

Experiences in optimal allocation of reserve obligations across a hydro power plant portfolio

Hydro Power Scheduling Workshop 2018

Hubert Abgottspon

Introducing Axpo Trading AG

Activities all over Europe

Introducing Axpo Trading AG

- 22 water courses: 25 Reservoirs & 32 balancing basins
- 54 stations: 130 turbines, 6 pumps, 17 pump-turbines & 4 var-speed pump-turbines

Combination of short-term deterministic and long-term stochastic tools

Chain of different optimizations

	Opp-Cost	Reserve- Distribution	Marginal Costs	DA-Bidding	Auction	Optimization	Checks / Simulation	ID - trading	Reserve Distributor	Control				
Time	W-1			D	-1		D	real time						
	Week-Ahea	ad		Day-A	head		Intraday							

Chain of different optimizations

This talk: handling provision of spinning reserves:

Reserve market in Switzerland

Spinning Reserves:

- Weekly auctions on Tuesday
 - pay-as-bid
 - FCR ± 74MW
 - aFRR +400MW, -400MW
- Take decision on Tuesday with major impact on operation in the front week

Short-term perspective starts week-ahead

This talk: handling provision of spinning reserves

Two tasks:

- 1. Decision support for bidding of reserves: Reserve Opportunity Cost Calculation
- 2. Providing reserve obligations with least costs: Intraday Reserve Re-Distribution

	Opp-Cost Auction Distribution	Marginal DA-Bidding Auction	Optimization Simulation ID - tra	ding Reserve Distributor	Control	
Time	W-1	D-1	D	h-1	real time	
	Week-Ahead	Day-Ahead		Intraday	\rangle	

Opportunity Costs

Decision support

Optimization: Given amount of reserves: distribute it most optimally:

- Pool on unit level
- pay-as-bid -> average costs meaningful (?)
- Scenarios:
 - No aFRR
 - Different amounts of aFRR per water course
 - Different amounts of aFRR within the pool
- Curve shape and turning points support the bidding strategy

Challenges & Experiences: Pool optimization

Importance of pool:

- asymmetric provision
- distribute simultaneously FCR, aFRR, mFRR
- provide reserves with pumps

Experience:

- pool in principle lower opportunity costs
- difference depends on many factors

Challenges & Experiences: Clustering

Clustering:

- "realistic" schedules
- -> de-optimization

Challenges & Experiences: Clustering

Clustering:

- "realistic" schedules
- -> de-optimization

azpo

1. Reserve Opportunity Cost Calculation

Challenges & Experiences: Clustering

Clustering:

- "realistic" schedules
- -> de-optimization

Challenges & Experiences: Clustering

Clustering:

- "realistic" schedules
- -> de-optimization

Challenges:

- "tuning" of clustering costs
- dependence of clustering costs:
 - availability of units
 - interdependencies, e.g. cascades
 - current level of market price

"ramping costs" = 1000

Challenges & Experiences: Penalties

When model not 100% clean:

- Cplex can have difficulties with solving mixed-integer problem:
 - numerical instabilities (coefficients 1e-5 to 1e7)
 - penalties -> relative MIP-gap not much use
- -> useless opportunity costs (even negative possible!)
 Interdependence of penalties:
 - size of penalties often arbitrarily chosen
 - however: as long as model is clean: not much influence

(since penalties "not active")

Unsolved issue:

what to do when penalties are active? guidelines of size of penalties?

Picture from gurobi.com

Challenges & Experiences: Computational Performance

Complexity:

- 250k variables, 150k constraints, 1.5k binaries
- Performance tuning:
 - hardware:
 - same solution: 3h 6h
 - same calculation time available: 456 460 Mio Euro
 - parameters (SHOP and Cplex):
 - baseline: 30min -> 353.3Mio Euro
 - tuned for one instance: 4min -> 352.9Mio Euro
 - model:
 - time granularity
 - choice of water courses / type of reserves

	IBM
IBM ILOG CPLEX Optimization S CPLEX Parameters Reference	Studio
Version 12 Release 7	

geplant	Di	Mi	Do	Fr	Sa	So	Мо	Di	Mi	Do	Fr	Sa	So	Мо	Di	Mi	Do	Fr	Sa	So	Мо	Di						
je 21 Uhr																												
	Mi		Do	Fr	Sa	So	Мо	Di	Mi	Do	Fr	Sa	So	Мо	Di	Mi	Do	Fr	Sa	So	Мо	Di	Mi					
	Do			Fr	Sa	So	Мо	Di	Mi	Do	Fr	Sa	So	Мо	Di	Mi	Do	Fr	Sa	So	Мо	Di	Mi	Do				
	Fr				Sa	So	Мо	Di	Mi	Do	Fr	Sa	So	Мо	Di	Mi	Do	Fr	Sa	So	Мо	Di	Mi	Do	Fr]		
	Sa					So	Мо	Di	Mi	Do	Fr	Sa	So	Мо	Di	Mi	Do	Fr	Sa	So	Мо	Di	Mi	Do	Fr	Sa		
	So						Мо	Di	Mi	Do	Fr	Sa	So	Мо	Di	Mi	Do	Fr	Sa	So	Мо	Di	Mi	Do	Fr	Sa	So	1
	MO		-					Di	Mi	Do	Fr	Sa	So	Мо	Di	Mi	Do	Fr	Sa	So	Мо	Di	Mi	Do	Fr	Sa	So	Мо

2. Intraday Reserve Re-Distribution

2. Intraday Reserve Re-Distribution

Purpose:

- intraday: decide where to fulfill reserve obligations: which units in the pool
- rerun if new information get available

In principle, not much difference to week-ahead reserve allocation. However:

- known production profile for each unit
- time effort < 5min</p>
- robustness

azpo

2. Intraday Reserve Re-Distribution

Heuristic approach

Since pool optimization not yet stable enough, heuristic:

- based on "merit order list" of water courses (based on marginal costs)
- six different lists: up/down FCR, aFRR, mFRR
- known operating points of all units
- very robust, whole process < 2min, rerun every 15min automatically</p>

3. Outlook

3. Outlook

Goal: Bring reserve allocation optimization forward, in order to:

- Daily reserve bidding support
- Intraday re-distribution based on same optimization (meaningful?)
- Multi-market bidding support: DA, ID, reserves
- Bidding support for long-term reserve auctions

Seite 23

Many thanks for your attention

Axpo Trading AG | Baden | Switzerland