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GPU Computing with CUDA (and beyond)
Part 4: Programing Multiple GPU Nodes



Collective Communications

2
Johannes Langguth, Geilo Winter School 2020

NCCL does not have the collective 
communications we need, but there 
is a system which does: MPI

MPI: Message Passing Interface

MPI has been the standard for supercomputer communication 
since the 1990. It is a highly mature system.

MPI is a standard. Several implementations exist.
Current version: MPI 3.0, 4.0 is under discussion.



Message passing programming model
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u One way to program distributed memory computers is 
to use message passing, e.g. MPI

u Processes send and receive messages and have direct 
access to local memory only

u Processes share the interconnect
u Dominant control model: all ranks execute the same 

program (SPMD) and the number of ranks is fixed



Programming with Message Passing
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• Programs  execute as a set of P processes (user specifies P)

• Each process assumed to run on a different core

u Usually initialized with the same code, but has private 
state SPMD =  “Same Program Multiple Data”

u Communicates with other processes by passing messages

u Executes instructions at its own rate according to its rank 
(0:P-1) and the  messages it sends and receives
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Node 1

P4 P5
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• There are two kinds of communication patterns:
• Point-to-point communication: 

a single pair of communicating processes copy data between 
address space

• Collective communication: all the processors participate, 
possibly exchanging information

Programming with Message Passing



A Hello World in MPI
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#include "mpi.h�
int main(int argc, char **argv ){

MPI_Init(&argc, &argv);
int rank, size;
MPI_Comm_size(MPI_COMM_WORLD,&size);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
printf("Hello, world! I am process %d of %d.\n”, 
rank, size);
MPI_Finalize();
return(0);

}



A Hello World in MPI
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mpicc hello.c –o hello
mpirun –np 4 ./hello

Hello, world! I am process 2 of 4.
Hello, world! I am process 0 of 4.
Hello, world! I am process 3 of 4.
Hello, world! I am process 1 of 4.

MPI processes (called ranks) are OS processes. They do not share
memory. They can run on separate computers over a network,
but we will stay on the DGX-2 for now. 



Messaging in MPI
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Basic MPI communication is 2-sided. Sender and receiver must
do something to move the data.
OpenMP:

cudaMemcpyAsynch(V[sep[i][j]],V[sep[i][j]], 
sepsize, cudaMemcpyDeviceToDevice);

MPI:

if (rank == i)
MPI_Send(); 

if (rank == j)
MPI_Recv(); 



Send and Recv
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const int Tag=99;
int msg[2] = { rank, rank * rank};
if (rank == 0) {

MPI_Status status;
MPI_Recv(msg, 2, 

MPI_INT, 1, 
Tag, MPI_COMM_WORLD, &status);

}
else MPI_Send(msg, 2,

MPI_INT, 0,
Tag, MPI_COMM_WORLD);

Message Buffer 

Message length

SOURCE Process ID

Destination Process ID

Communicator Message Tag
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• A communicator is a name-space (or a context) describing a 
set of processes that may communicate

• MPI defines a default communicator MPI_COMM_WORLD
containing all processes

• MPI provides the means of generating uniquely named 
subsets 

• A mechanism for screening or filtering messages  

Communicators
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• Tags enable processes to organize or screen messages
• Each sent message is accompanied by a user-defined integer 

tag:
u Receiving process can use this information to organize or 
filter messages

u MPI_ANY_TAG inhibits tag filtering

MPI Tags
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MPI Datatypes

• MPI messages have a specified length 
• The unit depends on the type of the data

u The length in bytes is sizeof(type) � # elements
u We don’t specify length as the # byte

• MPI specifies a set of built-in types for each of the primitive 
types of the language 

• In C:  MPI_INT, MPI_FLOAT,    MPI_DOUBLE,
MPI_CHAR,                    MPI_LONG,
MPI_UNSIGNED, MPI_BYTE,…

• Also defined types, e.g. structs



Messaging for our Application
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MPI_Comm_rank(MPI_COMM_WORLD,&rank);
if (rank == j)

MPI_Recv(&V[sep[i][j]], sepsize, MPI_DOUBLE, 
i, tag, MPI_COMM_WORLD, &status);

if (rank == i)
MPI_Send(&V[sep[i][j]], sepsize, MPI_DOUBLE, 

j, tag, MPI_COMM_WORLD);

Asynchronous versions of Send and Recv are available.
With these, we can replicate the OpenMP version
It could even run on multiple nodes.
But we can do better!



Collective Communications in MPI
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We can replace communication by:
int MPI_Alltoallv(V, sepsize, sep[myrank], MPI_DOUBLE,
Vdest, sepsize, sep_recv[myrank], MPI_ DOUBLE, 
MPI_COMM_WORLD); 



Collective Communications in MPI
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MPI collective communication:
int MPI_Alltoallv(V, sepsize, sep[myrank], MPI_DOUBLE,
Vdest, sepsize, sep_recv[myrank], MPI_ DOUBLE, 
MPI_COMM_WORLD); 
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Collective Communications in MPI
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11

Modern example of a hypercube:
NVIDIA DGX-1

Johannes Langguth, ACACES Summer School 2018

Main advantage of collective communications: the system decides.

DGX-1 DGX-2 

• Match communication patterns to network topology
• Avoid hand-optimizing communication



More Collective Communications in MPI
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Broadcast: distribute data one process to all the others
Reduce: combine data from all processes on the root process
Scatter:  spread array among all other ranks
Gather: collect elements from each rank in one array on root
Allgather: each rank collects the array

Scatter, Gather, and Allgather have variable length (v) versions

All collectives have nonblocking versions.



CUDA-aware MPI
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Problem: MPI collectives are nice, but they happen on the CPU...

Remember: copying data between CPU and GPU is costly.
(unless your application is communication-light)

Can we use MPI to move data through the NVSwitch ?



CUDA-aware MPI
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• CUDA-aware MPI communication between GPUs
• use Nvlink etc. within a node.
• Unified Virtual Adressing to specify location.

int MPI_Alltoallv(V, sepsize, sep[myrank], MPI_DOUBLE, 
Vdest, sepsize, sep_recv[myrank], MPI_ DOUBLE, 
MPI_COMM_WORLD); 



Remember Unified Virtual Adressing
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• Unified Virtual Adressing to points MPI to GPU memory

int MPI_Alltoallv(V, sepsize, sep[rank], MPI_DOUBLE, 
Vdest, sepsize, sep_recv, MPI_ DOUBLE, 
MPI_COMM_WORLD); 



CUDA-aware MPI
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CUDA-aware MPI implementations:
MVAPICH2 1.8/1.9b
OpenMPI 1.7 (beta)
CRAY MPI (MPT 5.6.2)
IBM Platform MPI (8.3)
SGI MPI (1.08)

http://mvapich.cse.ohio-state.edu/
http://www.open-mpi.org/
http://www.cray.com/
http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/mpi/index.html
https://www.sgi.com/products/software/sps.html


CUDA-aware MPI: MVAPICH2-GDR
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GTC 2019 37Network Based Computing Laboratory

MVAPICH2-GDR vs. NCCL2 – Allreduce Operation (DGX-2)
• Optimized designs in MVAPICH2-GDR 2.3.1 offer better/comparable performance for most cases 

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 1 DGX-2 node (16 Volta GPUs)
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Next Step: CUDA on Supercomputers
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• DGX-2 is powerful, but cannot be extended
• Need to connect multiple machines
• Each machine is an independent compute node
• Multiple nodes  + highspeed interconnect  

=Supercomputer



Top 500: The List of Supercomputers
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Top 500: The List of Supercomputers

25
Johannes Langguth, Geilo Winter School 2020



HPCG 500: The List that Matters
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HPCG 500: The List that Matters
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Summit: the Top of Top 500
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Summit: the Top of Top 500
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• Many Supercomputers follow the Summit design 
• 2 groups with 1 CPU and 3 GPUs per node 
• Unlike DGX-2, CPU-GPU and GPU-GPU is equal
• GPUs not connected to other group

How to distribute computation among GPUs ?



Traditional Partitioning for Multiple Nodes
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Traditional Partitioning for Multiple Nodes
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Again we use the graph partitioner METIS (this time for its traditional
purpose) to partition this graph into k partitions, where k is the number of
GPUs, such that the communication volume is minimised. The partitions
should ideally be of the same size, but we do not need them to be exactly
equal in size, so we specify a load imbalance factor, LIF > 1, that imposes
a bound on how much larger the largest partition can be compared to
the mean partition size. Lynx has been using LIF = 1.03, and we did
not change that value. METIS gives back an array with a mapping for
each tetrahedron to its partition index. This array is used to reorder the
tetrahedra such that the tetrahedra belonging to partition 0 comes first, then
comes the tetrahedra belonging to partition 1, and so on. Let Pp denote
the set of tetrahedra belonging to partition p. Figure 4.4 shows a mesh
partitioned into 16 parts.

Figure 4.4: Mesh with 16 partitions.
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Separators
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Separators
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Graph communicators in MPI-3

33
Johannes Langguth, Geilo Winter School 2020

MPI_Dist_graph_create_adjacent(MPI_COMM_WORLD, 
neighbourcount, graphneighbours, (int *)MPI_UNWEIGHTED,                                                   
neighbourcount, graphneighbours, (int *)MPI_UNWEIGHTED, 

MPI_INFO_NULL, 0, graphcomm_cl);

MPI_Neighbor_alltoallv(V, sendsizes, senddisps, 
MPI_DOUBLE, V+mysize, recvsizes, recvdisps, MPI_DOUBLE, 

*(graphcomm_cl));    

Neighbor
values Communication

GPU 0 GPU 1



Problem: Mixed adjacency elements
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for (int i = 0; i < sendcount_mixed; i ++) {        
sendbuffer[i] = newV[sendidx_mixed[i]];    

}   
MPI_Neighbor_alltoallv(sendbuffer, sendsizes_mixed, 
senddisps_mixed, MPI_DOUBLE, 
newV+mysize+remoteVcount_clean, recvsizes_mixed, 

recvdisps_mixed, MPI_DOUBLE, *graphcomm_mixed);}

Mixed neighbor values
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FDR InfiniBand,
115 million elements



Separators Become Comparatively Heavy
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Separators Become Comparatively Heavy
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CUDA-aware MPI: RDMA Transfers
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• GPUDirect RDMA allows send/recv directly from the GPU
• Subject to limitations due to GPU memory 



Alternative: Hierarchical Partitioning
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Stampede, 1 GPU, strong CPUs
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Experimental Results on Stampede (TACC)
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Wilkes 2 GPUs, weak CPUs
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Experimental Results on Wilkes (Cambridge)
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Summary on Multi Node Multi GPU

42
Johannes Langguth, Geilo Winter School 2020

• Multiple GPU is comparatively easy
• GPU-heavy machines give lots of power easily
• NCCL collectives still missing
• MPI can be used for single and multiple node
• Collectives are a good way of organizing communication
• Scalable multi-node codes are hard
• Distributing irregular problems on Supercomputers is 

even harder
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