

El-certificate in the EMPS-model

- Model consept/structure
 - Elcertificate marked is one green area
 - Supply : Wind, Hydro, Bio and solar
 - Demand : Quota for consumption
- SKM model and input data
 - Simplified area model
 - El-certificate market data
 - Model input, challanges
- Simulation results
 - Price forecast
 - Balances
 - Volatility in wind and hydro

Implementation in the EMPSmodel

Certificates in a new reservoir

- Optimal use of certificate in the reservoir
- + Stochastic Hydro and Wind implemented
- + Use of existing structure in the model

Certificate price a function of

- Certificate in the reservoir
- Expected value of penalty

Operation model

El-certificate market and prices

- Time demanding to implement all data for the elcertificate market
- SKM have created a simplified model with 7 subsystem
 - Gives not correct area prices, but correct certificate price
 - Bio is the only price dependent production
 - Consumption modulled with a certain price dependency

Modelling of power and elcertificate marked

Modelling of elcerticate market

El-certificate supply and demand, price dependent to some extent

- Biomass, marginal price decided by a lot of uncertain parameters
 - Transport cost
 - Availability of Biomass
 - Labour cost +++
- Electricty demand dependent of price
- Hydro and Wind in principle not dependent of price as marginal cost are very low

Modelling of hydro power, chalanges

- Hydro power and elcertificate :
 - Hydro power has to be modelled at module level, leading to some challanges :
 - Hydro power getting elcertificate are mostly small scale hydro power, impossible to model all plants (hundres of plants)
 - Aggregated moldules are used for each area (SKM have 6 different modules), stepwise development modeled by means of revisions (revisjonplan.stas)
 - Different inflow series used to take take care of variation in inflow in different areas of Norway.
 - Phaseout of hydro power (after 15 years), end week and percent of total hydro power

Modelling of wind power, challanges

- Wind power and certificate market :
 - Time series for wind power are scaled to take care of increasing capacity
 - Wind speed from NASA (downloaded from internett) used to take care of stocastic wind production.
 - Phaseout of certificate wind taken care of by means of end week and percent

Small scale Hydro power in the elcertificate market towards 2035, principle scheme

Small Scale Hyrdo (GWh)

Simulation results, case study

- Investment time base for wind, hydro and bio are estimated of an SKM-model developed for el-cetificate market
- 198 TWh accumulated plus transitional arrangements (both Norway and Sweden) for the whole period assumed to be covered by supply side
- Simulation results
 - Price
 - Balances
 - Volatility in wind and hydro

Analysis input assumptions

- Penalty = 1.5*(average price last year)
- Price last year
- Price this year until start week
- Endprices in year 2035 (or end year) at certain reservoir levels.
- Maxiumum el-certificate price

SKM MARKET PREDICTOR

Price forecast

Price forecast

Wind production variation

Hydro and wind production, variation

MARKET PREDICTOR

Thank you for your attention