

Briquettes at Finnfjord

Industrial scale testing of coal and iron ore fines briquettes

NyKoSi agglomeration seminar, 22. November 2016 Ørjan Berntsen

This is Finnfjord

- Production capacities:
- 100.000 tons of ferrosilicon
- 20.000 tons of silica
- 340 GWh electrical power

One of the 10 largest ferrosilicon plants in the worldDelivers 15% of the European demand for ferrosilicon.

- 130 employees 825 MNOK revenue (2014)
- Algae cultivation project carbon capture

Background

- § 1994: Project initiated by AS Sydvaranger FESIL, Finnfjord, SINTEF.
- S **Briquetting of coal/iron ore fines** as a high value product for the metallurgical industry.
- § Based on pilot-scale results by SINTEF (75% FeSi):
 - § 10% increased silicon yield
 - § 16% reduced spec. power consumption
 - § Stable process conditions

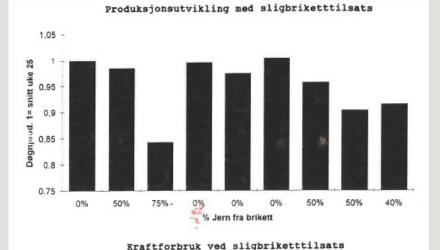
Project goals

To develop a coal and iron ore-briquet suited for the production of ferrosilicon, which gives a better SiO-reactivity than the traditional charge of coal and Fe-pellets.

Production of briquettes

Some key-points from the patent

- Ratio between carbon and (reduced) iron between 0,2:1 og 1,5:1
- The grain size of the carbonaceous particles should not exceed 5 mm with respect to agglomeration, but this depends on the particle size distribution.
- High FSI coals are preferred to achieve highest reactivity


Production of briquettes

- Produced by AGGLONORD, France
- Binder: Bitumen (Shell): ~ 8%
- 35x35 mm, pillow shaped.
 - Crushed down further to smaller fractions at Finnfjord plant.

- Two tests were run at Finnfjord's plant:
 - June/July 1995, briquettes made from Moniza coal, 140 Mt
 - Nov/Dec 1995, two qualities of briquettes made from Wawel and Longyear coals (173 Mt og 196 Mt lots, respectively)

1,25 - 1,25 -1,15 -1,15 -1,05 -1,05 -0,95 -0,9 -0,96

Test 1: Results using Moniza briquettes

- Compressive strength = 80 kg
 - Not much fines generation during transport and handling.
- Furnace operation worse with increased use of briquettes.
- Decreased production.
- Low reactivity in coal.
 R = 1247 mL

FINNFJORD Test 2: Wawel/Longyear

Some lab results from coals and briquettes:

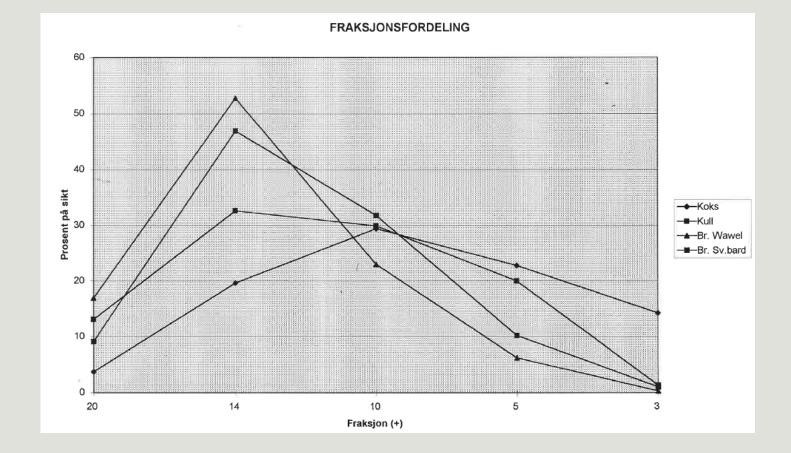
Wawel

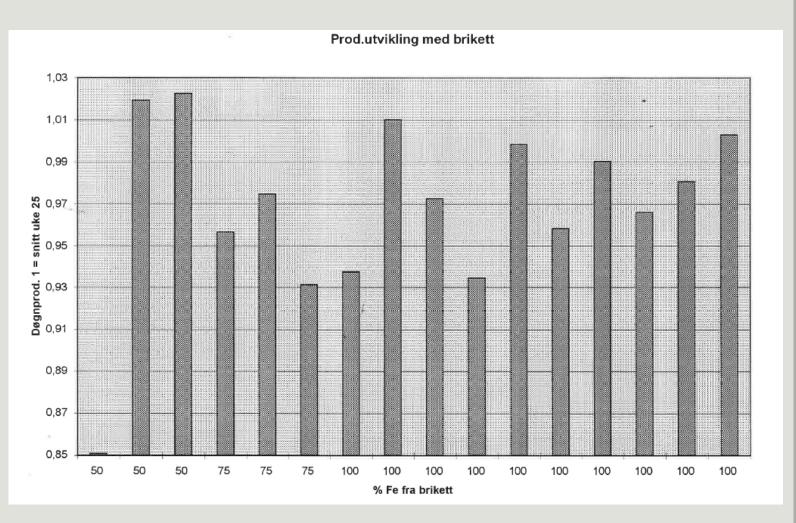
- FSI: 4-5
- Reactivity: 664 mL SiO
- Vol.: 31,2%, Fix-C: 65,6%, Ash: 3,2% (d.b.)

Resulting briquettes

- Reactivity: 678 mL SiO
- Comp. Str. ~120 kg

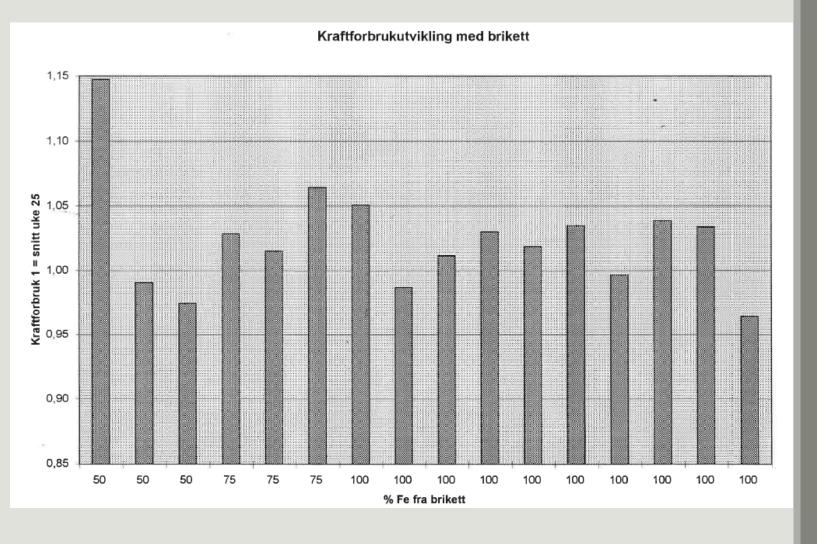
Longyear-kull


- FSI: 7-8
- Reactivity 554 mL SiO
- Vol.: 40,6%, FixC 54,8%, Ash: 4,6% (d.b.)

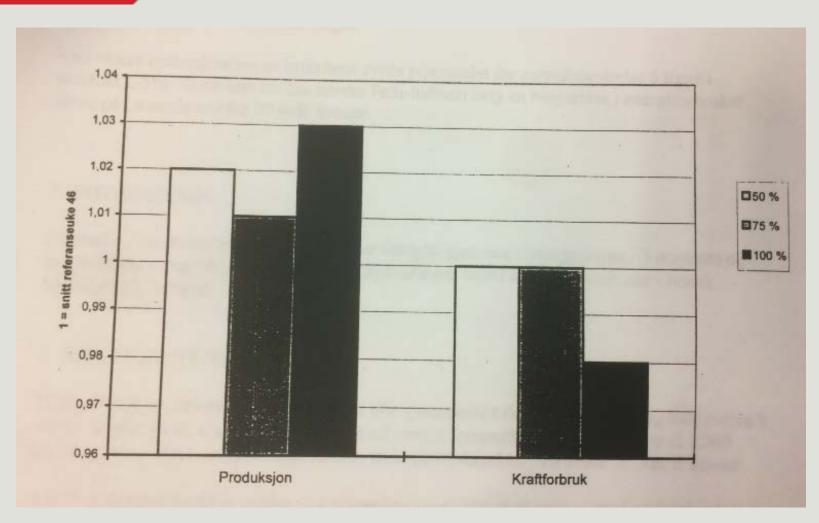

Resulting briquettes

- Reactivity: 799 mL SiO
- Comp. Str. ~120 kg

Sizing after crushing


 Crushed until sizing of briquettes comparable to origin coals

Production quantity using Wavel and Longyear briq.



Specific power consumption using Wavel and Longyear briq. Results using Wawel/Longyear

Generally good production and low specific power consumption with both types of briquettes

Visual impressions:

- Metallurgical good operation
- Favourable tapping conditions
- Even gas distribution in furnace charge

Effects of increased ratio of briquettes

Conclusions

- Sizing is of crucial importance
 - Good reactivity in furnace after crushing
- Binders: too much sulphur, and too costly.
- Good mechanical strength. Durable
- Increase ratio of briquettes: small positive (or no significant) change in production
- Spec. power consumption reduced by 1-2% to referance period.
- Patent granted NO 933264 06.03.96, «Method for production of FeSi».
- Process under control with no change for the worse

Thank you for your attention!