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GPU Computing with CUDA (and beyond)
Part 2: Heterogeneous Computations



Heterogeneous Computing
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NVIDIA Volta V100AMD EPYC 7742

Cores
Base frequency (Ghz)
TFLOPS
Memory Bandwidth (GB/s)
Cache (last level in MB)
Memory

64
2.25

2.3
204.8

256
lots

80
1.6
7.5

900
6

32
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Heterogeneous Computing

• Despite rumors to the contrary, GPUs do not provide 100x speedups
• Recently, CPUs have become much more powerful
• We may want to use CPUs and GPUs together

• There are 3 typical cases
1) CPU only acts as a helper, GPU computes 
2) CPU and GPU perform different parts of the computation
3) CPU and GPU share work



Case 1: CPU Host as a Helper for GPU
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GPU / Device

Computation

CPU / Host
• I/O
• Memory allocation
• Data preprocessing
• Data transfers
• Kernel launch
• Expand GPU memory



Case 1: CPU Host as a helper for GPU
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Disadvantages
• Powerful CPU is idle
• Some tasks don’t fit the GPU
• Streaming from CPU memory

may be pointless

Advantages
• Simple implementation 
• Simple execution
• Works with any CPU 

(and Python)



Streaming from CPU memory may be pointless
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cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice); 
add<<<ceil(n/128),128>>>(d_a, d_b, d_c);
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

__global__ void add(int *a, int *b, int *c) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
c[index] = a[index] + b[index];

}



Remember the add Kernel (now with doubles)
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cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice); 
add<<<ceil(n/128),128>>>(d_a, d_b, d_c);
cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

__global__ void add(double *a, double *b, double *c) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
c[index] = a[index] + b[index];

}

We need to move 2 values to and one value from the GPU

CPU-GPU Communication: 24 byte per element (and FLOP)

We need to amortize transfer cost



Fundamental Problem of offloading

8
Johannes Langguth, Geilo Winter School 2020

Data has to be reused to benefit from offloading

Offloading computations are limited by:
• CPU memory bandwidth
• Transfer latency
• Synchronization and launch overheads
• Host to Device bandwidth (32 – 300 GB/s)



CPU memory and CPU-GPU Bottlenecks
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204.8 
GB/s

32 
GB/s



CPU-GPU Bottleneck Example
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• Data size: 32 GB = 1 sec.
• Time on CPU: 32/204.8 = 0.15 sec.
• Time on GPU: 32/900 = 0.035 sec.

0.15 – 0.035 = 0.115   -> run kernel 9 times to amortize

32 
GB/s



Case 2: CPU and GPU perform different parts 
of the computation
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GPU / Device

High data reuse
Computation

CPU / Host
• I/O
• Data transfers
• Kernel launch
• Low data reuse

computation 

Case 2: CPU and GPU perform different parts 
of the computation

10
Johannes Langguth, Geilo Winter School 2020

GPU / Device

High data reuse
Computation

CPU / Host
• I/O
• Data transfers
• Kernel launch
• Low data reuse

computation 



Case 2: CPU and GPU perform different parts 
of the computation
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Example: matrix computation

E = 
3 2 6
2 4 8
5 6 9

* 
1 5 6
0 7 7
5 0 4

+
2 9 5
0 9 4
1 9 4

+
4 5 1
3 9 1
7 3 3

A B C D



Case 2: CPU and GPU perform different parts 
of the computation
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Example: matrix computation

E = A * B + C + D

E = 
3 2 6
2 4 8
5 6 9

* 
1 5 6
0 7 7
5 0 4

+
2 9 5
0 9 4
1 9 4

+
4 5 1
3 9 1
7 3 3

C + D  has no data reuse. Can be performed on the CPU.

A * B should move to the GPU



Example of 2D Grid: Matrix Addition
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dim3 grid, block;
block.x = 16; 
block.y = 16; 
grid.x = n/16; //n times n matrix
if(n%16) grid.x++;
grid.y = grid.x;
madd<<<grid,block>>>(d_a, d_b, d_c);

__global__ void madd(int *a, int *b, int *c, int n) {
int X = threadIdx.x + blockIdx.x * blockDim.x;
int Y = threadIdx.y + blockIdx.y * blockDim.y;
if(X < n && Y < n) {

index = X*n+Y;
c[index] = a[index] + b[index];

}
}



DGEMM: Dense GEneral Matrix Multiplication
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Data: 3 * n2 * sizeof(double)
Compute: n2 * 2n  FLOPS

Much more compute than data. Good candidate to move to GPU 



Roofline Model
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CPU-GPU Communication: 24 byte per flop =  0.0416 FLOP per byte
AMD EPYC 7742 2300 / 204.8 = 11.23 
NVIDIA Volta V100 7500 / 900 = 8.33

10

2.3

TFLOPS
7.5

FLOP per byte DGEMMSpMV



Balanced Systems

17
Johannes Langguth, Geilo Winter School 2020

Compute: E = A * B + C + D

Problem: What if CPU is too weak to keep up with GPU ?
Solution: Buy a faster CPU (balance system)
(if that is not possible, keep entire computation on the GPU)



Balanced Systems
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Problem 1: What if CPU is too weak to keep up with GPU ?
Solution 1: Buy a faster CPU (balance system)

Problem 2: Now the expensive CPU is idling
Solution 2: Share computation between CPU and GPU



Case 3: CPU and GPU share work
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AMD EPYC 7742 2300 GFLOPS 204.8 GB/s

NVIDIA Volta V100 7500 GFLOPS 900 GB/s

Need to assign the right amount of work to each processor...

2 ways of splitting the work:

• Static

• Dynamic



Static CPU / GPU load balancing
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AMD EPYC 7742 2300 GFLOPS 204.8 GB/s
NVIDIA Volta V100 7500 GFLOPS 900 GB/s

Static load balancing in a memory bound computation:

GPU work = 900 / (204.8+900) = 0.814 = 81.4%

Only works if computational performance is predictable

In case of wrong prediction, one device will be idling

Sounds scary, lets try dynamic



Dynamic CPU / GPU load balancing
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Remember the speed limit...

Moving data between CPU and GPU is often too slow. 
In addition, complexities of dynamic load balancing have high
overhead.

Sounds even worse, lets stick with static

32 
GB/s



Example Application: Cardiac Electrophysiology
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• We want to study electrical 
activity in the heart

• Activity is governed by PDEs 
• Dissolve heart into mesh cells
• Simulate diffusion of voltage 

over time
• Discretize time and space



Irregular Shape in 2D

23
Johannes Langguth, Geilo Winter School 2020



Irregular Mesh in 2D
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Cell Centric Finite Volume Method in 2D
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U has three neighbors it interacts with: X, Y, and Z 

Y

Z

X

U



From Mesh to Matrix
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X

U has three neighbours it interacts with: X, Y, and Z 

V U Z Y
0 5 9 13 18

U has three neighbours it interacts with: X, Y, and Z 



From Mesh to Matrix
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Y

Z

X

U

• Use a vector V to store the 
voltage for each cell 

• Need data structure for mesh  

Adjacency matrix

X

U has three neighbors it interacts with: X, Y, and Z 

V U Z Y



From Mesh to Matrix
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1

5

9

Dense matrix is mostly 0. We need a sparse matrix.

111



From Mesh to Sparse Matrix
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I

9

Sparse matrix stores the indices of nonzeroes.
Much more space efficient.

But we also need to store
strength of the interaction,
and voltage conservation.

5 13 18 Y

Z

X

U



From Mesh to Sparse Matrix: ELLpack
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I

9

Coefficients are stored 
in A and D

There is no need for indices
for D, as these values are on 
the diagonal.

Now we can compute V[U]
for the next time step.

5 13 18

A

9 .1 .3 .2 .4

D



From Mesh to Sparse Matrix: ELLpack
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Compute V[U] for the next time step.

V[9]t+1 = A[9,0] * V[I[9,0]]t + 
A[9,1] * V[I[9,1]]t + 
A[9,2] * V[I[9,2]]t + D[9] * V[9]t

I

9 5 13 18

A

9 .1 .3 .2

D

0   1   2 0   1   2

.4

V



SpMV Computation for Diffusion
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V[9]t+1 = A[9,0] * V[I[9,0]]t + 
A[9,1] * V[I[9,1]]t + 
A[9,2] * V[I[9,2]]t + D[9] * V[9]t

As a matrix operation: Vt+1 = AVt

We can update each vector element separately. 
Thus, we could split the rows between CPU and GPU.



CPU – GPU SpMV Computation for Diffusion
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2 possibilities for distributing SpMV computation:
Split I, A, D, replicate V

I A D

VCPU

GPU V



CPU – GPU SpMV Computation for Diffusion
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2 possibilities for distributing SpMV computation:
Split I, A, D, and V. Then renumber I (difficult)

I A D V



CPU – GPU SpMV Computation for Diffusion
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Now we have split the data. Are we done ?   No.

Static partitioning only works if computational
performance is predictable

Remember that accesses to V are irregular. Depending on
the distribution, they may or may not be cached.



Caching in Irregular Computations
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XV U Z Y
0 5 9 13 18

Access X. We load a full cache line. (length 5)

XV U Z Y
0 5 9 13 18

Now access to U is much faster than Z and Y. We load Y. 

XV U Z Y
0 5 9 13 18



Caching in Irregular Computations
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Next we load Z, but we have to evict cells 5-9 first.

XV U Z Y
0 5 9 13 18

Access to U is slow again, since it is no longer in cache.

XV U Z Y
0 5 9 13 18



Caching in Irregular Computations
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Blocksize determines PerformanceBlocksize determines performance

irregular V access -
low performance

regular V access -
high performance

Blocksize determines PerformanceBlocksize determines performance

irregular V access -
low performance

regular V access -
high performance

When computing rows consecutively, block diagonal/ low 
bandwidth shape improves cache performance. 
(not the whole story, but close enough)



Caching in Irregular Computations
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We need to reorder the matrix to get consistent (and high)
Performance. 

Cache Blocking Performance  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Reordering for Cache Performance
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• Reverse Cuthill-McKee algorithm
• Graph partitioner

1. Metis
2. KaHip
3. Patoh
4. Etc…

How to get from
here to here

Blocksize determines PerformanceBlocksize determines performance

irregular V access -
low performance

regular V access -
high performance

Blocksize determines PerformanceBlocksize determines performance

irregular V access -
low performance

regular V access -
high performance



LYNX: SpMV Computation for Diffusion
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The LYNX cardiac electrophysiology simulator
performs all these steps. We test it on the 
following (slightly older) system:Distributed Memory on Heterogeneous Nodes

QPI 
32 GB/s 51.2 GB/s 51.2 GB/s 

8 GB/s 8 GB/s 

208 GB/s 208 GB/s 

MPI 



LYNX: CPU – GPU Heterogeneous Computation
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Memory bandwidth: 80 GB/s CPU and 2 times 208 GB/s GPU

2*208 / 2*208 + 80 = 0.83 GPU workload ratio

Distributed Memory on Heterogeneous Nodes

QPI 
32 GB/s 51.2 GB/s 51.2 GB/s 

8 GB/s 8 GB/s 

208 GB/s 208 GB/s 

MPI 



LYNX: CPU – GPU Heterogeneous Computation
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Load Balancing
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CPU – GPU Heterogeneous Computation
Was it worth the trouble ?
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What did we get ?
• 5x performance for using the GPU
• 5x performance for reordering the matrix
• 20% more performance for using the CPU as well

For tasks that work well on the GPU, adding the CPU has
high complexity and little benefit. But not everything works 
so well on the GPU…
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Credit: Lecture contains NVIDIA material available at https://developer.nvidia.com/cuda-zone
AMD information from https://www.amd.com/en/products/epyc
Image source: wikipedia.org
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