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Outline 
 

 SINTEF 
 Performance in Discrete Optimization 
 Hardware developments, and prospects 
 Accelerators and heterogeneous computing 
 A GPU based VRP solver 
 Incremental improvement of implementation 
 Extension to truly heterogeneous computing 
 Conclusions 
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SINTEF 

 Established 1950 by the Norwegian Institute of Technology. 

 The largest independent research organization in Scandinavia. 

 A non-profit organization.  

 Vision “Technology for a better society”. 

 Key Figures 
 2123 Employees from 67 different countries. 
 2755 MNOK in turnover (about € 340M). 
 7216 projects for 2200 customers. 
 Offices in Norway, USA, Brazil, Macedonia, United Arab Emirates, Denmark. 
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* Data from SINTEF’s 2009 annual report 
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SINTEF Technology 
and Society SINTEF ICT SINTEF Materials 

and Chemistry 

SINTEF Petroleum 
and Energy 

SINTEF Building 
and Infrastructure SINTEF Marine 

Board 

President  
Executive Vice 

Presidents 
Corporate Staff 

6 Research Divisions 

SINTEF Holding 

SINTEF: Organization 

 
SINTEF’s Council 

* Data from SINTEF’s 2009 annual report 
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Instrumentation Communication systems Cooperative and trusted 
systems 

Acoustics Microsystems and 
nanotechnology Applied mathematics 

President of SINTEF 
Institute Council 

Executive 
Vice President 

Staff 

Optical measurement 
systems and data 

analysis 
Applied cybernetics Software engineering 

safty and security 

9 Research Departments 

SINTEF ICT: Organization 
 

 Offices in Oslo and Trondheim 
 9 departments 
 Key figures 2009 

 269 staff 
 Turnover 336 million NOK 

 

* Data from SINTEF’s 2009 annual report 
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 Offices in Oslo and Trondheim 
 Consists of 5 research groups 

 Geometry 
 Optimization 
 Simulation 
 Visualization 
 Heterogeneous computing  

 Key figures 2009 
 38 employees 
 45 MNOK turnover 

 

* Data from SINTEF’s 2009 annual report 
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 Focus 
 20 years of basic and applied research in discrete optimization 

 Employees 
 8 researchers, 1 software engineer 

 Activities 
 basic research 
 applied Research 
 consultancy 

 Products and Services 
 models and algorithms 
 software (stand alone, plugin, components, libraries) 
 reports, scientific papers 
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Optimization group 



Applied Mathematics 

Customers and Partners 

 
 Industry 
 Public Sector 
 Research Council of Norway  
 European Commission 
 Research Institutes 
 Universities 
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Business Areas & Research Themes 
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Finance: NetranS 
 

 Customer: VPS, owned by Oslo Stock Exchange 
 Challenge: Maximizing the total value of 

transactions at Oslo Stock Exchange.  
Typical size: 150 000 transactions, value NOK 150 billion 

 Solution: MIP solved by CPLEX. Decomposition due to 
problem size. 

 Result: Runs twice daily. High clearing percentage. 
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Sports: NFF Scheduling 
 SINTEF makes the schedule for the Norwegian top divisions  
 Two-stage process where the pattern is constructed first 

 No ”break” between round 1 and 2, nor between 25 and 26 (last round) 
 Minimum number of breaks 
 Minimum distance between ”same” match type (home and away) 
 Anti-teams 

 Allocation of the teams to placeholder 
 Specific matches on specific days 
 Specific home or away - start and finish 

 

10 9 8 7 6 14 4 3 2 1 13 12 11 Team 5 
11 10 9 8 7 6 5 14 3 2 1 13 12 Team 4 
12 11 10 9 8 7 6 5 4 14 2 1 13 Team 3 
13 12 11 10 9 8 7 6 5 4 3 14 1 Team 2 
14 13 12 11 10 9 8 7 6 5 4 3 2 Team 1 
13 12 11 10 9 8 7 6 5 4 3 2 1 Round 



Applied Mathematics 

Production port 

Consumption port 

Product 1 

Product 2 

Kjøpsvik 

Brevik 

Alta 

Mo i Rana 

Trondheim 

Karmøy 

Årdal 

Transport: Invent 
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 Offices in Oslo and Trondheim 
 Consists of 5 research groups 

 Geometry 
 Optimization 
 Simulation 
 Visualization 
 Heterogeneous computing  

 Key figures 2009 
 38 employees 
 45 MNOK turnover 

 

* Data from SINTEF’s 2009 annual report 
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Performance in Discrete Optimization 

 DOPs computationally hard 
 Tremendous increase in DOP solving ability 
 Illustration: Commercial LP solvers* 
 Speedup factor roughly 1.000.000 1987-2000 
 Factor 1000 better methods 
 Factor 1000 faster computers 

 
 There is still a performance bottleneck in industry 
 
 
 
*Bixby R.E. (2002). Solving Real-World Linear Programs: A Decade and More of Progress. Oper. Res. 50(1), pp. 3-15. 
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The Beach Law [Gottbrath et al. 1999]  

16 

One way of doubling the 
performance of your computer 
program is to go to the beach 
for 2 years and then buy a new 
computer.  
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Processor development 1970-2010 
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“The number of transistors 
on an integrated circuit for 
minimum component cost 
doubles every 24 months”  
– Gordon Moore, 1965. 
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What happened? 

 Moore’s law at work, expected to hold until 2030 ... 
 The Beach Law was valid until about 2005 ... 
 Heat dissipation etc. stopped it 
 PC computing power still benefits from Moore’s law 
 Multi-core processors for task parallelization  

(multi-threading, shared memory) 
 Accelerators for data parallelization (stream processing) 

 
 Drastic change in the development of processors 
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Multi-core processors 
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 Heat dissipation varies with clock frequency cubed 
 2 cores, reduced frequency, same heat dissipation 
 70% higher computing performance if you can exploit it 
 Sequential programs will run slower 
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Stream processing accelerators 
 The graphics card was the origin 
 Developent driven by gaming industry 
 Computing power increases rapidly 
 Programmability improves rapidly  
 Libraries, debugging, performance, profiling tools 
 Single Program Multiple Data 
 Massively parallel, thousands of threads 
 You need to 

 understand the architecture 
 worry about code diversion 
 worry about memory latency 
 worry about … 

 

 



Applied Mathematics 

GPU vs CPU performance 
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The GPU – NVIDIA Fermi Architecture 

16 streaming multiprocessors are positioned around a 
common L2 cache 
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The GPU – NVIDIA Fermi Architecture 

Each of the16 Streaming Multiprocessors (SMs) has 32 cores, 512 cores in total. Each core 
run the same program («kernel»), with individual data and individual code flow (SPMD). 
Divergence means serialization. Need more threads than cores to hide latency, typically 

>512 threads for each SM, say 10.000. One may run multiple kernels concurrently. 
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Kernel execution 

24 

 Kernel 
 Executed on a compute grid 

 Consisting of blocks 
 Each with a number of threads 

 Max # threads/block: 1024 
 All threads in a block on same SM 
 Different blocks may execute on different SMs 
 Block threads split in warps of 32 threads 
 Warp serialization and masking, minimize code divergence 
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Programming GPUs 

 OpenCL 
 API for multi-platform shared memory multiprocessing  
 C, C++, Fortran 
 Open standard, Khronos group   

 CUDA 
 C++-like language 
 proprietary (NVIDIA) 
 libraries 
 development tools (debugger, profiler, …) 
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Exploiting the GPU 

 Games 
 Matrix and vector operations 
 Scientific simulation and visualization http://www.youtube.com/babrodtk  
 http://www.nvidia.co.uk/object/cuda_apps_flash_new_uk.html#  
 

 
 Local search 
 Genetic algorithms 

 
 Simple idea: evaluation of neighbors / individuals 
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http://www.youtube.com/babrodtk
http://www.nvidia.co.uk/object/cuda_apps_flash_new_uk.html
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Local Search  
- Sequential evaluation of neighborhood 
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N 

Time for one iteration: tsN 

ts 
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Local Search  
– Task parallel evaluation of neighborhood 

2 cores 
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N 

tp 

Time for one iteration: tpN/2 
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Local Search  
– Data parallel evaluation of neighborhood 
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N 

Time per evaluation:     tg 

Time for one iteration: tgN/k 

# simultaneous threads: k 

k 1 

k 
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Heterogeneous computing 
 Heterogeneous computing systems:  

electronic systems that use a variety of different types of 
computational units.  

 Current and future PCs are parallel and heterogeneous 
 Heterogeneous computing aims to combine the 

parallelism of traditional multi-core CPUs and accelerators 
to deliver unprecedented levels of performance  

 
“GPUs have evolved to the point where many real-world applications are 

easily implemented on them and run significantly faster than on multi-
core systems. Future computing architectures will be hybrid systems with 

parallel-core GPUs working in tandem with multi-core CPUs.” 
 

Prof. Jack Dongarra, Director of the Innovative Computing Laboratory 
The University of Tennessee  
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Supercomputer on a chip 
Single die heterogeneous processors 

 AMD Fusion 
 Intel Sandy Bridge 
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Why bother? 
 Exploit present hardware 
 Profit from the future increase of processor power 

 
 Robustness 
 Larger-size, richer, more integrated problems 
 Stochastic models 
 Multi-criteria problems 
 Real-time applications 
 New ideas in optimization 

 
 Automated parallelization? 
 Tool vendors? 
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http://www2.lifl.fr/META10/pmwiki.php?n=Main.InfoMGH
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Activities at SINTEF Applied Math. 
 PDA-based simulation, geometry, visualization since 2003 
 NVIDIA CUDA Research Center 
 Collab project 2009-2012 
 Task parallelization of industrial VRP Solver «Spider» 
 Experimental VRP solver: «Camel Spider» 
 Project workshops 
 META’2010 special session 

«Metaheuristics on graphics hw» 
 JPDC special issue 

«Metaheuristics on GPU» 
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Earlier work – metaheuristics on GPU  

 Basic implementations 
 Performance not so impressive 
 Speedup comparison with naive CPU implementation 
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Goals 

 Long term 
 VRP solver based on heterogeneous computing 
 Modern PC, multi-core CPU + stream processing accelerator 
 Self-adaptability 

 Step1 
 How efficient can we make local search using the GPU? 
 Goal is speed, not solution quality 
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Experimental setup – LS for DCVRP 

 Giant Tour Representation 
 Resource Extension Functions (REFs) 
 Segment hierarchy for constant time neighbor evaluation 
 2-opt and 3-opt on the full giant tour representation 
 10 standard instances from the literature, 57-2401 nodes 
 NVIDIA GTX480 (Fermi architecture) 
 CUDA v3.2 
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Iterative improvement process 
 Basic, Benchmark Version 
 Iterate 

 experiments 
 speedup over incumbent version 
 analysis of performance 
 identify problems, focus on some implementation aspect 
 explore alternative remedies 

 Until stop criterion … 
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The algorithm 
 
 Setup problem instance data on CPU 
 Copy problem instance data to GPU 
 Create initial solution on CPU 
 Copy initial solution to GPU 
 Evaluate initial solution on CPU 
 Create k-opt mapping on CPU 
 Copy k-opt mapping to GPU 
 do 

 Create segment hierarchies on GPU 
 Evaluate all constraints and objectives on GPU 
 Find best neighbor on GPU 
 Execute best move on GPU 
 Copy best move to CPU 
 Execute best move on CPU 
 Evaluate new current solution on CPU 

 until local optimum or stop criterion 
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2-opt iteration, 400 nodes, benchmark 
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2-opt iteration, 2400 nodes, benchmark 
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Improvements 
 Segments in registers 
 Shared memory 
 Avoid expensive instructions 
 Block size 
 Datastructures  
 Indexing of segments 
 Thread index vs neighbor mapping 
 Depth of segment hierarchy  
 Combined evaluation 
 More clever synchronization of CPU and GPU 
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Memory management 

43 



Applied Mathematics 

Overall speedup 
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2-opt iteration 400 nodes, final version 
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2-opt iteration 1000 nodes, final version 
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3-opt iteration 735 nodes, final version 
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Insights 
 Efficient kernel is important 
 Synchronization CPU/GPU is important 
 Keep the GPU busy 
 Neighborhood size should be large enough 

 2-opt: 900 nodes 
 3-opt: 110 nodes 

 Up to an order of magnitude speedup gained by careful tuning 
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Results 
 9 billion 3-opt moves generated and evaluated in 36 s 

(4 ns per move, 8 clock cycles in a 2 GHz CPU core). 
 Speedup factor vs. serial CPU up to almost 1000 

 
 

 The GPU is a powerful intensification machine 
 
 

 The CPU is almost idle … 
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Ideas –  Heterogeneous DOP Computing 

 Goal: Balanced use of available computing devices 
 Self-adaptation to available hardware 
 The GPU is a mean intensification machine 

 Local Search 
 Large Neighborhood Search 
 Variable Neighborhood Search 
 ... 

 
 CPU used for more «sophisticated» tasks 
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Sketch of labor division – VRP Solver 
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GPU CPU 

 
Tasks 

Elite 
Solutions 

Vocabularies 

Memory 

Task 
Man. Memory Manager 
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Conclusions 
 «The Beach law» does not hold any more ... 
 Fundamental change in the general increase of computing power 
 «Moore’s law» still at work, until 2030? 
 The GPU has become a generally programmable, very powerful device 
 Local search up to 1000 times faster on the GPU than on one CPU core 
 Every PC will soon have a heterogeneous supercomputer inside 
 Your sequential program can only exploit a small fraction of the power 
 Little hope of efficient tools for automatic parallelization 
 Bottlenecks in industry and research 
 Providers of basic optimization technology cannot ignore the potential 
 Opportunities for new ideas in optimization 
 Self-adaptable, heterogeneous methods: «The Beach law» back at work 
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