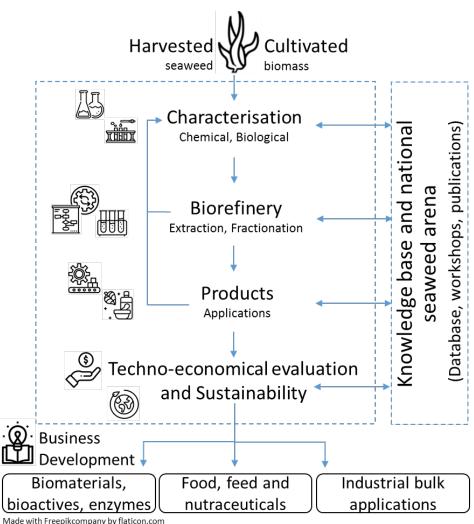


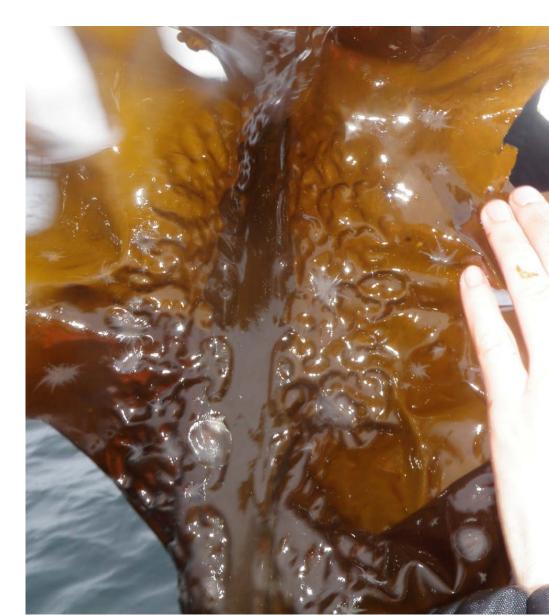
SIG Seaweed 28.11.2019 Inga Marie Aasen, SINTEF Industry

he Research Council

of Norway



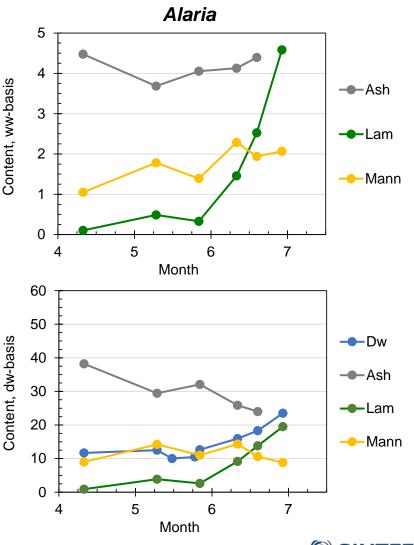
SBP-N and Seaweed for food (,feed and nutraceuticals)


- SBP-N will develop a knowledge basis for the establishment and growth of a Norwegian industry based on cultivated seaweed
- Lack of a market is currently limiting the growth of the industry
 Need products that may represent significant volumes, with a short path to the market
- Food is currently the main application of seaweed on a global basis

Seaweed for food – bottlenecks and research needs

How to make seaweed to a significant component of everyday meals (eg consumed on a weekly basis)?


- Food safety
- Tasty, nutritional and healthy
- Product development (by the industry)
 Our contributions:
 - Dialogue with the industry on the requirements that needs to be fulfilled (safety, quality-related properties)
 - Generate generic knowledge needed for the product development and the corresponding processing



Examples – Feedstock knowledge

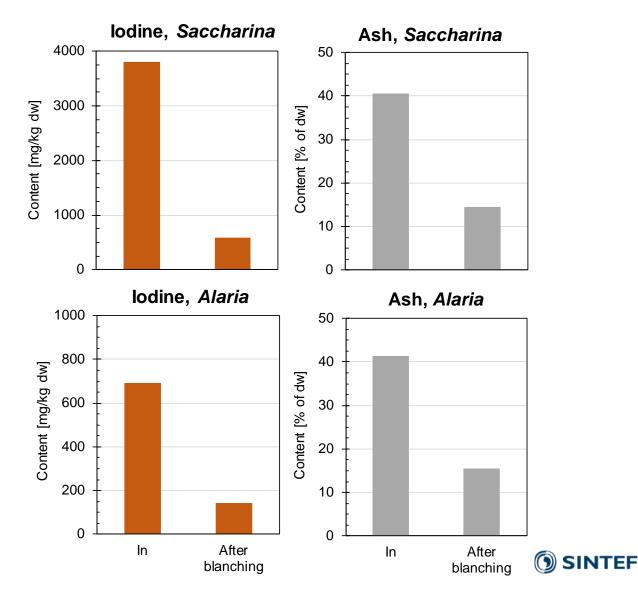
Saccharina and Alaria are different:

- The iodine content is 5-10 fold higher in *Saccharina* than in *Alaria*
- Laminaran starts to accumulate earlier in *Alaria* than in *Saccharina*
 - Flavour will be different in April and June
 - Different markets and applications?

🕦 SINTEF

Examples – Extended shelf-life and preservation of fresh biomass

- Prolonged shelf-life by <u>lowering temperature</u> important for storage between harvest and drying/processing
 - RSW (refrigerated seawater) at -1.0 °C, double the shelf-life compared to +7 °C
- Freezing on- or off-shore, ensure all year supply of biomass
 - Optimal freezing and thawing solutions
 - Prevent quality- and drip-loss (incl. soluble proteins)
 - On the other hand: The thawing liquid may be an easily available source of valuable components



SINTEF

Examples – Iodine (and salt) reduction

- Blanching for iodine reduction
 - Iodine reduced to ~20 % of original levels
 - Salt reduced to ~35 % of original levels
- Iodine intake
 - Recommended 150 µg; maximum 600 µg iodine per day
- Can eat maximum 6.5-8 g ww unprocessed Saccharina per week, but 450 g blanched Alaria!

The way further

For food: Focus on *Alaria*, leave *Saccharina* for other applications

- Examples on gaps & research needs in initial processing and preservation:
 - Is it possible to reduce iodine without loss of flavour components (free amino acids, small peptides etc)?
 - Optimization of energy use and quality aspects during freezing and drying

PhD-work on Drying in collaboration with DTU: Cecilie Wirenfeldt-Nielsen, Main supervisors Susan Holdt, DTU and Turid Rustad, NTNU

- 0) Hydrothermal processing of sugar kelp and the loss of iodine and valuable compounds
- I) Understanding drying of two brown algae; methods and conditions
- II) Survival of microorganisms during thermal processing
- III) Kinetic modelling of colour, texture and chemical changes during thermal treatment
- IV) Correlations between sensory and quality components in processed seaweed products
- V) Safety and quality aspects of storing processed seaweed products

The next step: Products – Some calculation examples

 <u>Vegetable mix</u> (frozen or fresh), consumed once a month for every Norwegian household:

29 million 'portions' á 500 g; 20 % seaweed -> 2900 tonnes wet weight

Cost of seaweed (100 g per portion), assuming 50 kr/kg ww: ~10 kr (current price 25-40 kr per portion)

• <u>Frozen Pizza</u>, new variant with 10 % of the market:

26 000 tonnes (2018); 10 % of the market with 10 % seaweed: <u>260 tonnes wet</u> <u>weight</u>

Cost of seaweed (52 g per portion), assuming 50 kr/kg ww: ~2.30 kr (current price 40 kr per pizza)

SINTEF

(10 000 t ww per year -> 2 kg / person = 38 grams/person/week)

Processing – Options to be prioritised

- Food safety *and palatability*
- Processing will depend on the application:

To be used as a vegetable (wet and visible) or as an ingredient in cereal products or products based on minced meat/fish/ vegetables (dried and milled)?

- Ingredient in formulation for plant protein extrusion
- Incorporation in cereal products; dough stability/product taste
- Fractionation (soluble extracts)
- Enzymatic hydrolysis of polysaccharides and/or protein to change rheology, taste and/or generate monomers to facilitate fermentation
- Fermentation with lactic acid bacteria

Feed and nutraceuticals

Polysaccharides (fibres) and oligomers of these, related to gut-health (microbiota and immunology)

- Studies on structure-activity relationships will be coordinated with on-going, and new, parallel projects
 - <u>Fucoidan</u>: Most interesting
 - Laminaran a β-1,3-glucan: Potential prebiotic, but competes on prices and effects with plant (grains/cereals)- and yeast-based products
- Characterisation of oligomers formed during enzymatic hydrolysis of polysaccharides to modify texture
- Documentation of health effects (animal models): Some studies possible, but need spin-off projects

Summary

Three prioritised areas:

- Initial biomass processing and preservation, coordinated with parallel projects
- Selected model products and related process development
- Integration of the processed seaweed biomass in food products

Communication with the Norwegian Food Safety Authority

