New versions of long-term models

(version 9.6)

Overview current research projects

Birger Mo SINTEF Energi

Brukermøte produksjonsplanlegging 20-21 Mai 2015

Versjon policy

- New main releases 7, 8, 9 etc, may include changes in file formats
 - Not always possible to run new version directly on existing catalogue
 - New main releases every second or third year.
- New development releases 9.4, 9.5 etc because of functionality ordered by one or more customers.
 - Can be run on existing catalogue
- Status:
 - 9.3 First official 9 version
 - 9.6 Current official version
 - Official versions include release notes with description of new functionality and main error corrections

General improvements

- New hydrological archive ArchLtm
- English version of programs and documentation (ProdRisk not included yet)
- 64 bit version of software (except Cplex versions)
- Ukedetskr presentation of inflow
- PcKurvetegn –default percentiles
- Use of national characters (æ, ø, å, ä ö, Æ, Ø, Å, Ä, Ö) in time series names (inflow and temperature).
- Possibility to use weekly values for Effektfaktorer
- Effektfaktors used as scaling factor or profiles
- Documentation of the DETD file included in the file
- Error corrections (also described in 9.6 release notes)

ArchLtm – New time series archive for hydrological data

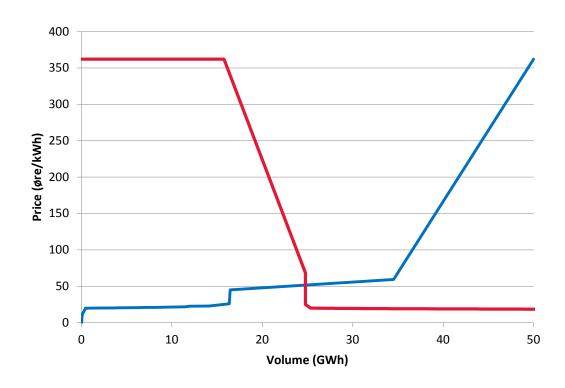
- ArchLtm both the archive name and the name of an application
- Archive that can (will) replace to old archive Hydark
 - Hydark limitations: Norwegian water course names, 16 bits representation (integer*2)
 - Easier to use
 - E.g. to update existing series or to put in new time series
 - and maintain
 - English version
- Easy to make the archive from existing Hydark
- Based on the file system that is used for coupling to external data bases (i.e. Powels SmG database)

General improvements (licenced)

- Time resolution can be hourly
- Economical based deviation from guidance curves
- Tilpro/HBV forecasts with daily time resolution
- PcKurvetegn Accumulation of results to independent chosen time resolution

New functionality in Samkjøringsmodellen

- Automatic time shift between days if sequential time resolution
- Temperature correction of load for individual load periods (licenced)
- Transmission capacity with hourly time resolution (licensed)
- Investment functionality (licensed)
- Result program ET adapted to Samkjøringsmodellen
- Presentation of supply and demand curves
- Detailed hydro simulation results stored at HDF5 format
- Accumulated time resolution for water value calculation (licensed)
- Increased number of curves and help curves in Avregn
- Parallel version of Kopl


Presentation of supply and demand (example SDRes.sdv)

Supply a	d demand i	nfor	mation	ı												
IVERK		IPENM	YEA	٩R	WEEK		TYPE		UReg Hydr	VARMEKRA	VARMEKR.	VARMEKRA	IMPORT 3	IMPORT 4	VARMEKRA	IMPORT 5
	1	1		10		2	S Volume	0	0	0.017376	0.036681	0.063342	0.159861	0.182844	0.198843	0.272379
	1	1		10		2	S Price	0	0	0	1	9.6	13	14	14.3	15
IVERK		IPENM	YEA	٩R	WEEK		TYPE		Firm dema	Exchange	KJELKRAFT	Pa. Salg DE	Pa. Salg DE	Pa. Salg Di	Pa. Salg DE	Pa. Salg DE
	1	1		10		2	D Volume	0	15.76157	24.76157	24.76164	25.33249	27.16638	27.73723	28.30809	30.14198
	1	1		10		2	D Price	362	362	68.31843	25	19.91414	19.85984	19.76274	19.63236	19.60851

IVERK		IPENM		YEAR		WEEK		TYPE		UReg Hydr	Reg Hydro	GJENNKJ_	GJENNKJ_	GJENNKJ_	GJENNKJ_	Reg Hydro	Exchange	GJENNKJ_	GJENNKJ_
	2		2		20		3	S Volume	0	0	5.085537	5.086787	5.613574	5.617503	5.628515	21.42045	31.42045	31.4217	31.42563
	2		2		20		3	S Price	0	0	66.89899	68.75	68.75	68.75	68.75	68.8049	70.00863	76.25	76.25
IVERK		IPENM		YEAR		WEEK		TYPE		Firm dema	KJELKRAFT	KRAFT UTE	N MARKED)					
	2		2		20		3	D Volume	0	18.09926	18.1783	518.1779							
	2		2		20		3	D Price	445	445	24.6	0.01							

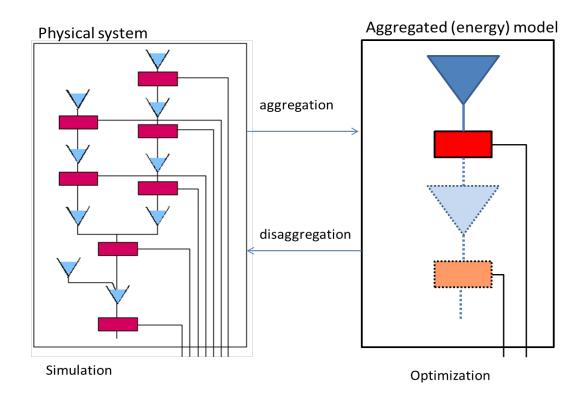
Supply and demand

Pre 9.3 Samkjøringsmodell functionality

- Thermals startup cost and reserve requirements
- Dynamic end-user elasticity
- Wind power modelling
- Automatic calibration
- Time resolution
- System price
- Parallel processing
- Limits on change in hydro discharge between time periods
- Exogenous stochastic price
- Wind or load dependent transmission capacity

Current major research activities

- Market simulation models and algorithms (the problem solved by Samkjøringsmodellen)
 - MAD (new IPN project) (next slides)
 - SOVN (IPN project)
 - Separate presentation (Geir Warland)
 - Internally financed I-SIP project
 - Separate presentation (Arild Lote Henden)
- Local production planning (ProdRisk/Vansimtap type problems)
 - IBM (Integrated Balancing Markets in HydroPower Scheduling Methods)
 - KPN project
 - Project period 2014-2017
 - How does new balancing markets (capacity and energy) effect long-term operation of reservoirs (i.e. water values)
- KPN and IPN are abbreviations used by the Research Council of Norway
 - KPN typically 70 -80 % financing from the Research Council (Application deadline 2015: 9 September)
 - IPN Less than 50 % financing from the Research Council, applied by the industry (Application deadline 2015: 15 October)



MAD: Project background

- Aggregation and disaggregation of hydropower production
 - Used in the following SINTEF models Vansimtap, Samkjøringsmodellen, Samlast, Samnet
- Existing methods
 - Aggregated model consists of one reservoir, gives too high flexibility
 - New renewables, stronger coupling to Europe –system more often operated at its limits.
 - Aggregated model structure and disaggregation techniques not adapted to short-term pumping
 - Competence on existing disaggregation procedures is too low
 - Main procedures implemented a long time ago

Aggregation and disaggregation

Other project activities (financed directly by one or more users)

- Improved coupling between SHOP and ProdRisk (presentation by Hans Ole Riddervold, Hydro)
- Specification of API to Samkjøringsmodellen
 - Including calendar time
 - First phase
 - API for all results
 - API for time series input including load
 - Error messages, running the model, fixed hydro system data not included
 - Status: specification is done, implementation not decided

