AGGLOMERATION EYDE WASTE TO VALUE

Stephen Leite & Gro Eide

Elkem Technology R&D technical centre – industrial R&D partner

Research and development for 78 years

- Pilot facility built in 1938 for research on aluminium production with Søderberg technology
- Developed further to a research centre for all materials in Elkem's portfolio
- The Pilot facility was a prerequisite for development and sale of Elkems process- and furnace technology world wide

Elkem R&D technical center:

FROM IDEA THROUGH TESTS INTO RESULTS

Elkem pilot plant

Facilities:

- Hydro-metallurgical lab
- Bench scale pyro-metallurgical lab
- Pilot skale pyro-metallurgical facility
- 10.000 m² area pilot facilities

Main projects:

- Pyro-metallurgical process development and verification
- «Waste to resources»
- Raw material testing and qualification
- Testing and verfication of process equipment
- Hydro-metallurgical treatment
- Product testing

EYDE-CLUSTER

Established 2007 14 core process companies 21 competence suppliers 24 bNOK (2,7b€) sales 7900 employees

EYDE ZERO WASTE (2013) -Mapping of all materials produced at seven Eyde-cluster core members

Waste to value

Eyde Waste 2 Value- Process

9

Eyde Waste 2 Value- Materials

MATERIALS

Mn- sludge	 High water content Contains heavy metals, halogens and alkalis Highly tixotropic
Fe- sludge	 High water content (free and ionic bound) Contains heavy metals, halogens and alkalis Very low viscosity
ESP-dust	 High carbon content Contains heavy metals, halogens and alkalis
Rakeoffs	 High carbon content Un-even distribution of carbon in the bath Powder and lumps
Spent pot lining	 High carbon content High F content Mer Mix of refractories, bath and carbon

PROCESS CHALLENGES

Eyde Waste 2 Value- Agglomeration of sludges

Eyde Waste 2 Value- Agglomeration of sludges

PRE TREATMENT PROCESS

Fe- sludge

Agglomera

Semi dry powder production in Vortair separatorMilling of rakeoffs in Vortair separator

•Removal of Cl and bonded water from Fe- sludge to reduce sinter porosity

One step dry/ wet mixing and pelletization of monolithic and composite recipies in Eirichmixer, or
Mixing in Eirich mixer followed by briquetting

•Sintering and pre-reduction of unwanted elements •Reduce Zn, Cl, Pb, S, P, As

Case - Pelletizing campaign week 45 2016

Agglomeration

Campaign focus

Optimize pelletizing technique in Eirich mixer without commercial binders Focus on pellet growth and dry strength

Compare dry compressive strength on calc Fe vs calc Fe + ESP pellets

Background

Weak dry strength on Calcined Fe pellets from earlier tests due to narrow size distribution

ESP-dust increase strength/ reduce shrinkage in sintered Fe- agglomerates

Test matrix

Experimental impeller RPM programs for mixing, nucleation and pellet growth Varying moisture level Varying ESP content

ESP effect on dry compressive strength

Campaign results

300 % strength increase on dry Calc Fe pellets

Controlable pellet size

Both qualities compare favorably to briquettes regarding strength

ADVANCED MATERIALS SHAPING THE FUTURE

