

User Meeting, Trondheim 11/5-2017

Separate presentations

- Pressure links
- Multimarket extensions
- Best Profit in Intraday

Head calculations

- Power loss in tunnels and penstocks
- Head loss in intakes
- Head loss from tailrace
- Head loss from bypass
- Power head optimization

Head loss calculations

🕥 SINTEF

Power loss in tunnels and penstocks

- Power loss is a cubic function of discharge
- Linearization of multiple units' discharge
- Dynamic segmentation

∑q

• Number of segments 2/10

SINTEF

Intake- and tailrace-loss

Power head optimization

 $p = \eta(h,q) \cdot g \cdot h(\nu,q) \cdot q$

 $p_{min} \le p \le p_{max}$

 $q_{min}(h(v,q)) \le q \le q_{max}(h(v,q))$

Other development

- Ownership scaling
- Reserve clustering and symmetric reserves
- Build on generator level
- Discharge groups
- Creek intake inflow scaling
- Linear start-up
- Junction gate optimization
- Discharge limits

Build on generator level

Full mode (set code /full)	LP model	MIP model (mip_flag/universal_mip as input data)	
Penstock2 Penstock2 Penstock2 G1 G2 G2 G3	Built on PLANT level	Built on UNIT level	
Incremental mode (set code /incr)	LP model	LP model (reserve/gen discharge cost is used)	
Penstock1 Penstock2 G1 G1 G2 G3 G3	Built on PLANT level	Built on UNIT level	

() SINTEF

b_RSV001_RSV003

Plant001

Plant002

SINTEF

Discharge groups

• Weighted discharge with

SINTEF

11

Linear start-up: P-Q curve

MIP model

$$p = P_{0} \cdot \gamma_{t} + \sum_{seg} \frac{dP}{dQ_{seg}} \cdot q_{seg}$$
$$p \ge P_{min} \cdot \gamma_{t}$$
$$p \le P_{max} \cdot \gamma_{t}$$
$$\gamma_{t} \in \{0, 1\}$$
$$\gamma_{t-1} - \gamma_{t} + start_var_{t} \ge 0$$

 $\gamma_t - \gamma_{t-1} + stop_var_t \ge 0$

In objective function, add

 $+ start_cost_t \cdot start_var_t \\+ stop_cost_t \cdot stop_var_t$

SINTEF

Linear start-up: P-Q curve

LP model with linear start-up

$$p = P_{0} \cdot \gamma_{t} + \sum_{seg} \frac{dP}{dQ_{seg}} \cdot q_{seg}$$

$$p \ge P_{min} \cdot \gamma_{t}$$

$$p \le P_{max} \cdot \gamma_{t}$$

$$\gamma_{t} \in \{0, 1\} \quad 0 \le \gamma_{t} \le 1$$

$$\gamma_{t-1} - \gamma_{t} + start_var_{t} \ge 0$$

$$\gamma_{t} - \gamma_{t-1} + stop_var_{t} \ge 0$$
In objective function, add

 $+ start_cost_t \cdot start_var_t \\+ stop_cost_t \cdot stop_var_t$

Linear start-up: Results

Earlier results showed an improvement of 0.67 for stochastic rather than multiscenario deterministic bidding

	MILP	LIN	Difference (%)
Revenue	9,356,940	9,352,317	0.055
Penalty	17,267	17,162	-0.2259
Start-up cost	71,590	72,162	0.7990
Cost of water used	750,425	746,079	-0.5791
Total objective	8,527,659	8,516,848	0.0095
Obtained average price	23.47	23.47	0.0006
Time	38 min	3 2 min	15.79

These results are from simulation model

Calculation time: Above results are from the simulation model, where most of the time is spent generating and reducing scenario trees. In SHARM, calculation time is more than 25 times faster when using linear rather than binary startups.

New R&D – Junction gate optimization

State	Comment
A	The tunnel is closed
В	The tunnel is open
С	The tunnel is either fully open or fully closed
D	The tunnel can be partially closed

New project: Discharge limits

API

() SINTEF

Teknologi for et bedre samfunn