels for zero-level hierarchy ap-
plied to current solution with 399 nodes.

Time Occ Reg Bw L1 Lm Div
Kernel (ms) (Gb/s) (%)

ζc 0.18 0.67 27 <1 95 0 865
zw 0.14 0.67 29 14 84 0 884

2-opt
zK 0.16 0.67 27 8 94 0 820
ζL 0.24 0.38 39 4 90 0 1271

Table 4: Performance of 2-opt kernels for one-level hierarchy
applied to current solution with 399 nodes.

6.12 Combined speedup so far

The process of tuning the kernels has yielded substantial
speedups. The resulting performance of the kernels is shown
in Table 3 for a zero-level hierarchy (3-opt neighborhood)
and in Table 4 for the 2-opt kernels for a one-level hierarchy.

The 2-opt kernels also perform better for a zero-level hi-
erarchy than a one-level hierarchy. The hierarchy creation
process plays a more important role for 2-opt than for 3-opt.
Therefore, in a 2-opt neighborhood, the overall performance
is best with a one-level hierarchy. Nevertheless, we can ob-
serve that the kernels perform much better than The Bench-
mark Version in Table 1 for both cases. All kernels use less
registers than before. In fact, some of them use less than
20 registers enabling an occupancy of 1. This leads to the
idea that it might now be worth to combine the evaluation
of constraints / objectives in one kernel. In this way the
computation of indices, mapping computations or memory
reads can be shared and only need to be done once. This
could lead to a synergy effect.

6.13 Combined evaluation

As a last kernel improvement study we examine the possi-
bility of evaluating two of the objectives or constraints to-
gether. As the results in Figure 19 show, this leads to an
improvement in most cases. It shows that combining the
cost objective with the route distance constraint and the
capacity constraint with the number of vehicles objective
yields the most improvement11.

11 We also tried the other combinations and combining three objec-
tives/constraints together, but this led to the CUDA compiler crashing.

15

1,000 2,000

1

1.05

1.1

1.15

2-opt

200 400

1

1.05

1.1

3-opt

One kernel each, index mode 4

zw & ζc in one kernel, index mode 3

zw & ζc in one kernel, index mode 4

zw & zK in one kernel, index mode 3

zw & zK in one kernel, index mode 4

zw & ζL in one kernel, index mode 3

zw & ζL in one kernel, index mode 4

ζc & zK in one kernel, index mode 3

ζc & zK in one kernel, index mode 4

zw & ζL in one and ζc & zK in one kernel, index mode 3

zw & ζL in one and ζc & zK in one kernel, index mode 4

Figure 19: Speedup due combined evaluation of several ob-
jectives/constraints in one kernel. The x-axis shows the
number of nodes in the current solution, the y-axis the
speedup.

Figure 20: Timeline of one iteration in a 2-opt neighborhood
for improved kernels and 399 nodes in solution.

6.14 Improving GPU-CPU coordination

In the previous subsections we described how we improved
the performance of the neighborhood evaluation kernels.
This is the bottleneck for both the 3-opt neighborhood
and the 2-opt neighborhood for solutions of reasonable size.
However, in Figure 7 we saw that the GPU is idle about 40%
of the time for a 2-opt neighborhood for a solution with 399
nodes. This utilization has worsened with the improved ker-
nel performance, as shown in Figure 20. The GPU is now
around 60% idle.

The first row in a timeline plot shows the activity of the
driver API by gray or colored bars. A white background
without any bars means the CPU thread is busy with com-
putations that are not related to the driver API. When the
CPU is synchronizing with the GPU and thus waiting for it,
the driver API will perform a synchronization task. Those
tasks are marked with yellow bars in the driver API row of

the timeplot. As we can see in Figure 20, our implemen-
tation uses a simple synchronized GPU and CPU program
flow. This basically means that either the CPU or the GPU
is busy. However, when the GPU is creating the hierarchy
or evaluating the neighborhood, the CPU does not need to
wait. In fact, the first four tasks in our algorithm, as de-
scribed in Figure 6, can be performed in sequence without
the CPU intervening. Thus the work of the driver API that
is necessary to schedule those kernels can be done while the
GPU is working on the previous tasks.

The most significant idle time for the GPU appears after
copying the neighbor to the CPU. This is not due to the
move execution on the CPU, but to kernel scheduling for
the hierarchy creation. When creating a hierarchy, several
kernels calls are necessary, and all of them need to be sched-
uled. This scheduling is clearly marked in the driver API
row after copying the move from the GPU to the CPU.

To better make use of the neighborhood evaluation time
we therefore make use of the following scheme. We schedule
the hierarchy generation directly after setting up the copy-
ing of the move. This means that the CPU will not wait
until the best neighbor is computed, and the move is exe-
cuted and copied, before scheduling the hierarchy creation.
This leads to the following setup. Let us assume that the hi-
erarchy is already computed for the current iteration. Then
the CPU schedules the neighborhood evaluation, reduction
to best neighbor, move execution on GPU, copy of move
to CPU. It then sets an event for the copy to be finished
and can thus schedule to create the hierarchy for the new
solution on the GPU right away. It then waits for the event
signalizing that the copied move is available. Using streams,
events, and stream synchronization towards events we can
also synchronize the tasks on the GPU with each other with-
out the need of CPU intervention.

With this approach, scheduling all kernels related to the
hierarchy creation can in theory be performed while the
GPU is busy with the other tasks. In Figure 21 we see
that the asynchronous execution is able to reduce the GPU
idle time, but unfortunately is not able to remove it for a so-
lution with 399 nodes. There are just too many kernels calls
needed to create the one-level hierarchy for all objectives and
constraints. For a solution with around 1000 nodes however,
the kernel scheduling can be hidden completely, leading to
the GPU being busy practically the whole time. This is
shown in Figure 22.

In Figures 21 and 22 the timelines do not contain a de-
vice to host copy row in the counters section. This has the
following reason. For the programmer it is not possible in
CUDA to specify when an asynchronous copy shall happen
and whether it is overlapping with kernel execution or not.
Using an asynchronous copy operation for transferring the
best move from the GPU to the CPU led unfortunately to
unwanted and unnecessary idle time for the GPU instead
of overlapping copy operations and kernel execution. We
therefore use a kernel with host mapped memory to copy
the move. Host mapped memory means that the global
GPU memory the kernel writes to is automatically, implic-

16

Figure 21: Timeline of one iteration in a 2-opt neighborhood
for improved kernels, asynchronous execution and 399 nodes
in solution.

Figure 22: Timeline of one iteration in a 2-opt neighborhood
for improved kernels, asynchronous execution and 967 nodes
in solution.

itly transferred to the host and accessible there. It therefore
does not show up in the device to host copy counter row in
the timeline plot.

Obviously it would be good to reduce the number of kernel
calls for the hierarchy creation. However, CUDA does not
provide a GPU side synchronization between blocks. This is
why we have one kernel call per level as the efficient hierar-
chy creation relies on using level l to compute the segments
of level l+1. One can of course implement a creation kernel
that does not rely on such re-use. We did try that, but this
leads to basically the same as creating all possible segments
for one solution. This is the same as using a zero-level hi-
erarchy, which we already know is slower than the current
implementation for a one-level hierarchy.

As a conclusion of this problem, we observe that for the
GPU to be fully used all the time, the neighborhood that is
evaluated needs to be large enough to hide the scheduling of
all kernels. This is the case when the solution contains more
than 900 nodes for a 2-opt neighborhood and more than 110
nodes for a 3-opt neighborhood.

6.15 Splitting large neighborhoods

So far we have assumed that we can store the whole neigh-
borhood fitness structure in the global memory of the GPU.
This requires either enough memory or a limited size neigh-
borhood. We would like our algorithm to be able to perform
well for any reasonable neighborhood and memory size.

The simple idea here is to split the neighborhood into
parts, such that the fitness structure of each part fits into
approximately half of the memory. We compute the first

Figure 23: Timeline of one iteration in a 3-opt neighborhood
and 735 nodes in solution.

part and store the fitness structure in the first half of the
memory. After that we compute the second part and store
its fitness structure in the second half of the memory. Then
for each stored neighbor in the first fitness structure we com-
pare it with the corresponding neighbor in the second fitness
structure and the best feasible of the two is stored back into
the first half of the memory. In this way the first part of
the global memory contains a subset of the evaluated neigh-
borhood which is guaranteed to contain the best feasible
neighbor so far. For the remaining parts we do the same,
they are evaluated and the resulting fitness structures com-
bined with the previously computed subset. Thus after all
parts of the neighborhood are evaluated, we have a subset
of the neighborhood fitness structure that contains the best
feasible neighbor. We perform a reduction of this set to get
the best feasible neighbor.

Of course one could reduce the fitness structures of each
neighborhood part to the best feasible neighbor and thus
only keep the best feasible in memory. However, a goal is to
provide an as large subset of the neighborhood fitness struc-
ture as possible at the end of the neighborhood evaluation.

This approach works fine for a 2-opt neighborhood. For
a 3-opt neighborhood we so far used a mapping in memory
that was constant. With large neighborhoods we do not
want to or may not be able to store the whole mapping in
global memory. Instead we utilize the fact that the GPU is
able to copy data from the CPU while running kernels.

Thus we split the mapping into mappings for each part.
While part i is evaluated, we copy the mapping for part i+1
from the CPU to the GPU, hiding the whole copy operation.
The copying of the mapping for one part takes less time than
the neighborhood evaluation of a part. Hence, the whole
copying is completely hidden with respect to runtime and
does not slow down the algorithm. This can be nicely seen
in Figure 23.

Unfortunately, one is not able to explicitly tell the GPU to
overlap a copy operation with a kernel call. The driver API
uses some heuristic or other method to determine overlap
or not. In the first iteration of the local search, not ev-
ery copy operation is overlapped. However, after one local
search iteration, the driver API is able to overlap all follow-
ing mapping copy operations with kernel execution. During
the evaluation of the final neighborhood part in an iteration

17

1,000 2,000

2.8

3

3.2

2-opt

200 400

6

7

8

3-opt

Index mode 3 Index mode 4

Figure 24: Overall combined speedup. The x-axis shows
the number of nodes in the current solution, the y-axis the
speedup.

we already copy the mapping for the first part of the map-
ping for the next iteration. In this way, there is no need to
wait for any copy operation between iterations either.

6.16 Final results

In the previous subsections we analyzed the speedup in an
incremental fashion. Figure 24 shows the combined speedup
of the best implementation compared to The Benchmark
Version. The time it takes to perform one whole iteration
in the local search process using the best implementation is
shown for different solutions in Table 5.

Due to the use of aggregation, one potential move can be
evaluated in constant time. This can be observed in the
times in Table 5 with taking into account that for small
neighborhoods the other parts of the local search process
play a more important role. We can observe that the ra-
tio time/(neighborhood size) first decreases as the neigh-
borhood evaluation part becomes the dominant factor of the
local search process and then stays roughly constant. This
factor also provides us with some interesting comparison of
the GPU version to the sequential world. If the whole 2-opt
neighborhood of a solution with more than 200 nodes should
be evaluated with the same speed in a sequential version, we
would in average have less than 36 ns to evaluate each po-
tential move. For a 3-opt neighborhood the time is even less
than 5 ns in average per potential move, which corresponds
to 10 cycles for a 2 GHz core.

7 Filtering Neighbors

Using the GPU we are able to evaluate the whole 3-opt
neighborhood for a solution with 2401 nodes in less than 40
seconds. The size of this neighborhood is 9 · 109. For such
huge neighborhoods the question arises whether it makes
sense to evaluate the whole neighborhood. On the CPU,
large neighborhoods are impossible to evaluate simply due
to the time it would take. On the GPU, the problem is
basically the same, but the critical size will be different.

For large neighborhoods, the evaluation on the GPU is

split into parts which are executed in sequential order. It
is therefore easy to change from the Best Improving strat-
egy to a First Improving strategy. After a given part has
been evaluated, it is completely reduced to its best feasi-
ble neighbor. If this neighbor is improving, we select the
corresponding move and ignore the remaining parts of the
neighborhood. Unfortunately, this will destroy some of the
asynchronous nature of the LS procedure. However, since
each part is large in itself, the evaluation time should still
be the dominating runtime factor.

Filtering is a popular approach in the DOP community
for handling very large neighborhoods. By an efficient pro-
cedure12 one eliminates a large number of neighbors. Fil-
tering works very nicely in a sequential setting, but does it
make sense on the GPU? The goal of the remaining part
of this section is not to identify the best implementation of
filtering on the GPU, but to study the effects and illustrate
problems. To this end we use a simple model of filtering,
and neighborhoods that do not need splitting.

For our experiments we use a boolean filter vector where
each element says whether the corresponding neighbor shall
be evaluated or ignored. In reality, this vector will be gen-
erated by the filtering method. For our investigation, we
may choose the elements to be filtered randomly, as filtering
procedures will utilize some structural characteristic of the
DOP rather than memory structures on the GPU. There-
fore, we generate random filter vectors with a controlled
filtering factor.

The first naive way of implementing filtering is to check
whether the corresponding potential move shall be evalu-
ated or not inside each thread. However, as explained in
Section 5.2, a thread is not executed alone but as part of
a warp. Each thread inside a warp does exactly the same
instructions, with divergence realized by masking. Even if
only the potential move of one thread inside a warp needs to
be evaluated, the execution time of the whole warp is deter-
mined by this thread. Only if all potential moves related to
the threads of a warp are filtered, the whole warp can drop
the evaluation process, leading to a speedup.

This effect is clearly noticeable in the results shown in Fig-
ure 25. Even filtering out as much as 75% of all neighbors
does not lead to a significant speedup of computation time.
Only when we apply a stronger filter, keeping only 1% or
even 0.1% of the neighbors, a significant speedup is notice-
able. This is understandable, as a warp contains 32 threads.
Hence, if evaluating more than 1/32 of all neighbors, chances
are high for a warp to contain at least one thread which has
to evaluate its potential move. Evaluating only 1% or less
neighbors gives high probability that whole warps do not
need to evaluate anything, thus leading to speedups.

A better implementation is a mapping vector that con-
tains identifiers of the neighbors that need to be evaluated.
In this way we can use consecutive threads to evaluate those
neighbors. The effect is either fewer threads in the evalu-
ation kernel call, or whole warps having no neighbors to

12Filtering procedures may be exact or heuristic.

18

57 99 201 301 399 511 967 1441 2081 2401
index mode 3 5.03e−04 6.53e−04 7.11e−04 1.04e−03 1.47e−03 2.07e−03 5.63e−03 1.01e−02 2.04e−02 2.71e−02

2-opt
index mode 4 4.99e−04 6.47e−04 7.03e−04 1.02e−03 1.45e−03 2.02e−03 5.50e−03 9.68e−03 1.95e−02 2.59e−02
index mode 3 1.25e−03 3.72e−03 2.40e−02 7.75e−02 1.77e−01 3.56e−01 2.57e+00 8.29e+00 2.49e+01 3.83e+01

3-opt
index mode 4 1.23e−03 3.64e−03 2.34e−02 7.50e−02 1.70e−01 3.41e−01 2.45e+00 7.88e+00 2.36e+01 3.63e+01

Table 5: Times per iteration in seconds for different solution sizes and both 2-opt and 3-opt neighborhoods. The header
row shows the number of nodes in the solution.

0 0.5 1

0

0.5

11

99 Nodes

0 0.5 1

0

0.5

11

201 Nodes

0 0.5 1

0

0.5

11

301 Nodes

0 0.5 1

0

0.5

11

399 Nodes

Naive, index mode 3 Naive, index mode 4

Mapping, index mode 3 Mapping, index mode 4

Compact, index mode 3 Compact, index mode 4

Figure 25: Simulating filtering for solutions with different
number of nodes. The x-axis shows the percentage of filtered
neighbors, the y-axis the percentage of time related to no
filtering.

evaluate. This should lead to a speedup dependent on the
percentage of neighbors filtered out. This is in fact the case,
as can be seen in Figure 25. However, the stronger the filter,
the less two adjacent neighbors in the mapping vector have
in common. Therefore we will get less good memory access
patterns and probably also more divergence in the code flow
than when evaluating the whole neighborhood. These ef-
fects explain why filtering out 75% of the potential moves
does not lead to a 75% speedup.

In a real setting it is unlikely that a mapping vector is
given. Instead we need to use information from the filter
vector to create the mapping vector. The operation in ques-
tion is well known as a compact operation in the GPU com-
munity. We use the compact algorithm from the Thrust
library [11] in our experiments. Compaction has to be per-
formed in each iteration as the filter vector might change.
In Figure 25 one can observe that the computational cost
for the compact operation is significant for small neighbor-
hoods, whereas it becomes less significant as neighborhood
size grows.

8 Conclusion

In this paper we investigated different GPU implementations
for local search. Starting from The Benchmark Version we
studied the effects of changing different parts of the imple-
mentation, leading to an incremental improvement of our
program. We focused both on having efficient evaluation
kernels and a well designed CPU-GPU interaction. In ad-
dition we showed how memory limitations can be overcome
such that the implementation can also efficiently evaluate
very large neighborhoods whose fitness structures do not
fit into GPU memory. At the end of this paper we shortly
touched the topic of filtering moves and the problems related
to it.

The presented experiments show clearly that carefully ad-
justing the GPU implementation of local search yields a sig-
nificant payoff. We have observed almost an order of mag-
nitude speedup. Arguably, the most important and general
lesson learnt is the importance of keeping the GPU busy at
all time. It does not help to have a very efficient kernel if
the GPU is only used 30% of the time. A busy GPU also
includes a well designed coordination strategy between the
CPU and the GPU. Tasks that seem to be inherently se-
quential, such as executing the move and then evaluating
the new hierarchies, can be performed at different times on

19

the GPU and GPU, respectively, allowing one of them to
’race ahead’.

For large neighborhoods the evaluation of potential moves
dominates the runtime, whether performed on CPU or GPU.
Thus it makes sense to not just optimize the GPU-CPU co-
ordination, but also to carefully optimize the GPU imple-
mentation of the evaluation itself. The type of neighborhood
and the way it is represented is very important to efficiency.
Adjacent threads in a warp always perform the same op-
eration. Their memory access patterns influence the time
needed for accessing data. Hence, the mapping between
neighbors and threads has a strong effect on GPU utiliza-
tion. Adjacent neighbors should virtually always be pro-
cessed in the same way. The data needed should be either
identical or adjacent in memory.

Tuning the algorithm and its parameters is also important
to performance. In our investigations it turned out to be
better to use a zero-level hierarchy for the 3-opt operator,
in contrast with a one-level hierarchy for 2-opt. Evaluating
a segment when it is needed turned out to be better than
computing all at once.

Of course there are many more aspects that influence effi-
ciency, for instance the type of memory or instructions used.
There is wide range of possibilities that can be explored in
order to find a good, if not the optimal GPU implementa-
tion. The challenge is to identify the most promising alter-
natives related to the current implementation, as one seldom
has the time to try all. In this process, performance tools
proved to be very helpful. However, one also needs experi-
ence to be able to identify bottlenecks and possible remedies
for a given implementation.

The main goal of this paper was to develop an efficient
GPU implementation of local search. Through a careful im-
provement process we managed to arrive at an implementa-
tion where the GPU is busy basically the whole time, given
a not too small problem. However, the CPU is almost idle.

CPU’s of today have several cores and can execute multi-
ple threads simultaneously. In the broader picture of devel-
oping efficient discrete optimization methods on modern ar-
chitectures, we need to learn how to distribute the work load
between GPU and CPU so that both units are busy all the
time. Ideally, methods for computationally hard problems
should be able to self-adapt to the available hardware for
maximum system performance. Such heterogeneous meth-
ods will become more and more important in the future,
as there will still be significant improvements in processor
hardware. Producers are starting to combine the GPU and
CPU into one chip, drastically reducing costs for transfer-
ring data between them. In some architectures they actually
use the same memory, so data transfer is no issue at all.

In order to profit from current and future hardware devel-
opment, we need to understand how to distribute the work
between heterogeneous computing units in a self-adaptable
way. The demands from industry and the scientific commu-
nities for computing power for discrete optimization prob-
lems are virtually without limits.

Acknowledgement

The author would like to thank Christopher Dyken at SIN-
TEF for providing access to his tikz-generated pictures il-
lustrating CUDA.

References

[1] Emile Aarts and Jan Karel Lenstra, editors. Local
Search in Combinatorial Optimization. Princeton Uni-
versity Press, 2003.

[2] Roberto Baldacci, Nicos Christofides, and Aristide
Mingozzi. An exact algorithm for the vehicle routing
problem based on the set partitioning formulation with
additional cuts. Mathematical Programming, 115:351–
385, 2008. 10.1007/s10107-007-0178-5.

[3] R. E. Bixby. Solving real-world linear programs: A
decade and more of progress. Oper. Res., 50(1):3–15,
2002.

[4] A. R. Brodtkorb. Scientific Computing on Heteroge-
neous Architectures. Ph.D. thesis, 1501-7710, No. 1031.
University of Oslo, 2010.

[5] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M.
Hjelmervik, and O. O. Storaasli. State-of-the-art in
heterogeneous computing. Scientific Programming,
18(1):1–33, 2010.

[6] G. B. Dantzig and J. H. Ramser. The truck dispatching
problem. Manag. Sci., 6(80), 1959.

[7] M. Gendreau and J.Y. Potvin. Handbook of Metaheuris-
tics. International Series in Operations Research &
Management Science. Springer, 2010.

[8] Bruce Golden, S. Raghavan, and Edward Wasil, edi-
tors. The Vehicle Routing Problem – Latest Advances
and New Challenges. SIAM Monographs on Discrete
Mathematics and Applications. 2002.

[9] Mark Harris. Optimizing Parallel Reduction in CUDA.
NVIDIA, 2007.

[10] G. Hasle and O. Kloster. Industrial vehicle routing
problems. Chapter in Hasle G., K-A Lie, E. Quak
(eds): Geometric Modelling, Numerical Simulation,
and Optimization. ISBN 978-3-540-68782-5, Springer,
pages 397–436, 2007.

[11] Jared Hoberock and Nathan Bell. Thrust: A parallel
template library, 2010. Version 1.3.0.

[12] Stefan. Irnich. Online supplement to: A uni-
fied modeling and solution framework for vehi-
cle routing and local search-based metaheuris-
tics. INFORMS Journal on Computing, 20, 2008.
URL: http://www.informs.org/Pubs/IJOC/Online-
Supplements/Volume-20-2008.

20

[13] Stefan Irnich. Resource extension functions: properties,
inversion, and generalization to segments. OR Spec-
trum, 30:113–148, 2008.

[14] Stefan. Irnich. A unified modeling and solution frame-
work for vehicle routing and local search-based meta-
heuristics. INFORMS Journal on Computing, 20:270–
287, April 2008.

[15] A. Janiak, W. Janiak, and M. Lichtenstein. Tabu
search on GPU. Journal of Universal Computer Sci-
ence, 14(14):2416–2427, 2008.

[16] Yifang Liu. Algorithms for VLSI circuit optimization
and GPU-based parallelization. PhD thesis, Texas A&M
University, 2010.

[17] Thé Van Luong, Nouredine Melab, and El-Ghazali
Talbi. GPU-based island model for evolutionary algo-
rithms. In Proceedings of the 12th annual conference
on Genetic and evolutionary computation, GECCO ’10,
pages 1089–1096, New York, NY, USA, 2010. ACM.

[18] Thé Van Luong, Nouredine Melab, and El-Ghazali
Talbi. Neighborhood structures for gpu-based lo-
cal search algorithms. Parallel Processing Letters,
20(4):307–324, 2010.

[19] NVIDIA. NVIDIA Compute Visual Profiler, 2010. Ver-
sion 3.2.

[20] NVIDIA. Tuning CUDA Applications for Fermi, Au-
gust 2010. Version 1.3.

[21] E.G. Talbi. Metaheuristics: from design to implemen-
tation. Wiley Series on Parallel and Distributed Com-
puting. John Wiley & Sons, 2009.

[22] P. Toth and D. Vigo, editors. The Vehicle Routing Prob-
lem. SIAM Monographs on Discrete Mathematics and
Applications. 2002.

[23] Pablo Vidal and Enrique Alba. Cellular genetic algo-
rithm on graphic processing units. In Juan Gonzlez,
David Pelta, Carlos Cruz, Germn Terrazas, and Na-
talio Krasnogor, editors, Nature Inspired Cooperative
Strategies for Optimization (NICSO 2010), volume 284
of Studies in Computational Intelligence, pages 223–
232. Springer Berlin / Heidelberg, 2010.

21

Technology for a better society

www.sintef.no

	SINTEF Report A19678 Efficient Local Search on the GPU
	Collab Tech Report JPDC paper
	paper
	Introduction
	The Vehicle Routing Problem
	The Capacitated Vehicle Routing Problem

	Discrete Optimization Problems and Local Search
	Solution Method and Representation
	Solution method
	Representation
	Resource Extension Functions

	GPU and Development Tools
	The Fermi architecture and CUDA
	Kernel execution
	Memory hierarchy
	GPU-CPU coordination
	Performance measurement

	Implementations and Results
	The Benchmark Version
	Segments in registers
	Shared memory
	Avoiding expensive arithmetic operations
	Block size
	Choice of data structures
	Index mode
	2-opt mapping
	Kernel mode
	Number of hierarchy levels
	Newton based evaluation of 3-opt mapping
	Combined speedup so far
	Combined evaluation
	Improving GPU-CPU coordination
	Splitting large neighborhoods
	Final results

	Filtering Neighbors
	Conclusion

	Collab Tech Report JPDC paper

	Signed page 2
	SINTEF Report A19678 Efficient Local Search on the GPU
	Collab Tech Report JPDC paper
	paper
	Introduction
	The Vehicle Routing Problem
	The Capacitated Vehicle Routing Problem

	Discrete Optimization Problems and Local Search
	Solution Method and Representation
	Solution method
	Representation
	Resource Extension Functions

	GPU and Development Tools
	The Fermi architecture and CUDA
	Kernel execution
	Memory hierarchy
	GPU-CPU coordination
	Performance measurement

	Implementations and Results
	The Benchmark Version
	Segments in registers
	Shared memory
	Avoiding expensive arithmetic operations
	Block size
	Choice of data structures
	Index mode
	2-opt mapping
	Kernel mode
	Number of hierarchy levels
	Newton based evaluation of 3-opt mapping
	Combined speedup so far
	Combined evaluation
	Improving GPU-CPU coordination
	Splitting large neighborhoods
	Final results

	Filtering Neighbors
	Conclusion

	Collab Tech Report JPDC paper

