
Johannes Langguth
Simula Research Laboratory

GPU Computing with CUDA (and beyond)
Part 2: Heterogeneous Computations

Heterogeneous Computing

2
Johannes Langguth, Geilo Winter School 2020

NVIDIA Volta V100AMD EPYC 7742

Cores
Base frequency (Ghz)
TFLOPS
Memory Bandwidth (GB/s)
Cache (last level in MB)
Memory

64
2.25

2.3
204.8

256
lots

80
1.6
7.5

900
6

32

3
Johannes Langguth, Geilo Winter School 2020

Heterogeneous Computing

• Despite rumors to the contrary, GPUs do not provide 100x speedups
• Recently, CPUs have become much more powerful
• We may want to use CPUs and GPUs together

• There are 3 typical cases
1) CPU only acts as a helper, GPU computes
2) CPU and GPU perform different parts of the computation
3) CPU and GPU share work

Case 1: CPU Host as a Helper for GPU

4
Johannes Langguth, Geilo Winter School 2020

GPU / Device

Computation

CPU / Host
• I/O
• Memory allocation
• Data preprocessing
• Data transfers
• Kernel launch
• Expand GPU memory

Case 1: CPU Host as a helper for GPU

5
Johannes Langguth, Geilo Winter School 2020

Disadvantages
• Powerful CPU is idle
• Some tasks don’t fit the GPU
• Streaming from CPU memory

may be pointless

Advantages
• Simple implementation
• Simple execution
• Works with any CPU

(and Python)

Streaming from CPU memory may be pointless

6
Johannes Langguth, Geilo Winter School 2020

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);
add<<<ceil(n/128),128>>>(d_a, d_b, d_c);
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

__global__ void add(int *a, int *b, int *c) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
c[index] = a[index] + b[index];

}

Remember the add Kernel (now with doubles)

7
Johannes Langguth, Geilo Winter School 2020

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);
add<<<ceil(n/128),128>>>(d_a, d_b, d_c);
cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

__global__ void add(double *a, double *b, double *c) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
c[index] = a[index] + b[index];

}

We need to move 2 values to and one value from the GPU

CPU-GPU Communication: 24 byte per element (and FLOP)

We need to amortize transfer cost

Fundamental Problem of offloading

8
Johannes Langguth, Geilo Winter School 2020

Data has to be reused to benefit from offloading

Offloading computations are limited by:
• CPU memory bandwidth
• Transfer latency
• Synchronization and launch overheads
• Host to Device bandwidth (32 – 300 GB/s)

CPU memory and CPU-GPU Bottlenecks

9
Johannes Langguth, Geilo Winter School 2020

204.8
GB/s

32
GB/s

CPU-GPU Bottleneck Example

10
Johannes Langguth, Geilo Winter School 2020

• Data size: 32 GB = 1 sec.
• Time on CPU: 32/204.8 = 0.15 sec.
• Time on GPU: 32/900 = 0.035 sec.

0.15 – 0.035 = 0.115 -> run kernel 9 times to amortize

32
GB/s

Case 2: CPU and GPU perform different parts
of the computation

11
Johannes Langguth, Geilo Winter School 2020

GPU / Device

High data reuse
Computation

CPU / Host
• I/O
• Data transfers
• Kernel launch
• Low data reuse

computation

Case 2: CPU and GPU perform different parts
of the computation

10
Johannes Langguth, Geilo Winter School 2020

GPU / Device

High data reuse
Computation

CPU / Host
• I/O
• Data transfers
• Kernel launch
• Low data reuse

computation

Case 2: CPU and GPU perform different parts
of the computation

12
Johannes Langguth, Geilo Winter School 2020

Example: matrix computation

E =
3 2 6
2 4 8
5 6 9

*
1 5 6
0 7 7
5 0 4

+
2 9 5
0 9 4
1 9 4

+
4 5 1
3 9 1
7 3 3

A B C D

Case 2: CPU and GPU perform different parts
of the computation

13
Johannes Langguth, Geilo Winter School 2020

Example: matrix computation

E = A * B + C + D

E =
3 2 6
2 4 8
5 6 9

*
1 5 6
0 7 7
5 0 4

+
2 9 5
0 9 4
1 9 4

+
4 5 1
3 9 1
7 3 3

C + D has no data reuse. Can be performed on the CPU.

A * B should move to the GPU

Example of 2D Grid: Matrix Addition

14
Johannes Langguth, Geilo Winter School 2020

dim3 grid, block;
block.x = 16;
block.y = 16;
grid.x = n/16; //n times n matrix
if(n%16) grid.x++;
grid.y = grid.x;
madd<<<grid,block>>>(d_a, d_b, d_c);

__global__ void madd(int *a, int *b, int *c, int n) {
int X = threadIdx.x + blockIdx.x * blockDim.x;
int Y = threadIdx.y + blockIdx.y * blockDim.y;
if(X < n && Y < n) {

index = X*n+Y;
c[index] = a[index] + b[index];

}
}

DGEMM: Dense GEneral Matrix Multiplication

15
Johannes Langguth, Geilo Winter School 2020

Data: 3 * n2 * sizeof(double)
Compute: n2 * 2n FLOPS

Much more compute than data. Good candidate to move to GPU

Roofline Model

16
Johannes Langguth, Geilo Winter School 2020

CPU-GPU Communication: 24 byte per flop = 0.0416 FLOP per byte
AMD EPYC 7742 2300 / 204.8 = 11.23
NVIDIA Volta V100 7500 / 900 = 8.33

10

2.3

TFLOPS
7.5

FLOP per byte DGEMMSpMV

Balanced Systems

17
Johannes Langguth, Geilo Winter School 2020

Compute: E = A * B + C + D

Problem: What if CPU is too weak to keep up with GPU ?
Solution: Buy a faster CPU (balance system)
(if that is not possible, keep entire computation on the GPU)

Balanced Systems

18
Johannes Langguth, Geilo Winter School 2020

Problem 1: What if CPU is too weak to keep up with GPU ?
Solution 1: Buy a faster CPU (balance system)

Problem 2: Now the expensive CPU is idling
Solution 2: Share computation between CPU and GPU

Case 3: CPU and GPU share work

19
Johannes Langguth, Geilo Winter School 2020

AMD EPYC 7742 2300 GFLOPS 204.8 GB/s

NVIDIA Volta V100 7500 GFLOPS 900 GB/s

Need to assign the right amount of work to each processor...

2 ways of splitting the work:

• Static

• Dynamic

Static CPU / GPU load balancing

20
Johannes Langguth, Geilo Winter School 2020

AMD EPYC 7742 2300 GFLOPS 204.8 GB/s
NVIDIA Volta V100 7500 GFLOPS 900 GB/s

Static load balancing in a memory bound computation:

GPU work = 900 / (204.8+900) = 0.814 = 81.4%

Only works if computational performance is predictable

In case of wrong prediction, one device will be idling

Sounds scary, lets try dynamic

Dynamic CPU / GPU load balancing

21
Johannes Langguth, Geilo Winter School 2020

Remember the speed limit...

Moving data between CPU and GPU is often too slow.
In addition, complexities of dynamic load balancing have high
overhead.

Sounds even worse, lets stick with static

32
GB/s

Example Application: Cardiac Electrophysiology

22
Johannes Langguth, Geilo Winter School 2020

• We want to study electrical
activity in the heart

• Activity is governed by PDEs
• Dissolve heart into mesh cells
• Simulate diffusion of voltage

over time
• Discretize time and space

Irregular Shape in 2D

23
Johannes Langguth, Geilo Winter School 2020

Irregular Mesh in 2D

24
Johannes Langguth, Geilo Winter School 2020

Cell Centric Finite Volume Method in 2D

25
Johannes Langguth, Geilo Winter School 2020

U has three neighbors it interacts with: X, Y, and Z

Y

Z

X

U

From Mesh to Matrix

26
Johannes Langguth, Geilo Winter School 2020

X

U has three neighbours it interacts with: X, Y, and Z

V U Z Y
0 5 9 13 18

U has three neighbours it interacts with: X, Y, and Z

From Mesh to Matrix

27
Johannes Langguth, Geilo Winter School 2020

Y

Z

X

U

• Use a vector V to store the
voltage for each cell

• Need data structure for mesh

Adjacency matrix

X

U has three neighbors it interacts with: X, Y, and Z

V U Z Y

From Mesh to Matrix

28
Johannes Langguth, Geilo Winter School 2020

1

5

9

Dense matrix is mostly 0. We need a sparse matrix.

111

From Mesh to Sparse Matrix

29
Johannes Langguth, Geilo Winter School 2020

I

9

Sparse matrix stores the indices of nonzeroes.
Much more space efficient.

But we also need to store
strength of the interaction,
and voltage conservation.

5 13 18 Y

Z

X

U

From Mesh to Sparse Matrix: ELLpack

30
Johannes Langguth, Geilo Winter School 2020

I

9

Coefficients are stored
in A and D

There is no need for indices
for D, as these values are on
the diagonal.

Now we can compute V[U]
for the next time step.

5 13 18

A

9 .1 .3 .2 .4

D

From Mesh to Sparse Matrix: ELLpack

31
Johannes Langguth, Geilo Winter School 2020

Compute V[U] for the next time step.

V[9]t+1 = A[9,0] * V[I[9,0]]t +
A[9,1] * V[I[9,1]]t +
A[9,2] * V[I[9,2]]t + D[9] * V[9]t

I

9 5 13 18

A

9 .1 .3 .2

D

0 1 2 0 1 2

.4

V

SpMV Computation for Diffusion

32
Johannes Langguth, Geilo Winter School 2020

V[9]t+1 = A[9,0] * V[I[9,0]]t +
A[9,1] * V[I[9,1]]t +
A[9,2] * V[I[9,2]]t + D[9] * V[9]t

As a matrix operation: Vt+1 = AVt

We can update each vector element separately.
Thus, we could split the rows between CPU and GPU.

CPU – GPU SpMV Computation for Diffusion

33
Johannes Langguth, Geilo Winter School 2020

2 possibilities for distributing SpMV computation:
Split I, A, D, replicate V

I A D

VCPU

GPU V

CPU – GPU SpMV Computation for Diffusion

34
Johannes Langguth, Geilo Winter School 2020

2 possibilities for distributing SpMV computation:
Split I, A, D, and V. Then renumber I (difficult)

I A D V

CPU – GPU SpMV Computation for Diffusion

35
Johannes Langguth, Geilo Winter School 2020

Now we have split the data. Are we done ? No.

Static partitioning only works if computational
performance is predictable

Remember that accesses to V are irregular. Depending on
the distribution, they may or may not be cached.

Caching in Irregular Computations

36
Johannes Langguth, Geilo Winter School 2020

XV U Z Y
0 5 9 13 18

Access X. We load a full cache line. (length 5)

XV U Z Y
0 5 9 13 18

Now access to U is much faster than Z and Y. We load Y.

XV U Z Y
0 5 9 13 18

Caching in Irregular Computations

37
Johannes Langguth, Geilo Winter School 2020

Next we load Z, but we have to evict cells 5-9 first.

XV U Z Y
0 5 9 13 18

Access to U is slow again, since it is no longer in cache.

XV U Z Y
0 5 9 13 18

Caching in Irregular Computations

38
Johannes Langguth, Geilo Winter School 2020

Blocksize determines PerformanceBlocksize determines performance

irregular V access -
low performance

regular V access -
high performance

Blocksize determines PerformanceBlocksize determines performance

irregular V access -
low performance

regular V access -
high performance

When computing rows consecutively, block diagonal/ low
bandwidth shape improves cache performance.
(not the whole story, but close enough)

Caching in Irregular Computations

39
Johannes Langguth, Geilo Winter School 2020

We need to reorder the matrix to get consistent (and high)
Performance.

Cache Blocking Performance  

0"

5"

10"

15"

20"

25"

30"

20
"

30
"

44
"

64
"

92
"

13
3"

19
1"

27
6"

39
7"

57
2"

69
2"

83
8"

10
14
"

12
26
"

14
83
"

17
95
"

21
73
"

26
31
"

31
84
"

38
46
"

46
51
"

56
49
"

68
02
"

82
64
"

10
00
0"

12
04
8"

14
70
5"

21
27
6"

25
64
1"

31
25
0"

38
46
1"

45
45
4"

55
55
5"

66
66
6"

76
92
3"

90
90
9"

11
11
11
"

14
28
57
"

20
00
00
"

33
33
33
"

Pe
rf
or
m
an

ce
*(G

FL
O
PS
)*

Blocksize*

CPU"16"cores" K20m"GPU"

Cluster size

Reordering for Cache Performance

40
Johannes Langguth, Geilo Winter School 2020

• Reverse Cuthill-McKee algorithm
• Graph partitioner

1. Metis
2. KaHip
3. Patoh
4. Etc…

How to get from
here to here

Blocksize determines PerformanceBlocksize determines performance

irregular V access -
low performance

regular V access -
high performance

Blocksize determines PerformanceBlocksize determines performance

irregular V access -
low performance

regular V access -
high performance

LYNX: SpMV Computation for Diffusion

43
Johannes Langguth, Geilo Winter School 2020

The LYNX cardiac electrophysiology simulator
performs all these steps. We test it on the
following (slightly older) system:Distributed Memory on Heterogeneous Nodes

QPI
32 GB/s 51.2 GB/s 51.2 GB/s

8 GB/s 8 GB/s

208 GB/s 208 GB/s

MPI

LYNX: CPU – GPU Heterogeneous Computation

44
Johannes Langguth, Geilo Winter School 2020

Memory bandwidth: 80 GB/s CPU and 2 times 208 GB/s GPU

2*208 / 2*208 + 80 = 0.83 GPU workload ratio

Distributed Memory on Heterogeneous Nodes

QPI
32 GB/s 51.2 GB/s 51.2 GB/s

8 GB/s 8 GB/s

208 GB/s 208 GB/s

MPI

LYNX: CPU – GPU Heterogeneous Computation

45
Johannes Langguth, Geilo Winter School 2020

Load Balancing

0"

10"

20"

30"

40"

50"

60"

70"

80"

0.05"0.1"0.15"0.2"0.25"0.3"0.35"0.4"0.45"0.5"0.55"0.6"0.65"0.7"0.75"0.8"0.85"0.9"0.95"

Pe
rf
or
m
an

ce
*(G

FL
O
PS
)*

Accelerator*workload*ra8o*r**

Synthe3c"instance" Real"Mesh" GPU"speedup"limit"

CPU – GPU Heterogeneous Computation
Was it worth the trouble ?

46
Johannes Langguth, Geilo Winter School 2020

What did we get ?
• 5x performance for using the GPU
• 5x performance for reordering the matrix
• 20% more performance for using the CPU as well

For tasks that work well on the GPU, adding the CPU has
high complexity and little benefit. But not everything works
so well on the GPU…

References

47
Johannes Langguth, Geilo Winter School 2020

Williams, S., Waterman, A., & Patterson, D. (2009). Roofline: an insightful visual performance model
for multicore architectures. Communications of the ACM, 52(4), 65-76.

Langguth, J., Sourouri, M., Lines, G. T., Baden, S. B., & Cai, X. (2015). Scalable heterogeneous CPU-
GPU computations for unstructured tetrahedral meshes. IEEE Micro, 35(4), 6-15.

Langguth, J., Wu, N., Chai, J., & Cai, X. (2013, November). On the GPU performance of cell-centered
finite volume method over unstructured tetrahedral meshes. In Proceedings of the 3rd Workshop on
Irregular Applications: Architectures and Algorithms (pp. 1-8).

Credit: Lecture contains NVIDIA material available at https://developer.nvidia.com/cuda-zone
AMD information from https://www.amd.com/en/products/epyc
Image source: wikipedia.org

https://developer.nvidia.com/cuda-zone
https://www.amd.com/en/products/epyc

