

SOVN - NEW MARKET MODEL EXPERIENCE AND RESULTS

1

Arild Lote Henden, Brukermøte 2017

Agenda

- Introduction
- Base method
- Results
- Challenges
- Conclusion

Introduction

• SOVN

Stochastic Optimization with individual water Values and grid restrictions for Nordic power system

• 2013 to mars 2017

• 14.8 mill NOK

Statnett

Project goal

- Multi-stage stochastic optimization
- Large-scale (Europe)
- Detailed description of hydropower
- No calibration and no heuristic

Motivation

- Mixture of generation
 - Higher variations (wind, sun)

• More interconnectors

- Hydropower
 - Balancing the high variation
 - 50 % of total storage capacity in Europe
 - Quick to change
 - Environment
 - Individual water values (marginal cost)
- Optimization with regard to physical details more important

Applications

- Price forecast
- Long-term operation of hydro power
- Investment decisions
 - Production and transmission

Functionality

• All EMPS functionality

- Additional hydro modelling:
 - Head correction in strategy
 - Time delay on flows
 - Ramping on production

• Grid:

- Transmission constraints between areas
- Physical flow at area levels (PTDF)
- Physical flow at area levels calculated from detailed flow (PTDF)
- Ramping on cable/line
- Reservation of capacity: up and down

Method

• Solve the same problem as EMPS, Samtap, Samnett, ReOpt

• Maximize socioeconomic surplus

Overview of EMPS concept

() SINTEF

Method

- Strategy in combination with market simulation
- Formal optimization
 - No heuristics
 - No aggregation and disaggregation
- No need for calibration

Overview of EMPS concept

() SINTEF

Method

- 2 stage stochastic optimization problem
- Deterministic first stage (week)

- Scenario fan (second stage)
 - Uncertainty in:
 - Inflow, temperature, wind, solar, snow
 - Exogenous prices
 - Scenarios from historical data
 - Correlations in time and space

Solving first scenario

Two stage problem

Scenario reduction

Smoothing

Solving first stage problem

Solving second stage problem

Parallelization of scenario fan

Solving second scenario

27

Scenarios is solved -> Results

Statnett data

- Detailed description of Nordic + Baltic
- Interconnected countries is represent with exogenous prices

- 1265 hydro power modules
 - 228 inflow series
- 85 wind series
- 15 temperature series

Simulation

- 5 load periods in a week
- 51 scenario (1962-2012) in serie
- 19 scenario in scenario fan
- 52 weeks in scenario fan
 - Weekly time resolution

Tested case

• Cable

- German and Southern Norway
- Pump storage plant
 - Duge Sira-Kvina

• Snow

• With and without

Results – Cable

 +277 M€/year for socioeconomic surplus in Nordic

• Consistent results

Results – pump

 +345 M€/year for socioeconomic surplus in Nordic

• Consistent results

 5000MW cable from Norway to Germany

() SINTEF

Results - Snow

- +9.4 M€/year in socioeconomic surplus in Nordic
- In Norway
 - +440 GWh/year production
 - 5.2 TWh in maximum reduction of overflow
 - 0.0014 TWh in maximum increase of overflow

Detailed description of system

- Price variation
- High curtailment risk
- Water value

Formal optimization

- Easy to expand
- Easier to find errors and non-logical results

Challenges

Get all extra information

• E.g. time delay, node description and PTDF matrix

Calculation time

- Parallelized
- Flexible time resolution
- Commercial solvers for large optimization problem, e.g. CPLEX, Gurobi, Express
- No calibration

Challenges

• Calculation time

- 50 hours on test case
 - EMPS 10 min without calibration
- 156 hours with finer time resolution
 - 56 time step in week problem
 - 92 time step in scenario fan

4	juni 2017					•
ma	ti	on	to	fr	ø	sø
29	30	31	1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	1	2
3	4	5	6	7	8	9

- Depend on time resolution, detailed description and size of power system
- Increases with more restrictions
 - Not head correction, time delay and snow

Conclusions

• No calibration

- Individual water values
- Important to include details

- Better investment decisions
- Consistent results

Conclusions

- Prototype
- Work well

- Easy to include more restrictions
- Seasonal model (individual water values)

Future

• Work well for further research

- Integrate several of market
- State dependent constraints

• More users

FANSIC:

Teknologi for et bedre samfunn