

MULTI-MARKET MODELING IN SINTEF PART 1

Marte Fodstad

Outline

- Multi-market what and why?
- Main projects on the topic
- Uncertainty
- SHARM day-ahead bidding
- Multi-market modeling

The Norwegian short-term power markets

				October	Fhursday	Thursday	Friday	Day-1	Day-1	Hour-1	Hour-0:45
				-	10:00	12:00	12:00	12:00	18:00		
Market	Period	Resolution	Commodity								
RKOM season	Winter	Season	Capacity	\checkmark							
FRR-A	Week	N/D/E	Capacity		\checkmark						
FCR-N week	Weekend	N/D/E	Capacity			\checkmark					
RKOM week	Week	N/D	Capacity				\checkmark				
FCR-N week	Weekday	N/D/E	Capacity				\checkmark				
Elspot	Day	Hour	Energy					\checkmark			
FCR-N/D day	Day	Hour	Capacity						\checkmark		
Elbas	Cont.	Hour	Energy							\checkmark	
RKM	Hour	Hour	Energy								\checkmark

Short-term markets

- Two products: energy and capacity (reserve)
- Increasing variability
 - Intermittent renewable energy supply (wind, solar, run-of-river hydro)
 - Demand variability (electric vehicles, etc)
 - Strengthened by cables to Europe
- Back-up capacity to handle unforeseen variations
- Trade closer to operation to reduce forecast period

SINTEF projects on multi-market modeling

IBM

5

- Integrating Balancing Markets in Hydropower Scheduling Methods
- Influence on water values

MultiSHARM

- Day-ahead Bidding with Multiple Shortterm Markets
- Short-term bidding and scheduling

PRIBAS

- Pricing Balancing Services in the Future Nordic Power Market
- Fundamental market modelling

Uncertainty and multiple markets

What it the distinction between 1 MWh in Elspot and 1 MWh in Elbas?

- Physically the same product
- Different timing -> different knowledge -> different uncertainty

Increased focus on description of uncertainty in multi-market modeling

SHOP + uncertainty = SHARM

() SINTEF

SHOP and SHARM timeline

Multi-market extensions in SHOP

Market index

- SHOP structure ready for multimarket modeling!
 - Input multiple prices and trade limits
 - Optimize trade in multiple markets
 - Energy and reserves
 - MULTI_MARKET-tag
- Available for all SHOP users

Elspot
MULTI_MARKET price_sale 1 1
0 0 20170508120000 HOUR 8760 1 NOK 1
20170508120000 297.25

MULTI_MARKET max_sale 1 1 0 0 20170508120000 HOUR 8760 1 MW 1 20170508120000 1000

Market index

```
# FRR_UP
MULTI_MARKET price_sale 2 1
0 0 20170508120000 HOUR 8760 1 NOK 1
20170508120000 43.00
```

```
MULTI_MARKET max_sale 2 1
0 0 20170508120000 HOUR 8760 1 MW 1
20170508120000 105
```

MULTI_MARKET market_type 2 FRR_UP

MULTI_MARKET reserve_group 2 1

Bidding in SHARM

- Optimized bidding matrix
- Main elements in method
 - Scenario tree prices are bid price points
 - Optimized non-decreasing bid volumes
 - Heuristic to compress matrix to 64 bid points
- Bids per group of plants
- So far tested on Elspot

SINTEF

Where are the added values? – Case study

Ongoing work

- Approach: start out simple add complexity step-wise
- Perfect foresight, one year
- Stylized production system
 - Observed inflow: 1000 MWh
 - Max prod.: 10MW
 - Max storage: 550MWh
 - Start storage level = end level

- Markets
 - Day-ahead (DA)
 - Intra-day (ID)
 - Balancing market (RK=BM)
- Observed prices NO5 2015
- Trade limits from observed trades/activation

Case study

Case study - Sequential vs coordinated planning

To be continued...

- Production system characteristics
- Limited foresight
- Uncertainty
- Other prices (SE3, Germany?)

Related activities

- Market and inflow data
 - Prices with uncertainty, correlations, trade limits
 - Different methods for scenario tree generation and reduction

15

- Computation time for stochastic model
- Long-term simulation
 - Extend evaluation period for short-term analysis
 - Further develop interaction between short-term and long-term models

SINTEF

Teknologi for et bedre samfunn