

Life cycle analysis from hatchery to product

Dr. Matthias Koesling NIBIO Tingvoll

SIG Seaweed 5 Conference

Radisson Blu Royal Garden Hotel Trondheim 27-28. November 2019

- 1. Protein from seaweed as a market?
- 2. Introduction to Life-Cycle Assessment, LCA
- 3. Seaweed farming to produce protein
 - a. LCA of today's production
 - b. Improved drying
 - c. Increased production volume and size
 - d. Impact of yield and protein

Salmon production in Norway had a share of 60 % of world production in 2012.

Feed losses and fecal nutrients

- Soy protein concentrate is an important feed ingredient
- For their production was about 675,000 t soy-beans needed
- Area in Brazil nearly: 2,300 km²

Integrated Multi-Trophic Aquaculture (IMTA)

- Algae-farming close to fish farming
- Nutrient uptake by algae
- Algae protein as feed ingredient

Hughes et al. 2016

Beyond fish monoculture

- 1. Protein production as an important market for farmed seaweed
- 2. Seaweed as possibility to improve the environment:
 - Replace soy protein
 - No agricultural area needed
 - Nutrient uptake from fish farming

> Can seaweed protein be better for the environment than soy protein?

Seaweed: Phases from hatchery to protein

- 1 Hatchery: Gametophyte culture
- 2 Hatchery: Sporophyte culture
- 3 Deployment & growth at sea
- 4 Harvest
- 5 Transport, storing
- 6 Drying
- 7 Extraction
- 8 Transportation

1 t pure protein (calculated)

For the LCA - for each phase:

- All materials used
- All energy used

Life-cycle assessment (LCA)

Assess environmental impacts for all materials and energy used:

- Raw material extraction
- Materials processing
- Manufacture
- Distribution
- Use
- Repair and maintenance
- Disposal or recycling

Example: Use of oil to produce electricity

Global warming potential, today's production

soy

Global warming potential, today's production

Sum annual Production t WW	Number of locations	Area per location ha
60	1	1.0

1 ha is about 1.4 football pitches (standard pitch 105 x 68 m)

Figure by NielsF, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=779704

Sum annual Production t WW	Number of locations	Area per location ha	
60	1	1.0	
170 000	1132	2.5	
6 000 000	1000	100	

Sum annual Production t WW	Number of locations	Area per location ha
60	1	1.0
170 000	1132	2.5
170 000	90	32
6 000 000	1000	100
6 000 000	6	13 300

Source: https://d-maps.com/carte.php?num car=4876&lang=en

Sum annual Production t WW	Number of locations	Area per location ha	Placement	Reduced trans- portation	Improved drying	Improved storing
60	1	1.0	+			
170 000	1132	2.5	+	+	+	+
170 000	90	32	+	+++	+	+
6 000 000	1000	100	?	+	++	++
6 000 000	6	13 300	??	++	++	++

Impact of deployment depth and harvesting month

To succeed with seaweed protein production

- Ensure high and stable yields
 - Focus on dry matter and protein content
- Impact of
 - Deployment depth
 - Harvest time
- Improved extraction of protein
- Extraction of additional products

To improve economic outcome and reduce environmental impact

Contributions from

Nina Pereira Kvadsheim (Møreforsking Molde)

Jan Emblemsvåg (Møreforsking Molde)

Jon Halfdanarson (Møreforsking Molde)

Céline Rebours (Møreforsking Ålesund)

Matthias Koesling (NIBIO)

PROMAC

Project number: 244244

Funding received from: BIONÆR — Bionæringsprogram HAVBRUK2