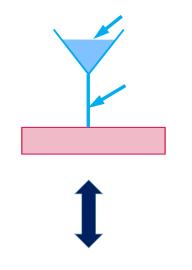
SOVN – ny markedssimulator

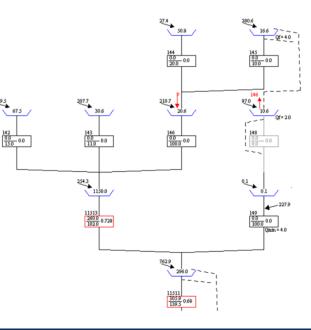
<u>S</u>tokastisk <u>O</u>ptimaliseringsmodell for Norden med individuelle <u>V</u>annverdier og <u>N</u>ettrestriksjoner

The aim is to develop a computer program suitable for simulating the Northern European power supply market using individual water values in Scandinavia and power flow constraints.

Market Model Challenges

Current models (EMPS and others):

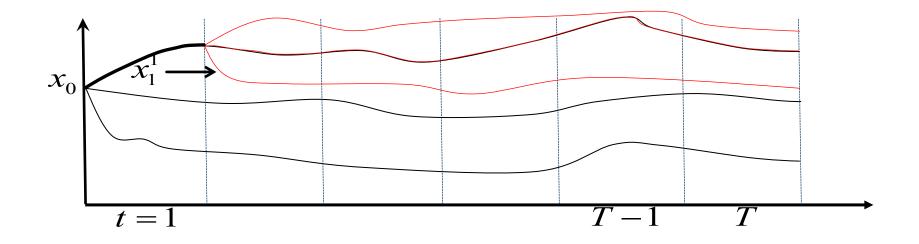

Simplifies the problem by heuristics


- Use *aggregate* hydropower representations when establishing a strategy (water values)
- Use *detailed* hydropower representations when simulating the system

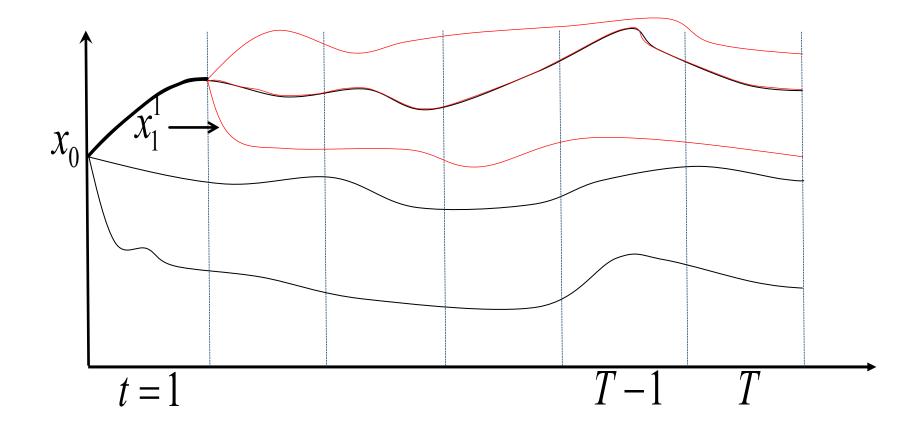
Increasing volatility in hydropower production patterns

- → Hydro constraints become more binding
- → Harder to establish precise approximations of the aggregate system
- → Harder to provide robust and consistent decision aid, e.g. in investment decisions

Model users: "Aggregate models not precise enough"


Objective and challenges

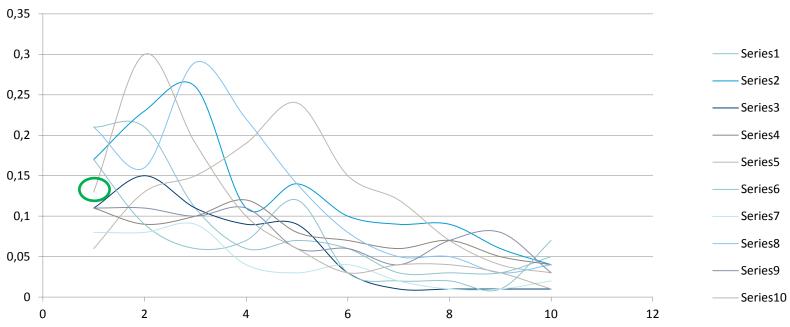
- Fundamental based market model including all relevant physical constraints (demand transmission and production)
 - Stochastic dynamic optimization formulation
 - Perfect market assumption
- Challenges problem size:
 - About 1000-1500 states (reservoirs)
 - Typically 100 200 different stochastic inputs
 - Inflows to reservoirs
 - Temperatures
 - Wind and solar power production
 - Exogenous prices
 - Multiperiod planning problem (3-5 years ahead , down to hourly resolution)
 - Statistical properties in time and space is important, especially for inflows (simulation using weather years)


Simulator Scheme

- Simulation along observed *weather scenarios* by solving a sequence of stochastic optimization problems
 - Two-stage stochastic problems
 - Inflows known in the first-stage (week)
 - All uncertainty is resolved in the second stage
 - First-stage decision is implemented and state variables are updated
 - Rolling horizon, fixed problem size

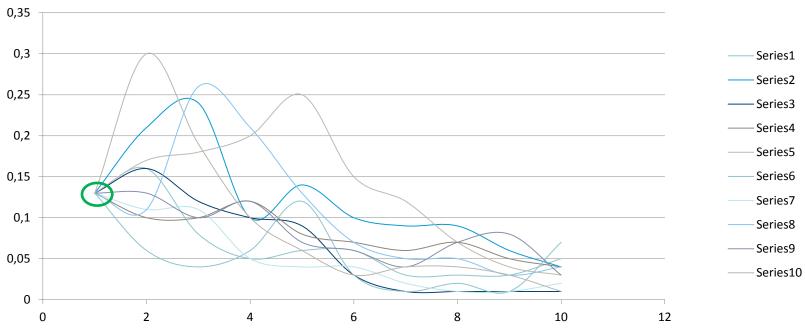


Simulator Scheme


Simulator Scheme

Representation of uncertainties (inflow, wind, prices, etc)

- Historical inflow (wind and exogenous prices) for simulated scenario in week 1
- Smooth transition to historical inflow for scenario in scenariofan
 - 1. order auto regressive model using normalized logtransformed data
 - Estimates deviation for scenario using model

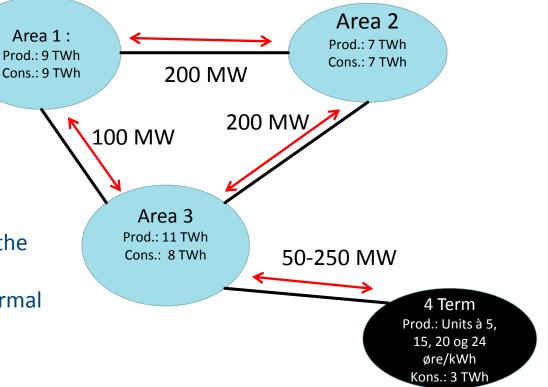


Technology for a better society 7

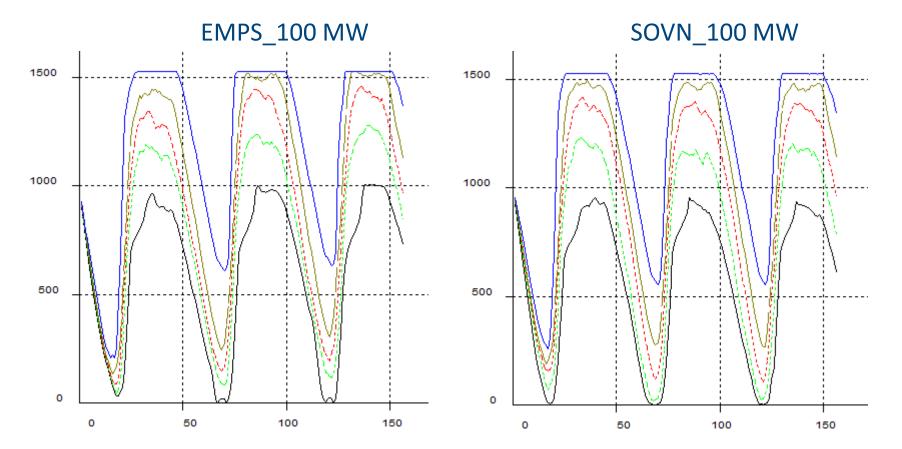
Representation of uncertainties (inflow, wind, prices, etc)

- Historical inflow (wind and exogenous prices) for simulated scenario in week 1
- Smooth transition to historical inflow for scenario in scenariofan
 - 1. order auto regressive model using normalized logtransformed data
 - Estimates deviation for scenario using model'

Add deviation to observed value

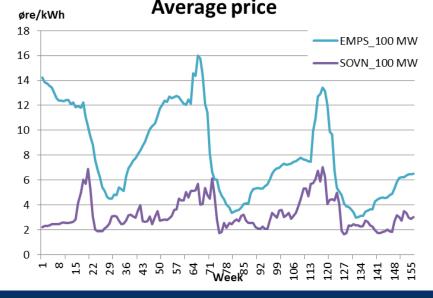

Simulator – pros and cons

- Pros
 - Direct use of historical "weather scenarios" in second-stage forecast
 - Resembles (to some extent) operational planning practice
 - Easy to build, extend and parallelize
 - Efficient use of computational resources
- Cons
 - Model users wants results quickly but this model has long computational times
 - Examples:
 - 950 modules, 52 week scenariofan, 4 load steps:
 - Observed: appr. 17 minutes per weekly decision problem (CPLEX)
 - Estimate 260 week simulation horizon: 74 hours (~3 days)
 - Small test dataset (see next slide)


Test case: SOVN vs EMPS

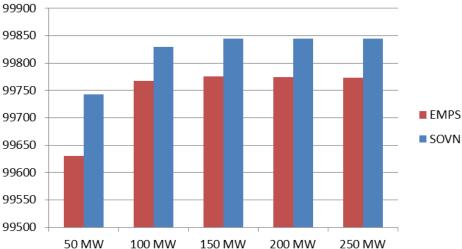
- Four areas: 3 with hydro and one with only thermal units
- 38 years, 4 time steps a week
- Parallel simulation with 156 weeks
- Calc. time EMPS: 1 min
 Calc. time SOVN: 1 hour
 with 52 weeks scenario horisont
 using 79 cores
- Increased capacity between Area 3 and TERM to evaluate how the model simulates the impact of interconnecting a hydro and thermal system together

Results: Reservoir handling area 1 (0 – 100 % percentile)



The SOVN model gives less flooding and lower prices

- More optimal use of the water in the reservoirs gives less flooding
- Higher hydro production replaces some of the thermal production in TERM
- This gives lower prices (since the price is set by the thermal units in TERM)
- Production surplus goes down, while consumer surplus goes up → in total a net benefit


Difference between SOVN and EMPS (100 MW capacity Otra-Term)						
SOVN-EMPS	Hydro	Flood	Thermal	PO	КО	S.E.B
Area	GWh	GWh	GWh	MKr	MKr	MKr
1-Numedal	134	-120	-14	-426	459	24
2 - TEV	195	-320	0	-416	384	-39
3 - Otra	458	-165	-4	-493	509	10
4 - TERM	0	0	-654	-37	91	66
Total	787	-605	-672	-1 372	1 443	63

Sosio-economic benefit is higher in SOVN for all cases

- An increased capacity between OTRA and TERM from 50 to 250 MW yields higher SEB* in both SOVN and EMPS
- The SOVN model has in general a higher SEB regardless of capacity
- The SEB of the EMPS model actually decreases (marginally) from 150 to 250 MW
 - This is not the case for the SOVN model

Sosio-economic benefit (MKr)

* In a parallel simulation it is important to use the same water values when compairing socio-economic benefit to avoid that reservoir change between the start and the end of the simulation period is valued differently.

Further tests

- Increase complexity of the test data set including wind power, external prices and start and stop costs
- Investigating differences in pumping pattern
- Testing the SOVN model on a real Nordic dataset

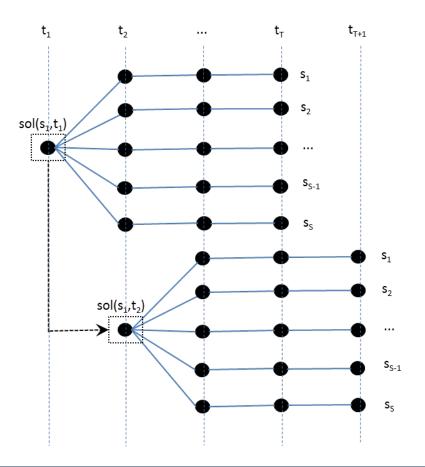
Current status for model development

- Basic model developed and running. Model being tested.
- Functionality implemented:
 - "Basic EMPS" functionality included, e.g.
 - Startup costs
 - Wind energy
 - CPLEX & COIN
 - Parallel version available
 - Flexible time resolution

Next step

- Some additional functionality (e.g. dynamic end-user elasticity)
- Prototype ready for testing by medio June 2015
- Current model uses flow constraints. Detailed transmission constraints will be implemented using PTDF's.
- Project finished 2016

Technology for a better society



Method

- Two possible methods:
 - Alternative 1: Scenario Fan Simulator
 - Alternative 2: SDDP (Stochastic Dual Dynamic Programming)
- 1: Scenario Fan Simulator (chosen approach)
 - Two stage formulation (simpler stochastic modelling)
 - Second stage scenarios based on historical weather years
- 2: SDDP
 - Regarded as state of the art for such problems
 - Long experience
 - Testing show poor results when many uncertain variables

Scenario scheme: LP-structure

Prerequisites – The Long-Term Scheduling Problem

- A large-scale multi-stage stochastic optimization problem
- The problem is characterized by:
 - A large number of state variables (> 1000 hydro reservoirs)
 - Time horizon of 3-5 years
 - Weekly stochastic time-resolution
 - Down to hourly time resolution within the week
- Inflow is the most important stochastic variable, and is correlated in time and space
- The strategy will be simulated using historical inflow scenarios (de facto standard among players in the Nordic Power market).

Prerequisites – The Weekly Decision Problem

- The overall problem decomposed to weekly decision problems
- Formulated as an LP problem:
 - Minimize system cost (maximize welfare)
 - Subject to:
 - Power balance
 - Reservoir balances
 - Power flow constraints
 - (Start-up costs, ramping, etc.)

Valuation of water at end of scenariofan

- Water value from aggregate reservoir
- Based on EMPS-logic for target reservoirs (siktemagasin) for indiviual reservoirs
 - Goes through all reservoirs from empty to full
 - Finds target value for given reservoir level
 - Sets water value (from aggregate reservoir)
- Individual decoupled water value for all reservoirs at end of scenariofan

Simulator – Challenges

- Model users wants results quickly...
- Efficient use of computational resources
 - Large-scale parallel processing, but adapted to the available resources
 - Optimal use of information from previously solved problems
- Optimization problem approximations are needed
 - Each second-stage scenario with >> 1 M variables and > 1 M constraints
 - Approximate problem by:
 - Aggregation of time periods far ahead
 - Shorten forecasting horizon; end-value set by another program
 - Scenario bundling/reduction

