Experiences in optimal allocation of reserve obligations across a hydro power plant portfolio

Hydro Power Scheduling Workshop 2018

Hubert Abgottspon
Introducing Axpo Trading AG
Activities all over Europe

Hydropower
Nuclear power
Gas-fired power plants
Renewable energy plants
Wind power

H. Abgottsporn: Experiences in optimal allocation of reserve obligations
Introducing Axpo Trading AG

- 22 water courses: 25 Reservoirs & 32 balancing basins
- 54 stations: 130 turbines, 6 pumps, 17 pump-turbines & 4 var-speed pump-turbines

(pool of diverse water courses)
Basic system setup: model-based decision support
Combination of short-term deterministic and long-term stochastic tools

H. Abgottspoon: Experiences in optimal allocation of reserve obligations
Basic system setup: model-based decision support
Chain of different optimizations
Basic system setup: model-based decision support
Chain of different optimizations

This talk: handling provision of spinning reserves:

![Diagram](image-url)

Opp-Cost Auction Reserve Distribution Marginal Costs DA-Bidding Auction Optimization Checks / Simulation ID - trading Reserve Distributor Control

Time

W-1 D-1 D h-1 real time

Week-Ahead Day-Ahead Intraday

H. Abgottsporn: Experiences in optimal allocation of reserve obligations
Basic system setup: model-based decision support
Reserve market in Switzerland

Spinning Reserves:
- Weekly auctions on Tuesday
 - pay-as-bid
 - FCR ± 74MW
 - aFRR +400MW, -400MW
- Take decision on Tuesday with major impact on operation in the front week

H. Abgottspon: Experiences in optimal allocation of reserve obligations
Basic system setup: model-based decision support
Short-term perspective starts week-ahead

This talk: handling provision of spinning reserves

Two tasks:
1. Decision support for bidding of reserves: Reserve Opportunity Cost Calculation
2. Providing reserve obligations with least costs: Intraday Reserve Re-Distribution
1. Reserve Opportunity Cost Calculation

Time

W-1 D-1 D h-1 real time

Week-Ahead Day-Ahead Intraday
1. Reserve Opportunity Cost Calculation

Opportunity Costs

Purpose:
Find financial impact when reserves are provided.

-> support for bidding

\[\text{Opportunity Costs} = \text{revenue 1} - \text{revenue 2} \]
1. Reserve Opportunity Cost Calculation

Decision support

Optimization: Given amount of reserves: distribute it most optimally:
- Pool on unit level
- pay-as-bid -> average costs meaningful (?)
- Scenarios:
 - No aFRR
 - Different amounts of aFRR per water course
 - Different amounts of aFRR within the pool
- Curve shape and turning points support the bidding strategy

H. Abgottspion: Experiences in optimal allocation of reserve obligations
1. Reserve Opportunity Cost Calculation

Challenges & Experiences: Pool optimization

Importance of pool:
- asymmetric provision
- distribute simultaneously FCR, aFRR, mFRR
- provide reserves with pumps

Experience:
- pool in principle lower opportunity costs
- difference depends on many factors
1. Reserve Opportunity Cost Calculation
Challenges & Experiences: Clustering

Clustering:
- “realistic” schedules
- -> de-optimization

“ramping costs” = 0

H. Abgottsporn: Experiences in optimal allocation of reserve obligations
1. Reserve Opportunity Cost Calculation

Challenges & Experiences: Clustering

Clustering:

- “realistic” schedules
- -> de-optimization

“ramping costs” = 100
1. Reserve Opportunity Cost Calculation
Challenges & Experiences: Clustering

Clustering:
- “realistic” schedules
- -> de-optimization

“ramping costs” = 1000
1. Reserve Opportunity Cost Calculation
Challenges & Experiences: Clustering

Clustering:
- “realistic” schedules
- -> de-optimization

Challenges:
- “tuning” of clustering costs
- dependence of clustering costs:
 - availability of units
 - interdependencies, e.g. cascades
 - current level of market price

“ramping costs” = 1000
1. Reserve Opportunity Cost Calculation

Challenges & Experiences: Penalties

When model not 100% clean:

- Cplex can have difficulties with solving mixed-integer problem:
 - numerical instabilities (coefficients 1e-5 to 1e7)
 - penalties -> relative MIP-gap not much use
 - -> useless opportunity costs (even negative possible!)

Interdependence of penalties:

- size of penalties often arbitrarily chosen
- however: as long as model is clean: not much influence
 (since penalties “not active”)

Unsolved issue:

- what to do when penalties are active? guidelines of size of penalties?
1. Reserve Opportunity Cost Calculation
Challenges & Experiences: Computational Performance

Complexity:
- 250k variables, 150k constraints, 1.5k binaries
- Performance tuning:
 - hardware:
 - same solution: 3h – 6h
 - same calculation time available: 456 – 460 Mio Euro
 - parameters (SHOP and Cplex):
 - baseline: 30min -> 353.3Mio Euro
 - tuned for one instance: 4min -> 352.9Mio Euro
 - model:
 - time granularity
 - choice of water courses / type of reserves
2. Intraday Reserve Re-Distribution

Time:
- W-1
- D-1
- D
- h-1
- Real time

Stage:
- Week-Ahead
- Day-Ahead
- Intraday
2. Intraday Reserve Re-Distribution

Purpose:
- intraday: decide where to fulfill reserve obligations: which units in the pool
- rerun if new information get available

In principle, not much difference to week-ahead reserve allocation. However:
- known production profile for each unit
- time effort < 5min
- robustness
2. Intraday Reserve Re-Distribution

Heuristic approach

Since pool optimization not yet stable enough, heuristic:

- based on “merit order list” of water courses (based on marginal costs)
- six different lists: up/down FCR, aFRR, mFRR
- known operating points of all units
- very robust, whole process < 2min, rerun every 15min automatically
3. Outlook
3. Outlook

Goal: Bring reserve allocation optimization forward, in order to:

- Daily reserve bidding support
- Intraday re-distribution based on same optimization (meaningful?)
- Multi-market bidding support: DA, ID, reserves
- Bidding support for long-term reserve auctions
Many thanks for your attention