THE VALUE OF STOCHASTIC SHORT-TERM SCHEDULING

- Preliminary results

Tellef Juell Larsen Brukermøte 20. mai 2015

Proposed methodology

1. Plan calculations

- SHARM is run for different scenarios of price and inflow, both stochastic and deterministic variants
- The resulting plan for the next day of each scenario represents the decision that would be made using the corresponding price or inflow as forecast.

2. Value calculations

- The plan of each scenario is converted to a load requirement
- SHARM is run again for all scenarios using:
 - the corresponding load
 - the ensemble fan
 - a price add for selling or buying (2€)
- The objective now represents the value of each plan/load decision

3. Utility calculations

- The differences in objective values represents the relative utility values
- This gives the utility value of
 - stochastic modelling (ex forecast quality)
 - applied to price independent bidding
 - for one single day

Scenarios and utility values

Analysis details

- 3 selected river systems, for 4 random days
- The value of price and inflow are analysed independently
- MIP is not used
- Independent WV
- > A common plan requirement is applied for the next day in the plan calculation

Results 1/3

System: One single plant with low discharge capacity

Objective/utility compared to fan ensemble [€]		Summer	Autumn	Winter	Spring
Price	Large tree (9+3)	0	5	0	0
	Small tree (3+1)	0	12	0	0
	Deterministic tree (1+0)	0	12	0	0
	Average ensemble	0	0	0	0
Inflow	Large tree (9+3)	-16	0	2	33
	Small tree (3+1)	-4	-1	2	33
	Deterministic tree (1+0)	13	272	-3	33
	Average ensemble	-22	259	-1761	33

How can a scenario get better than the fan?

- Iteration logic
 - Some inaccuracies in the objective of the value calculations due to iterations
- The plan calculation has a common plan constraint
 - In the value calculation this constraint is replaced with a load requirement
- The plan calculation doesn't see the future opportunity to buy/sell power
 - In the value calculation the load can be redispatched individually in each fan scenario

Disfavours the stochastic optimizations!

Ensemble inflows

Schedules

Results 2/3

> System: 2 plants in cascade, with stochastics on top reservoir

Objective/utility compared to fan ensemble [€]		Summer	Autumn	Winter	Spring
Price	Large tree (9+3)	-137	77	-1	6
	Small tree (3+1)	211	-2738	-19	6
	Deterministic tree (1+0)	253	-167	-9	-8
	Average ensemble	239	-280	-89	-4
Inflow	Large tree (9+3)	3	193	-1	-3
	Small tree (3+1)	4	191	-5	-4
	Deterministic tree (1+0)	-11	199	20	-8
	Average ensemble	9	216	-198	-6

Results 3/3

> System: 2 plants in cascade, with stochastics on small reservoir in-between

Objective/utility compared to fan ensemble [€]		Summer	Autumn	Winter	Spring
Price	Large tree (9+3)	0	-18	-16	4
	Small tree (3+1)	0	-4	-4	23
	Deterministic tree (1+0)	-14	-133	-10	19
	Average ensemble	8	5	3	-496
Inflow	Large tree (9+3)	-2	1	4	18
	Small tree (3+1)	95	-7	10	55
	Deterministic tree (1+0)	113	-9	-26	335
	Average ensemble	104	-6	21	108

Preliminary conclusions

- Stochastic optimizing in SHARM is working
- High increase in calculation times, even without MIP
 - 5 times with small tree, 20 times with large tree
- Variable utility results
 - Many periods with 0 utility (as expected)
 - Inconsistent results, difficult to conclude on utility of stochastic modelling
 - Should implement an intraday market in SHARM to complete the methodology
- Need more testing and verification of results and method
 - Further testing with combined and correlated price and inflow
- Still much to learn from SHARM
 - Many areas of use to be explored

Tellef Juell Larsen, PhD

R&D-responsible short-term energy management MNP, Market Nordic Production optimisation

__DIRECT +47 24 06 70 78 __MOBILE +47 90 96 45 96

Statkraft AS Lilleakerveien 6, Postboks 200 Lilleaker, 0216 Oslo

www.statkraft.com