New market model based on price decoupling

SINTEF Energy Research Arild Lote Henden 21.05.2015

Brukermøte Produksjonsplanlegging

Outline

- Background
- Method
- Results
- Future work

What is ProdMarket?

- Internally financed project
 - 2014 to 2017
- Goal: Use optimization to calculate individual water values
- New market model
- Test a new iterative concept:
 - Each producer optimizes their profit assuming they are price taker
 - Each producer sends a supply curve
 - Market clearing
 - Many similarities to how the power market works

Outline

- Background
- Method
- Results
- Future work

Principle in the market model

- Power system
- Current model does not include the transmission system
 - System price

- Power system
- Current model does not include the transmission system
 - System price
- Decoupling
- Optimize each watercourse with ProdRisk
- Stochastic inflow
- Stochastic price

- Power system
- Current model does not include the transmission system
 - System price
- Decoupling
- Optimize each watercourse with ProdRisk
- Stochastic inflow
- Stochastic price Merging
- Cut from each watercourse, supply curve
- Simulation

- Power system
- Current model does not include the transmission system
 - System price
- Decoupling
- Optimize each watercourse with ProdRisk
- Stochastic inflow
- Stochastic price Merging
- Cut from each watercourse, supply curve
- Simulation
- New lap

Outline

- Background
- Method
- Results
- Future work

Case study – case description

- A small Nordic system
- 50 water modules, reservoirs
 - Three watercourses
 - 2 064 MW production capacity
 - 6 000 GWh or 4 260 Mm3 reservoir capacity
- 31 733 GWh on 11 Contractual obligations
- 107 Price depending market
- No restriction on transmission capacity
- 4 number of load periods in a week
- 156 weeks in simulation period
- 50 years in the inflow statistics
- High risk for rationing

Average power values

- ProdRisk and EOPS as Market Models
- 51 to 57 is iteration with ProdMarket

Average power values

Power values

Reservoir level – Percentiles for all reservoirs aggregated

Reservoir level – Percentiles for Vatnedal reservoir

Overview results – EOPS vs ProdMarket

Model	Hydro production [GWh]	Spillage [GWh]	Reservoir changes [GWh]	Total Costs [MNOK]
EOPS	26913,5	1 666,6	- 235,6	1 248,4
New Market model	26686,7	1 683,3	7,1	1 172,1
Differences	- 226,8	- 16,7	242,7	76,3

No revenue from hydropower

Challenges

- Iteration loop
- Convergence
- Stochastic price model
- Limited numbers of scenarios
- Time usage
 - CPLEX and COIN
 - Parallelization at several levels
- Memory usage

Outline

- Background
- Method
- Results
- Future work

Future work

- Issues
 - Convergence
 - Limited numbers of scenarios
 - Stochastic price model
- Possibility to handle large data set
 - 1 500 hydro plants, 200 water course, hourly time resolution, 1000 cuts or more for each water course
 - Reduce time
 - Memory usage
- Include transmission capacity
- Tests
 - Hydro pump storage
 - Compared to similar models (EMPS, SOVN)

Reference picture

- Left picture on the front slide:
 - http://ezhestnesk.ezpub01.byte.no/Energi-Miljoe/Paradigmeskifte-for-stroemproduksjonen
 - 04.02.2015
 - InnoDesign: Truls Berg
- Right picture on the front slide:
 - http://www.lyse.no/omlyse/
 - 04.02.2015
 - Lyse
- Picture at the second slide:
 - http://kpx.no/index.php?route=product/product&product_id=106
 - 13.05.2015
 - Kipox AS
- Picture at the third slide:
 - http://www.oldtidskundskab.dk/METODE/metode.html
 - 11.05.2015
 - Peter Sand

Technology for a better society

