
POLYMER TUTORIAL

NOTE ON THE POLYMER MODELING EQUATIONS

Our starting point is the mass conservation equations for oil, water, and
polymer

∂

∂t
(ραφSα) +∇ · (ρα~vα) = 0, α ∈ {w, o},(1)

∂

∂t
(ρwφSwc) +∇ · (cρw~vwp) = 0.(2)

Here, ρα, ~vα, and Sα denote density, velocity, and saturation of the phase
α. The porosity is denoted by φ and is assumed to be a function φ(p) of
pressure only, c is the polymer concentration, and ~vwp the velocity of water
containing diluted polymer. Sources and sinks may be included in a manner
equivalent to boundary conditions, and are left out of the above equations.

To model the viscosity change of the mixture, we use the Todd–Longstaff
model [1]. This model introduces a mixing parameter ω ∈ [0, 1] that takes
into account the degree of mixing of polymer into water. Assuming that the
viscosity µm of a fully mixed polymer solution is a function of the concen-
tration, the effective polymer viscosity is defined as

(3) µp,eff = µm(c)ωµ1−ω
p with µp = µm(cmax).

The viscosity of the partially mixed water is given in a similar way by

(4) µw,e = µm(c)ωµ1−ω
w .

The effective water viscosity µw,eff is defined by interpolating linearly be-
tween the inverse of the effective polymer viscosity and the partially mixed
water viscosity

(5)
1

µw,eff
=

1− c/cmax

µw,e
+
c/cmax

µp,eff
.

To take the incomplete mixing into account, we introduce the velocity of
water that contains polymer, which we denote ~vwp. For this part of the
water phase, the relative permeability is assumed to be equal to krw and the
viscosity is equal to µp,eff . We also consider the total water velocity, which
we still denote ~vw and for which the viscosity is given by µw,eff . Darcy’s law
then gives us

~vw = − krw
µw,effRk(ca)

K(∇p− ρwg∇z),(6)

~vwp = − krw
µp,effRk(ca)

K(∇p− ρwg∇z) = m(c)~vw,(7)
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as we assume that the presence of polymer does not affect the pressure and
the density. The polymer mobility factor m(c) is defined as

m(c) =
µw,eff

µp,eff

and, after some simplifications, we get

(8) m(c) =
[(

1− c

cmax

)( µp
µw

)1−ω
+

c

cmax

]−1
.

The function Rk(c
a) denotes the actual resistance factor and is a non-

decreasing function which models the reduction of the permeability of the
rock to the water phase due to the presence of absorbed polymer. The con-
centration of absorbed polymer is denoted by ca. We introduce the total
flux as ~v = ~vw + ~vo. We have

~v = −(λw + λo)K∇p+ g(λwρw + λoρo)K∇z
and, after some computation, we obtain the following expression of ~vα as a
function of ~v

(9) ~vw = fw~v + ~vg and ~vo = fo~v − ~vg

with

(10) ~vg =
λwλo
λw + λo

(ρw − ρo)gK∇z.

Here, λα denotes the mobility of phase α, i.e.,

λw =
krw

µw,effRk(ca)
and λw =

kro
µo
,

and fα corresponds to the fractional flow, fα = λα/(λw + λo). The time
scale of adsorption is much larger than that of mass transport and we will
assume that adsorption takes place instantaneously so that ca is a function
of c only. The reference rock density is ρr,ref and the reference porosity φref.
The adsorption of polymer is then taken into account by replacing (2) by

(11)
∂

∂t
(ρwφSwc) +

∂

∂t
(ρr,ref(1− φref)c

a) +∇ · (cρw~vwp) = 0.

It is natural to assume that ca is an increasing function of c. Polymer cannot
reach the smallest pores and, as a result, the effective pore volume for the
polymer solution is smaller than the pore volume of the rock. This effect
can be modeled by replacing (11) with

(12)
∂

∂t
(ρwφ(1− Sdpv)Swc) +

∂

∂t
(ρr,ref(1− φref)c

a) +∇ · (cρw~vwp) = 0.

where Sdpv denotes the fraction of the pore volume which is not accessible
to polymer. The introduction of dead pore volume has the effect to increase
the mobility of the polymer solution. However, the model equation (12)
yields to instabilities because it allows polymer to go faster than its solvent
(water). Actually a consistent way to introduce dead pore volume may be
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given by replacing the definition of the effective water viscosity given by (5)
by

(13)
1

µw,eff
=

1− c/cmax

µw,e
+

c/cmax

(1− Sdpv)µp,eff
.

In this case, the polymer mobility factor becomes

(14) m(c) =
µw,eff

µp,eff
=
[(

1− c

cmax

)( µp
µw

)1−ω
(1− Sdpv) +

c

cmax

]−1
.

Finally the modeling equations are

(15a)
∂

∂t
(ραφSα) +∇ · (ρα~vα) = 0,

for α ∈ {w, o},

(15b)
∂

∂t
(ρwφSwc) +

∂

∂t
(ρr,ref(1− φref)c

a) +∇ · (cρw~vwp) = 0.

where ~vα and ~vwp are defined in (6) and (7) using (3), (4) and (13).

References

[1] M. R. Todd and W. J Longstaff. “The Development, Testing, and Ap-
plication Of a Numerical Simulator for Predicting Miscible Flood Per-
formance”. In: J. Petrol. Tech. 24.7 (1972), pages 874–882.


